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Abstract—Recent advances in automated functional testing
of Graphical User Interfaces (GUIs) rely on deriving graph
models that approximate all possible sequences of events that
may be executed on the GUI, and then use the graphs to gener-
ate test cases (event sequences) that achieve a specified coverage
goal. However, because these models are only approximations of
the actual event flows, the generated test cases may suffer from
problems of infeasibility, i.e., some events may not be available
for execution causing the test case to terminate prematurely. In
this paper we develop a method to automatically repair GUI
test suites, generating new test cases that are feasible. We use
a genetic algorithm to evolve new test cases that increase our
test suite’s coverage while avoiding infeasible sequences. We
experiment with this algorithm on a set of synthetic programs
containing different types of constraints and for test sequences
of varying lengths. Our results suggest that we can generate
new test cases to cover most of the feasible coverage and that
the genetic algorithm outperforms a random algorithm trying
to achieve the same goal in almost all cases.

I. INTRODUCTION

Black-box testing of programs with Graphical User In-
terfaces (or GUIs) can be achieved by executing sequences
of events based on a model of the GUI [1], [2]. Test cases
define sequences of behavior; i.e., these are subsets of the
specifications of behavior for the program. Research has
shown that testing a GUI from this perspective will find
faults related not only to the GUI and its glue code, but to
the underlying business logic of the application as well [3].

A recent approach developed to obtain such a model
is to execute the program under test and analyze (or rip)
the encountered events and relationships between them [1].
These events can then be modeled as a graph approximating
their flow (EFG) or more abstractly as a directed graph of
events which interact (EIG). These models are then used to
combine and test sequences of events for program validation.

Such models are effective at generating short sequences
of events for testing; length two or three [1]; such sequences
can be executed quickly and automatically using a test
harness. If a GUI has five events, where every event can be
executed after every other event, then there are only 52 or 25
length two sequences and only 125 length three sequences.

Research has shown that longer event sequences can
expose faults undetectable by short ones [1], [4]. These

longer sequences provide more context and reach more com-
plex code in the program. However, there are two primary
limitations of testing GUIs using long test sequences.

First, the number of sequences grows exponentially with
length. In the five-event GUI, if we generate length 10 se-
quences, we have a potential pool of 510 or 9,765,625 unique
sequences and for length 20 this grows to 9.5 × 1013. To
control the exponential growth and yield the same coverage,
a sampling technique derived from combinatorial interaction
testing (CIT) can be applied to GUI sequences [5], [6]. In
this sampling technique (discussed in Section II) all t-way
combinations (t-sets) of events are combined in all possible
combinations of locations in the sequence. The results of
this work shows, that when applied to multiple benchmarks,
CIT can detect many more faults than shorter exhaustive
sets of sequences. However the technique suffers from the
second limitation – infeasible test cases.

This second limitation is the focus of this paper. We
take an existing CIT test suite and repair it by removing
infeasible test cases and inserting new feasible ones to
provide additional coverage. We say that a test case is
infeasible if at least one of its events that is expected to
be available during test execution is, in fact, unavailable.
In such a situation, the test harness may hang or fail. Test
case infeasibility may be due to a defect in the program
or missing information in the model used to obtain the test
case. Although the problem of infeasibility is also relevant
to short sequences, research has shown that it is much more
severe for long sequences [7].

Building upon our work on using CIT for GUI testing, we
have developed a framework to automatically repair a test
suite by adding feasible test cases through an evolutionary
process. The framework first builds CIT samples and exe-
cutes them. Then infeasible test cases are discarded and a
genetic algorithm is used to generate new sequences that im-
prove CIT coverage and avoid infeasible sequences. Genetic
algorithms have been successfully used before in test case
generation [8] and genetic programming has been used for
program statement repair [9], [10]. We have experimented
with this technique on a large scale study, consuming over
one machine-year of time on a set of seven programs that
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Figure 1. (a) A Simple GUI, (b) its EFG, and (c) EIG

contain realistic types of infeasible patterns. We show that
our genetic algorithm increases CIT coverage to more than
99% for a small increase (and in some cases a decrease)
in the final CIT sample size. Compared with a random
algorithm that covers as little as 74% of the feasible coverage
in the worst case, our technique generates smaller test suites
with better coverage on the longer test sequences.

