
ABSTRACT
As Graphical User Interfaces become more popular, the need for
GUI testing tools becomes greater. However, many current test
generation techniques require proprietary tools and can be hard to
use to their fullest potential. This paper outlines a new test case
generation strategy, which enables testers to automatically
produce cases in a widely used format. It is the hope of the
authors that this strategy will encourage more complete GUI
testing throughout the field.

Keywords
Graphical user interfaces, jfcUnit, integration tree, JUnit, event-
flow, test case generation, GUI ripping, code coverage

1. INTRODUCTION
The GUITAR (GUI Testing frAmewoRk) project is supported by
the National Science Foundation with the purpose of simplifying
GUI testing by automatically creating test cases that intelligently
challenge a GUI's functionality. The objective of our research
was to allow for generation of test cases in a widely used format,
without limiting GUITAR’s test coverage. This has been
accomplished by translating GUITAR’s proprietary format test
cases into jfcUnit test cases.

2. GUI TESTING FIELD
2.1 Context
Software testing is a crucial element of software development,
necessary to encourage software usability, robustness, and safety.
Effective testing is very time consuming and can account for
upwards of 67% of the total cost of software development.1
While the field of software testing is very comprehensive, the
subfield of GUI testing represents a relatively new specialization.
The variations of GUI design and functionality are innumerable,
making GUIs hard to predict and challenging to test.2

2.2 Necessity
While facially simple to the user, the underlying complexity of
GUIs make them susceptible to errors. GUIs complicate software
engineering because they add an additional interface, which in
itself can contain errors, onto the underlying code. GUITAR aims
to reduce the complexity of GUI testing, specifically in situations
where the source code might not be available. As the use of GUIs
in software programming is rapidly increasing, the necessity for
versatile GUI testing tools increases as well.

2.3 Difficulty
GUI testing is uniquely challenging in that the tester may be
limited to the abstraction layer that the GUI represents
graphically, rather than the source code that lies beneath it.
Finding GUI objects and their relationships to each other in an
interface, without access to the source code is difficult.

As an illustration of GUI testing complexity, Microsoft WordPad
has 325 GUI operations.3 Even though there are very few

components, a test may yield different results depending upon the
order and number of prior component activations.

3. GUITAR PROJECT OVERVIEW
3.1 GUI Ripper
The most valuable component of the GUITAR process is the GUI
Ripper. The reverse engineering of an executing GUI is called
“ripping” a GUI. This tool examines a GUI hierarchically,
creating an “Integration Tree” of the GUI elements that shows
their relationship to each other and to the GUI as a whole.
“Starting from the software’s first window (or set of windows),
the GUI is ‘traversed’ by opening all child windows. All the
window’s widgets (building blocks of the GUI, e.g., buttons, text-
boxes), their properties (e.g., background-color, font), and values
(e.g., red, Times New Roman, 18pt) are extracted.”4 Once the
GUI structure is understood, objects can be manipulated and
tested accordingly.

3.2 EFG Generator
Another component, the EFG Generator, collects data from a
GUI to create an event-flow graph. Event-flow graphs seek to
demonstrate all of the possible interactions between GUI object
events at any given time.5 When done manually, determining the
relationship between objects can be the most time intensive part
of testing. However, GUITAR eliminates this highly time-
consuming task. “Once the event-flow model is created, it can be
used to generate a large number of GUI test cases with very little
cost and effort.”6

3.3 Test Case Generator
GUITAR's Test Case Generator uses all of the information in an
Integration Tree and an Event-Flow graph to create a set of
proprietary tests that manipulate the GUI. Two of the generation
methods by which it does this are node selection and edge
selection. In node selection, the Test Case Generator picks a
random event from the event-flow graph and then ascertains the
component manipulation steps that are required to reach the
event. Edge selection works in a similar fashion by running node
selection on one of an edge’s nodes, and then adding the other
node to the path. The cases are then outputted, including
information such as the component’s name, and the way that the
component should be manipulated. Previously, such test cases
had to be run through a proprietary re-player which made it
difficult to automate efficiently. The focus of our current research
is to translate these proprietary test cases into a more widely
accessible format.

<Component>
<Window>2Pad - Untitled *_0</Window>
<Nonterminal>Justification_1</Nonterminal>
<Eventtype>LEFTCLICK</Eventtype>
<Eventvalue>UNKNOWN</Eventvalue>
</Component>

Figure 3. Portion of a random GUITAR test case7

Test Case Generator for GUITAR

Daniel R. Hackner
Department of Computer Science

University of Maryland, College Park, MD 20742
E-mail: dhackner@umd.edu

Atif M. Memon
Department of Computer Science

University of Maryland, College Park, MD 20742
E-mail: atif@cs.umd.edu

mailto:dhackner@umd.edu
mailto:dhackner@umd.edu
mailto:dhackner@umd.edu
mailto:dhackner@umd.edu

3.4 Coverage Evaluator
GUITAR is able to analyze the percentage of executed lines in
application code by generating statement coverage, branch
coverage and path coverage reports.