The rest of this paper is laid out as follows. In Section
II we present some background and related work on GUI
testing, CIT and genetic algorithms. In Section III we present
a set of example constraints we have identified in real
programs and that we will mimic for our experimentation. In
Section IV we present our framework for repair. In Section
V we present a case study on seven programs modeled after
the patterns seen in Section III. Finally we conclude and
present future work in Section VII.

II. BACKGROUND AND RELATED WORK

We now provide an overview of GUI testing, CIT, genetic
algorithms and other related work.

A. GUI Testing

There has been a large body of work on model-based
GUI testing, including using finite state machines [11], pre-
and post-conditions [12], and directed graph models [13].
Because of their relevance to this work, we will discuss
only graph models.

An event-flow graph (EFG) models all possible event
sequences that may be executed on a GUI. It is a directed
graph with nodes (one for each event in the GUI) and edges
that represent a relationship between events. An edge from
node nx to node ny means that the event represented by ny

may be performed immediately after the event represented
by nx along some execution path. This relationship is called
follows. The EFG is represented by a set of nodes N
representing events in the GUI and a set E of ordered
pairs (ex, ey), where {ex, ey} ⊆ N, representing the directed
edges in the EFG; (ex, ey) ∈ E iff ey follows ex.

Figure 1(a) presents a GUI that consists of four events,
New, Save, SaveAll, and File. Figure 1(b) shows the
GUI’s EFG; the four nodes represent the four events; the
edges represent the follows relationships. In this EFG,
the event New follows File.

Event-interaction graph (EIG) nodes, on the other hand,
do not represent events to open or close menus, or open
windows. The result is a more compact, and hence more

efficient, GUI model. An EFG can be automatically trans-
formed into an EIG by using graph-rewriting rules (details
are presented in [1]).

Figure 1(c) shows the corresponding EIG. Note that the
EIG does not contain the menu-opening File event. The
graph-rewriting rule used to obtain this EIG was to (1) delete
File because it is a menu-open event, (2) for all remaining
events ex replace each edge (ex,File) with edge (ex, ey)
for each occurrence of edge (File, ey), and (3) for all
ey , delete all edges (File, ey). The GUI’s EIG is fully
connected with three nodes representing the three events.

There are two points to note. First is that graph-traversal
algorithms may be used to “walk” the graph, enumerating
events along visited nodes, thereby generating test cases.
A technique to generate test cases, each corresponding to
an EIG edge has been developed; these test cases are called
smoke tests [13]. Two examples of length 2 smoke test cases
for Figure 1(c) are (New, Save) and (Save, SaveAll).
There are a total of 9 such tests – one for each EIG edge. It
is easy to see that the number will grow exponentially with
sequence length. The second advantage is that an approx-
imation of these models can be constructed automatically
using a reverse engineering technique called GUI Ripping
[13]. A GUI Ripper automatically traverses a GUI under
test and extracts the hierarchical structure of the GUI and
events that may be performed on the GUI. The GUI Ripper
is not perfect, i.e., parts of the retrieved information may be
incomplete/incorrect, which is why we say that it outputs
an approximation of the EFG. It is possible that some event
sequences generated via these graphs are infeasible.

In more recent work [4], we developed a new feedback-
based technique for GUI testing. This technique requires
an initial seed test suite to be created and executed on the
software. Feedback from this execution is used to augment a
model of the GUI and automatically generate additional test
cases. The seed test suite is generated using the EIG model.
The seed suite is executed on the GUI using an automatic
test case replayer. During test execution, the run-time state
of GUI widgets is collected and used to automatically
identify an Event Semantic Interaction (ESI) relationship
between pairs of events. This relationship captures how a
GUI event is related to another in terms of how it modifies
the other’s execution behavior. The ESI relationships are
used to construct a new model of the GUI, called the Event
Semantic Interaction Graph (ESIG). Because the seed suite
is generated from the EIG (a structural model) and the
ESI relationship is obtained in terms of event execution (a
dynamic activity), the ESIG captures certain structural and
dynamic aspects of the GUI. The ESIG is used to generate
new test cases. These test cases have an important property –
each event is ESI-related to its subsequent event, i.e., it was
shown to influence the subsequent event during execution
of the seed suite. It turns out that because of the strict
conditions associated with the ESI relationship, the ESIG



is actually a collection of smaller sub-graphs; events within
a sub-graph are all ESI-related. Even when using an ESIG,
we may still encounter infeasible test cases.

We have repaired test cases before, albeit for regression
testing [7]. When the structure of a GUI is modified, test
cases from the original GUI’s suite are either reusable or
unusable on the modified GUI. We developed algorithms
to (1) automatically determine the usable and unusable
test cases from a test suite after a GUI modification, (2)
determine the unusable test cases that can be repaired so that
they can execute on the modified GUI, and (3) use repairing
transformations to repair the test cases. The challenges of
repairing sequences were fewer in the context of regression
testing because we used the differences between the two
versions’ EFGs to drive the repairs.

B. Testing GUIs Using CIT
The basis for combinatorial interaction testing is a cov-

ering array (written as CA(N ; t, k, v)), an N × k array on
v symbols with the property that every N × t sub-array
contains all ordered subsets of size t of the v symbols at least
once [14]. In other words, any subset of t-columns of this
array will contain all t-way combinations of the symbols. We
use this definition of a covering array to define the GUI event
sequences by viewing the same event in different positions
in the sequence as different events. Suppose we want to test
sequences of length four and each location in this sequence
can contain exactly one of three events (Save, SaveAll,
New). Testing all combinations of these sequences requires
81 test cases. We can instead sample this system, including
all sub-sequences of shorter size, perhaps two. We model
this sequence as a CA(9; 2, 4, 3); we have 9 test sequences
and we cover all 2-way combinations in all locations at
least once. There are 54 pairs that should be covered in
this sample. The strength of testing is t. For instance we
set t = 2 in the example and include all pairs of events
between all four locations. If we examine any two columns
of the covering array, we will find all nine combinations of
event sequences at least once.

C. Search Algorithms for Testing

One common way to automate test generation/feedback
is through the use of evolutionary algorithms such as ge-
netic algorithms [8], [15], [16]. Genetic algorithms are a
type of meta-heuristic search algorithm called evolutionary
algorithms. These model the biological evolutionary process.
A population is composed of many individuals from the set
of all possible solutions each represented as a chromosome
containing a set of alleles or genes. Pairs of solutions
(parents) are selected based on their fitness. The fitness
is a function that evaluates how good a chromosome is;
i.e., how close it is to an “optimal” solution. A crossover
and recombination stage take place during which parents
exchange and combine information to generate a set of

(a) Redo disabled (b) After Undo, Redo enabled

Figure 2. Requires Constraint

children. A mutation rate is applied to the new population to
diversify individuals and the fittest solutions from this new
population are then selected and the process is repeated.

Other work using meta-heuristic search to generate test
sequences such as that of Marchetto and Tonella [17] is
related in that they generate long sequences for testing web
applications. Their focus is to provide test case diversity, but
they may also suffer from infeasibility. We expect that our
work may also benefit this type of test sequence generation.

Genetic algorithms have been used for generating CIT
samples [18]. Our work is closely related to this thread of
research, but it has only been used to generate single CIT
samples without constraints. More recent work by Arcuri
and Yao [9] and Weimer et al. [10] present genetic pro-
gramming solutions to repair faulty source code. Although
they too focus on repair, their goal is quite different from
ours in that they are targeting source code and using genetic
programming to evolve new non-faulty statements.

III. INFEASIBLE PATTERNS: EVENT CONSTRAINTS

We begin with a description and classification of some
types of infeasible sequences that we have identified. We
term these event constraints or simply constraints. We clas-
sify constraints into four broad categories, disabled, requires,
consecutive and excludes. These are based on constraints that
can be found in real GUI applications.

All of the examples shown are illustrated with short
sequences for simplicity, however we can find examples for
most of these constraints that are longer. For instance, we
may have two, three or more events that are excluded or two
or more events that require another event. We return to the
issue of arity of constraints in our evaluation (Section V).
Disabled Event Constraint: This type of constraint occurs
when an event is always disabled. A menu item or widget
exists for the event, but it will never be visible or enabled.
The existence of this constraint might signal an error in the
GUI, or we may encounter it during in-house development
or in a program provided as a beta-release for preview. For
instance, commercial software companies may release a beta
version of a product for end-user testing, however, some
features in the software might not have yet passed internal
testing, or may not be suitable for early release. These may
be turned off or disabled.
Requires Constraint: This constraint indicates that some
event needs another event to be executed before it is enabled.
An example of this type of constraint is illustrated by the
Redo operation. Before one can execute Redo they must



(a) Save as is invoked (b) Save is disabled (c) Save is re-enabled after
Type in editor

Figure 3. Event Consecutive Constraint

(a) Trial version is chosen (b) Cannot Add to Movie:
by clicking No thanks only works with “PRO” version

Figure 4. Excludes Constraint

first execute Undo. Figure 2 shows an example of this
sequence in Microsoft Office 2007.