4. jfcUnit
jfcUnit is an extension to JUnit which is a software framework
used in the creation of automated tests for programs written in
Java. By providing specialized GUI component finders that
locate Swing objects on the screen, as well as component
activators that access a Swing component's various functions
(mouse click, keyboard input, etc.), jfcUnit adds Java Swing
(Java GUI) testing functionality to JUnit. Since JUnit is powerful,
well known and widely used, jfcUnit has a very broad appeal by
association and therefore, is an optimal way to output GUI test
cases.

5. jfcUnit TEST CASE GENERATOR
5.1 Scope
The scope of the Test Case Generator was to convert the output
of GUITAR GUI rips and test cases into robust test sets in a
widely used format. Since GUITAR's test cases were originally
outputted in a proprietary and lesser known format, testers were
compelled to utilize GUITAR's own tools. This constraint limited
GUITAR's appeal and usefulness. The need for a more popular
format is now met by the ability to convert output into jfcUnit
cases. jfcUnit was chosen because of it’s ease of use and
portability. With the Generator, a tester can input a GUI into
GUITAR and obtain output in the form of jfcUnit cases.

5.2 Caveats
As of this writing, jfcUnit can only find objects that are visible on
screen. Thus, the Generator requires traversing through the GUI
rips in order to find methods of activating the appropriate buttons
to make the components appear. This can occasionally lead to
cases which are difficult to read, consisting of numerous mouse
click calls on objects, or circular pop-up activations, before the
desired object is found. The major limitation of the Generator is
that upon starting the GUI, all pop-ups are killed, which can
become an issue if the component in question was located on that
window. We are searching for a method to allow original pop-ups
to remain opened if needed. As of this writing, components can
only be manipulated and tested if they lie on the main screen or
the screens reachable from within it.

5.3 Details and Methodology
Each test case is analyzed by a Python script, which finds its
components and the actions to be applied to them. Since
components can be nested (e.g. the Save button under the File
menu) and invisible upon the starting of a GUI, the GUI rip files
must be examined in order to find the relationship of objects to
each other. These paths can vary for the same component, as
GUITAR finds numerous routes to access the same element. This
algorithm provides a deeper level of bug searching, as it delivers
unique event combinations. To implement this in the jfcUnit test
cases, the script determines the series of steps required to access a
specific component from the start of its window. If the window is
not the main screen, the program searches for elements that can
invoke that window. One of these elements is recursively run
again, in order to find the steps necessary to activate it. The
process is repeated until a path to the main screen is found. The
script then outputs each test case, along with a GUI activator,
which will analyze the GUI itself in order to find the way to
initially start it. Finally, these cases are compiled into a folder.

1: JMenuItem jmiComponent;
2: JMenuItemFinder jmiFinder = new JMenuItemFinder("Edit",
 true);
3: jmiComponent = (JMenuItem) jmiFinder.find();
4: assertNotNull("Could not find Edit!", jmiComponent);
5: getHelper().enterClickAndLeave(new MouseEventData(this,
 jmiComponent));

6: jmiFinder.setText("Split Word");
7: jmiComponent = (JMenuItem) jmiFinder.find();
8: assertNotNull("Could not find Split Word!", jmiComponent);
9: getHelper().enterClickAndLeave(new MouseEventData(this,
 jmiComponent));

Figure 5. Example generated jfcUnit test

This is a portion of a sample test case outputted by the Generator.
Each four line set finds a component and activates it. The “Split
Word” set is dependent on the “Edit” set executing properly.

5.4 Contributions
jfcUnit cases are written in Java, which is renowned for its
system portability. The Test Case Generator provides a tester with
easy to generate system test cases, as well as skeleton code which
can be used in the writing of more specialized tests. Since jfcUnit
cases can be verbose and difficult, having basic, environmentally
independent cases already made and ready for customization is
valuable. This Generator is able to seek out objects within nested
menus and pop-ups, which is extremely powerful for complex
GUIs. The test case layout is divided into subsections, each of
which manipulates a specific object. This format makes each
step’s location abundantly clear, and thus permits alterations and
expansions to be easily made.

5.5 Present Status
As the project is now completed, GUITAR can create jfcUnit test
cases with the ability to perform in-depth component existence
checks, with support for nested menus and pop-ups, as well as to
manipulate objects by clicking or entering keyboard input. There
is still a lack of support for components located on original pop-
ups. We hope to have this issue resolved in time for presentation.