Event Consecutive Constraint: This constraint means that
two events cannot be executed consecutively. Usually, in this
type of constraint, the execution of the first event disables
the second event, making it unexecutable. The second event
is re-enabled if another event occurs between them. An
example of this type of constraint is the sequence Save as,
Save. When these are executed sequentially, the Save
event may be disabled. But another event such as Type
in editor may re-enable the second event. We show an
example of this sequence from Eclipse 3.5 in Figure 3.

Excludes Constraint: This type of constraint is similar
to the last one, however once the first event has been
enabled there is no way to re-enable the second event within
the current group of events. An example of this type of
constraint can be seen in QuickTime 7. After QuickTime
is downloaded and installed, it is by default an evaluation
version. A window asks whether the user wants to select the
professional version (see Figure 4(a)). If the user chooses to
stay in the evaluation version, then features only provided
in the professional version are disabled (see Figure 4(b)).
As a result, for instance, the sequence No Thanks, Add
to Movie is always infeasible whether or not events occur
between them.

Compound Constraint: This type of constraint is a com-
bination of multiple constraints above. Real GUI programs
may contain many constraints rather than a single one. For
example, Eclipse 3.5 contains the Requires constraint for
Redo and Undo, as well as the Event Consecutive constraint
for Save, Save as and Type in editor.
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Figure 5. Organization of GUI Test Suite Repair Framework

IV. OVERVIEW OF TEST SUITE REPAIR

Figure 5 provides an overview of our GUI test suite repair
framework. The input to the framework is an ESIG (or other
similar graph model) (1) and the GUI structure extracted
during ripping. The main controller (2) passes the graph
and GUI structure to the test case assembler (3) which sends
the ESIG model to a covering array generator (5) with the
desired strength of testing (i.e., 2-way, 3-way, etc.). The cov-
ering array generator returns an initial set of event sequences
for testing. In between the framework and the covering array
generator is a base component interface (4). This serves as an
adapter for the external tools. Once the test case assembler
has a covering array, it assembles this into concrete test cases
using the GUI structural information. These are passed back
to the controller and the test suite repair phase begins (6).
The repair algorithm interfaces through the base component
interface with a test case replayer (7). When the repair phase
is complete the framework returns a test suite containing
only feasible test cases.

There are three points of variation in this framework. We
use two plug-ins to achieve 1) the initial covering array
generation and 2) test case replaying. The third point of
variation is the repair algorithm. For our current instantiation
of this framework, we use a simulated annealing algorithm
developed by Garvin et al. [19] for the covering array gen-
eration and a modified version of GUITAR [20] for test case
execution. We have modified GUITAR by adding exception
handling that detects when events become unavailable during
replay and to report that the test case is infeasible and at
which point in the sequence. We discuss our repair algorithm
next, which has been instantiated as a genetic algorithm.

A. Repair Algorithm

The core part of our framework is the repair algorithm.
Figure 6 shows an overview of our repair algorithm ((6) in
Figure 5). While different types of algorithms for repair are
possible, in this work, we have used a genetic algorithm
because the problem of repair is an optimization problem;
we want to generate a minimal set of new test cases that
complete the feasible coverage.
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Figure 6. Using Genetic Algorithm as Repair Algorithm

The first part of the repair is to execute the initial set of
test cases and remove any tests that fail due to constraints
(step 1). If all test cases are feasible (step 2), it exits and
is done. If there are any infeasible ones, it begins the repair
phase. We set a number of iterations for our algorithm and
for each iteration the algorithm adds at most one test case.
The number of iterations chosen is based on an estimate of
how large we will allow the repaired test suite to grow. It is
set to the maximum number of test cases that can be added.
For example, if the maximum final size is 15, and 3 feasible
test cases are already added into the final test suite, then we
use 12 iterations to complete the final test suite.

For each iteration we run the genetic algorithm (steps 3–
6). The algorithm returns the best test case and adds this to
the final test suite. It is possible that the genetic algorithm
does not converge in some iterations on a test case that
increases coverage. In this case no test cases are added and
the final test suite will be smaller than the maximum possible
size. Next, we discuss the genetic algorithm in detail.
Chromosome and Population: The chromosome for this
algorithm is a test case (or an event sequence), where the
alleles are the events that form the sequence. The population
is a list of test cases. The initial population is a set of test
cases generated randomly.
Stopping Criteria: We use three criteria as our stopping
criteria. First, a maximum number of generations is used to
ensure that the algorithm always stops. Second, a maximum
number of bad moves helps predict whether the algorithm
has converged. If the best fitness of current population is
worse than that of the previous one, it is considered a bad
move. Third, if the best test case of the population already
covers the maximum number of t-way combinations one test
case can cover, the algorithm stops. It is worth noting that in
real applications, we do not know the exact constraints ahead
of time so we cannot know whether a test case completes
100 percent of feasible coverage; therefore, in practice, this
will not be a realistic stopping criterion.
Fitness Function: We consider two factors in the fitness
function. One is the feasibility of the test case, and the
other is the new coverage a test case can contribute based on
the coverage already achieved. The feasibility information is

achieved through test case execution. We define the failure
point of an execution for a test case to be the position of
the event which is not successfully executed. If a test case
is feasible, its failure point is equal to the length of the
test case. For example, the failure point of the test case
(e1, e2, e3) which fails at e2 is 1. Given a test case s, assume
the length of s is l, the failure point of s is fs, and the
number of newly covered t-sets that s contributes is covs,
the fitness function is defined as

fitness(s) = b · covs − p · (l − fs),

where b and p are both non-negative numbers. The factor b
assigns a bonus to new t-way combinations which can be
introduced by s. The definition of covs in the fitness function
can be adapted to other coverage criteria to generalize the
framework for test suites other than those derived from
CIT. The factor p is used to penalize infeasibility. In our
implementation b = 10 and p = 100, 000. This very large
value of p ensures that infeasible test cases are more likely to
be thrown out. In fact, we could have used a binary value for
p, i.e., feasible/infeasible. However, we have left this generic
for now; having numerical values allows some infeasible test
cases that add coverage to be included in the final test set.
We leave fine tuning of b and p to future work.
Crossover and Mutation: For crossover we rank the test
cases in descending order and pair consecutive chromo-
somes. A one-point crossover is used. Mutation ensures
diversity in our population. Given a mutation rate mr, the
number of events mutated is calculated against the total
number of events in the current population p using mr × p.
The positions to mutate are chosen randomly from all of the
chromosomes. Events in these positions are replaced by a
randomly chosen event.
Selection: We use a linear selection, picking the best S
chromosomes where S is the population size.
Final Test Suite: After the stopping criteria is met, the
evolution of test cases ends and the one with highest fitness
is returned. Because we impose a large penalty for infeasible
test cases, they will have a negative fitness value. If the fit-
ness of a test case is zero or positive, it is feasible. However,
if the fitness is zero, it contributes no new combinations. As
a result, we only add test cases with a positive fitness to the
suite; if there are no test cases with a positive fitness in an
iteration, none are added.

V. EVALUATION

We have designed a set of experiments to determine the
feasibility of our framework. Although our ultimate goal
is to apply this to large scale GUI software, we have
chosen to first experiment on a set of synthetic subjects.
The advantages of this approach are that we can control
the types of constraints, we know the target feasibility for
coverage, and we do not suffer from any non-determinism
or native faults that might appear in a real environment.



This will allow us to evaluate the potential effectiveness and
performance of our approach in isolation before moving to
real subjects. The evaluation presented here is not trivial,
however. The experiments constitute a total effort of 363
machine-days of computational time.

We have developed three research questions that we aim
to answer in this study:

• RQ1: Can the framework generate test sequences that
increase feasible coverage using a genetic algorithm?

• RQ2: How does a genetic algorithm compare with a
random approach?

• RQ3: How does the framework scale to longer test
sequences?

A. Subjects

We have created seven subject programs that contain the
types of constraints described in Section III. Table I de-
scribes the details of each program. The programs are written
in Java and each event is of the type Button Click,
with no functionality other than the enabling/disabling of
other events defined by the specified constraints. The first six
programs each contain a single constraint. The last program
(Comp) contains a combination of constraints taken from
three of other subjects. The first four programs, (Disb, Reqs,
2Cons, 2Excl), each contain three events. The next two,
(3Cons, 3Excl), contain four events and the last program,
(Comp), contains five. The additional events in the last three
programs allow for the more complex/longer constraints to
be defined. Since constraints may be of differing arity, for
the consecutive and excludes constraints we have included
two versions. One has constraints between only two events
(2Cons and 2Excl) and the other has 3-way constraints
(3Cons and 3Excl).