6. ACKNOWLEDGEMENTS
Thanks to Xun Yuan and the team for help and guidance.

7. REFERENCES
[1] http://www.cs.umd.edu/~atif/GUITARWeb/
[2] Memon, A. M. 2007. An event-flow model of GUI-based
applications for testing: Research Articles. Softw. Test. Verif.
Reliab. 17, 3 (Sep. 2007), 137-157. DOI= http://dx.doi.org/
10.1002/stvr.v17:3
[3] Memon, A. M., Pollack, M. E., and Soffa, M. L. 1999. Using
a goal-driven approach to generate test cases for GUIs. In
Proceedings of the 21st international Conference on Software
Engineering (Los Angeles, California, United States, May 16 -
22, 1999). International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos, CA, 257-266.
[4] Memon, A., Banerjee, I., and Nagarajan, A. 2003. GUI
Ripping: Reverse Engineering of Graphical User Interfaces for
Testing. In Proceedings of the 10th Working Conference on
Reverse Engineering (November 13 - 17, 2003). WCRE. IEEE
Computer Society, Washington, DC, 260.
[5] Memon, op. cit. 2
[6] Ibid
[7] http://www.cs.umd.edu/~atif/GUITARWeb/
guitar_process_test_case_generation.htm

http://www.cs.umd.edu/~atif/GUITARWeb/
http://www.cs.umd.edu/~atif/GUITARWeb/
http://dx.doi.org/10.1002/stvr.v17:3
http://dx.doi.org/10.1002/stvr.v17:3
http://dx.doi.org/10.1002/stvr.v17:3
http://dx.doi.org/10.1002/stvr.v17:3
http://www.cs.umd.edu/~atif/GUITARWeb/guitar_process_test_case_generation.htm
http://www.cs.umd.edu/~atif/GUITARWeb/guitar_process_test_case_generation.htm
http://www.cs.umd.edu/~atif/GUITARWeb/guitar_process_test_case_generation.htm
http://www.cs.umd.edu/~atif/GUITARWeb/guitar_process_test_case_generation.htm

DEMONSTRATION
The demonstration will consist of an end-to-end run through of GUITAR, along with a slideshow presentation to highlight the project’s
main points. An example GUI will be selected, and used as input. A set of jfcUnit cases will be outputted, and these examples will be
displayed. Afterwards, the examples will be run, to show cases of test failure and success upon multiple bug scenarios. The demonstrated
cases can test the multitude of options available, such as nested menus and different component inputs. Cases will be chosen specifically
to show the variety of cases that GUITAR can create. Questions will then be fielded from the audience.

In addition to showing the test results, one test case will be selected and demonstrated step-by-step. The following example tests the
JMenuItem entitled “Preferences”1 and shows how a sample generated jfcUnit case checks it by first opening and closing the “New
Crossword” menu:

 public void testPreferences_R_6() throws Exception
 {
 JMenuItem JMenuItemComponent;

 JMenuItemFinder jmiFinder = new JMenuItemFinder("File", true);
 JMenuItemComponent = (JMenuItem) jmiFinder.find();
 assertNotNull("Could not find File!", JMenuItemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, JMenuItemComponent));

Figure 1. “File” menu is opened

 jmiFinder.setText("New Crossword");
 JMenuItemComponent = (JMenuItem) jmiFinder.find();
 assertNotNull("Could not find New Crossword!", JMenuItemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, JMenuItemComponent));

Figure 2. “New Crossword” is selected

 JButton JButtonComponent;

 AbstractButtonFinder jbuttonFinder = new AbstractButtonFinder("Cancel", true);
 JButtonComponent = (JButton) jbuttonFinder.find();
 assertNotNull("Could not find Cancel!", JButtonComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, JButtonComponent));

Figure 3. Input box is closed

 jbuttonFinder.setText("OK");

 JButtonComponent = (JButton) jbuttonFinder.find();
 assertNotNull("Could not find OK!", JButtonComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, JButtonComponent));

Figure 4. Error message is closed

 jmiFinder.setText("File");
 JMenuItemComponent = (JMenuItem) jmiFinder.find();
 assertNotNull("Could not find File!", JMenuItemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, JMenuItemComponent));

Figure 5. “File” menu is selected again

 jmiFinder.setText("Preferences");
 JMenuItemComponent = (JMenuItem) jmiFinder.find();
 assertNotNull("Could not find Preferences!", JMenuItemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, JMenuItemComponent));

Figure 6. Preferences option is selected
 }

This particular test case works quite well, as it found a bug that occurred from closing the “New Crossword” menu.

[1] http://sourceforge.net/projects/crosswordsage

http://sourceforge.net/projects/crosswordsage
http://sourceforge.net/projects/crosswordsage