B. Independent Variables

Our independent variables are the seven subject programs,
the length of the test sequences and the target coverage of
our test suites, defined by the CIT sample strength (e.g., 2-
way, etc.). For 2-way coverage we run only one of the 3-way
constrained programs (3Cons) since the 3-way constraints
will not reduce the coverage of any pairs of events, although
they may still render certain test cases infeasible. For the 3-
way coverage we drop Disb, since we expect very similar
behavior as is seen in the 2-way coverage; a single event
is removed from the pool. Our preliminary results confirm
these observations.

C. Dependent Variables

We examine three aspects of the repair to determine
its success and quality. The first metric is concerned with
coverage of the test suites after repair. We calculate the
number and percentage of t-sets (pairs or triples of events)
that are feasible given the program constraints. We examine
both the original test suites and the repaired ones and

compute the increase in CIT coverage as the increase in
the ratio of feasible t-sets divided by covered t-sets. Second
we quantify the size of the original and final (repaired)
test suite and calculate the percentage increase measured
by the number and percentage of new test cases. Finally we
consider both the time to execute and the number of test
cases executed during the repair of the algorithm. For this
metric we do not consider running the original test suite
since that is a constant factor in our experiments.

D. Experimental Methodology

The experiments are carried out on a computing clus-
ter with AMD 2.4GHz dual-core 64-bit processors, 16GB
shared memory, Linux 2.6.18, and Java 1.6. For each exper-
iment, we ran five trials to reduce bias due to the randomness
in our algorithms. We report averages of the results.
Random Algorithm: For RQ2 we developed a random
algorithm to gauge the difficulty of incidentally covering
all feasible t-sets. We use the maximum test suite size that
is used for the genetic algorithm and then try to iteratively
generate a set of random test cases of that size. At each
stage we keep the set of test cases that gives us the highest
new coverage. Since we expect that some test cases will be
infeasible using random generation, we calculate coverage
for all test cases, regardless of feasibility. If a test case is
infeasible we calculate the coverage up until the point where
it failed, giving preference to the random algorithm. (The
genetic algorithm will discard the coverage for the entire
test case). At the end of all iterations, the random algorithm
returns the set of tests cases that cover the greatest number
of new t-sets.
Algorithm Parameters: In our implementation of the ge-
netic algorithm we use the following parameters. We derived
these heuristically, but leave a systematic tuning of the algo-
rithm for future work. The maximum number of generations
for the genetic algorithm is 106, the maximum number of
consecutive bad moves is 100, the population size is set at
100 and the mutation rate is set to 0.03. For both the genetic
algorithm and the random algorithm we set the size factor
to be 1.5 for 2-way coverage, and 1.3 for 3-way coverage.
For the random algorithm we set the number of iterations to
106. The timeout for the random algorithm is approximately
1.5 as long as the genetic algorithm on average giving the
random algorithm more time to obtain new coverage when
competing with the genetic algorithm.

E. Threats to Validity
We describe the main threats to validity that we have

identified. First we wrote the programs that are used for
experimentation and seeded the constraints. While a threat,
we believe that these are realistic small samples of the types
of infeasibility that are seen in practice. We have used a
small number of events in each program (3-5), and these
events do not contain any real functionality. However, in



Table I
SUBJECT PROGRAMS

No. Full Name No. Abbreviated Constraint Description
Events Name

1 Disabled Event Constraint 3 Disb One event is always disabled
2 Requires Constraint 3 Reqs One event requires another event to occur before it
3 Event Consecutive Constraint (2-way) 3 2Cons A pair of events is infeasible when executed sequentially
4 Excludes Constraint (2-way) 3 2Excl A pair of events are infeasible if they occur (possibly non-consecutively) in sequence
5 Event Consecutive (3-way) 4 3Cons A sequence of three events is infeasible when executed
6 Excludes (3-way) 5 3Excl A (possibly non-consecutive) sequence of three events are infeasible
7 Compound Constraints 5 Cmpd Includes constraints found in Subject 2, 3 and 5

some systems where we group interacting events into an
ESIG we think that the number of events may be realistic.
We also believe that the lack of functionality provides better
determinism in the test harness since we do not have to
contend with problems related to thread ordering during
replay. We have used a single set of parameters for the
genetic algorithm and random algorithm which may impact
their final results. We wrote many programs to implement
this framework and cannot be one hundred percent certain
that they are fault free, but we have validated our results
with a different set of tools and have made every attempt
to confirm that the numbers are reported correctly. Finally,
we realize that there are other metrics that we may have
collected, we feel that coverage, execution time, and test
suite size are a legitimate starting set for this work.

VI. RESULTS

We examine the results for each research question next1.

A. RQ1: Framework Effectiveness

Table II shows the results for repairing test suites with
length 5 test cases. For each subject we provide the number
of t-sets in the original model, followed by the number
that are feasible given the constraints. We then show the
average initial size of the test suite, the average number of
feasible test cases from within that test suite and the final
size followed by the percentage increase. We then show the
initial, final and average final coverage for the repaired test
suite using our genetic algorithm. The last column shows the
percentage increase in coverage. We point out a few results
from this table. First, in all subjects except the last, we reach
100% feasible coverage. The last subject has a goal of 3-way
coverage and has compound constraints. We see a range of
increased coverage from 4.0% in the 3-way, 3Excl subject
to 233% for 2-way coverage the Disb subject. This subject
has one event that is always disabled therefore its initial test
suite had only a single feasible test case.

For each subject we compare the size increase of the final
test suite. Although we provide an upper bound for our final
test suite that is as high as 1.5 times that of the original,
we see that in five experiments the number of test cases
increases by less than 10%. In two cases (bold) we have

1Full experimental results and artifacts are available for download at:
http://www.cse.unl.edu/∼myra/artifacts/icst2010.

reduced the size of the test suite from the original size. This
is due to constraints that remove a large number of feasible
combinations. For the other six subjects we see a range of
increased sizes but only one reaches the maximum (2-way
coverage with compound constraints).

From this data we answer RQ1 by concluding that we can
increase feasible coverage with our approach.

B. RQ2: Comparison with a Random Algorithm

We now compare the results of our genetic algorithm
against a random algorithm. We do this to validate the
need for a guided search and to infer the difficulty of the
problem. The results of RQ2 are shown in Table III. In
this table we first show the subject parameters and target
coverage for length 5 and 10 sequences. We show the space
size of each subject which represents the total number of
unique sequences in the search space. We then show the total
number of t-sets and the number of feasible ones. The next
set of columns provides data from the covering array before
repair. The last two sections show data first for the random
algorithm and then for the genetic algorithm after repair. We
present data for the final size of the test suite, the percentage
size increase, the final missed coverage (represented as the
number of t-sets). We then show the percentage of target
feasible coverage for each problem. Finally, we show the
number of test cases executed during repair and the time in
minutes(m) hours(h) and days(d).

We show the final coverage percentage for the genetic
algorithm in bold when it exceeds that of the random
algorithm. There are only two cases where this does not
occur. The first is for the first subject, of length 5, where
one event is disabled. Both the genetic algorithm and the
random algorithm reach 100% coverage on average. The
second case occurs in the length 5 test sequences for 2Cons
where both algorithms again reach 100% coverage.

To examine the coverage further we graph the percent
coverage in the initial test suite, and after repair for both
the random algorithm and the genetic algorithm. We show
this data in Figures 7 and 8. The x-axis shows the subject
and length while the y-axis shows the percent coverage.
We can see that in all cases both of the repair algorithms
improve coverage, but that the genetic algorithm outperforms
the random algorithm in most subjects.

We next look at the size of the final test suites. The ran-
dom suites are consistently larger than the genetic algorithm.



Table II
REPAIRED TEST SUITES WITH LENGTH 5 TEST CASES (AVG OF 5 RUNS)

Parameters and Target Coverage Avg. Size Avg. Final Coverage
Strength Subject Total Feasible Init. Feasible Final %Size Init. %Init. Final %Final %Cov.

(t) t-sets t-sets Size Test Cases Size Increase Cov. Cov. Cov. Cov. Increase

2-way

Disb 90 40 11.0 1.2 6.0 -45.5% 12.0 30.0% 40.0 100.0% 233.3%
Reqs 90 77 11.0 6.2 11.2 1.8% 54.8 71.2% 77.0 100.0% 40.5%

2Cons 90 86 11.0 5.2 13.4 21.8% 48.4 56.3% 86.0 100.0% 77.7%
2Excl 90 80 11.0 5.2 13.8 25.5% 47.8 59.8% 80.0 100.0% 67.4%
3Cons 160 160 16.0 15.2 17.6 10.0% 152.0 95.0% 160.0 100.0% 5.3%
Cmpd 250 223 25.8 10.8 33.8 31.0% 106.6 47.8% 223.0 100.0% 109.2%

3-way

Reqs 270 206 33.0 17.8 34.0 3.0% 154.4 75.0% 206.0 100.0% 33.4%
2Cons 270 234 33.0 19.0 40.2 21.8% 169.0 72.2% 234.0 100.0% 38.5%
2Excl 270 200 33.0 14.0 31.6 -4.2% 126.0 63.0% 200.0 100.0% 58.7%
3Cons 640 637 64.0 61.0 69.2 8.1% 610.0 95.8% 637.0 100.0% 4.4%
3Excl 1250 1240 153.0 144.0 163.4 6.8% 1192.0 96.1% 1240.0 100.0% 4.0%
Cmpd 1250 987 153.0 68.0 177.6 16.1% 598.0 60.6% 985.0 99.8% 64.7%

Table III
COMPARISON OF RANDOM ALGORITHM AND GENETIC ALGORITHM (EXECUTION TIME IN MINUTES(M), DAYS(D) OR HOURS(H))

Parameters and Target Coverage Before Repair After Repair
StrengthSubjectLengthSpace Total Feasi. Covering Array Random Algorithm Genetic Algorithm

(t) Size t-sets t-sets Init.Feasi. Init. Init. %Init. Final %Size Final %Final No. Time Final %Size Final %Final No. Time
Size T. C. Cov. Missed Cov. Size Inc.Missed Cov.Executed Size Inc.Missed Cov.Executed

2-way

Disb 5 35 90 40 11.0 1.2 12.0 28.0 30.0% 17.0 54.5% 0.0 100.0% 243.0 16.68m 6.0 -45.5% 0.0 100.0% 230.6 10.13m
10 310 405 180 15.0 0.2 9.0 171.0 5.0% 23.0 53.3% 53.2 70.4% 5990.2 8.34h 9.0 -40.0% 0.0 100.0% 7745.6 6.02h

Reqs 5 35 90 77 11.0 6.2 54.8 22.2 71.2% 17.0 54.5% 5.0 93.5% 238.6 16.76m 11.2 1.8% 0.0 100.0% 228.2 10.28m
10 310 405 377 15.0 8.0 275.4 101.6 73.1% 23.0 53.3% 20.8 94.5% 5803.6 8.35h 17.2 14.7% 0.0 100.0% 7548.2 5.98h

2Cons 5 35 90 86 11.0 5.2 48.4 37.6 56.3% 17.0 54.5% 0.0 100.0% 205.0 16.68m 13.4 21.8% 0.0 100.0% 236.0 10.08m
10 310 405 396 15.0 5.2 203.0 193.0 51.3% 23.0 53.3% 43.0 89.1% 6940.8 9.73h 17.2 14.7% 0.0 100.0% 9115.8 7.20h

2Excl 5 35 90 80 11.0 5.2 47.8 32.2 59.8% 17.0 54.5% 1.8 97.8% 234.0 16.69m 13.8 25.5% 0.0 100.0% 236.6 10.46m
10 310 405 360 15.0 1.8 75.4 284.6 20.9% 23.0 53.3% 85.4 76.2% 8766.0 12.51h 20.6 37.3% 0.0 100.0% 10917.4 8.62h

3Cons 5 45 160 160 16.0 15.2 152.0 8.0 95.0% 24.0 50.0% 1.0 99.4% 285.6 16.73m 17.6 10.0% 0.0 100.0% 185.4 7.82m
10 410 720 720 25.8 22.0 661.6 58.4 91.9% 39.0 51.2% 7.0 99.0% 5778.6 8.35h 28.6 10.9% 0.0 100.0% 7038.0 4.77h

Cmpd 5 55 250 223 25.8 10.8 106.6 116.4 47.8% 38.0 47.3% 46.4 79.2% 2886.2 4.17h 33.8 31.0% 0.0 100.0% 2604.8 2.13h
10 510 1125 1068 38.8 11.6 449.4 618.6 42.1% 57.0 46.9% 209.6 80.4% 52680.0 3.47d 44.8 15.5% 0.0 100.0% 55351.6 1.97d

3-way

Reqs 5 35 270 206 33.0 17.8 154.4 51.6 75.0% 43.0 30.3% 11.4 94.5% 227.7 20.01m 34.0 3.0% 0.0 100.0% 231.4 11.89m
10 310 3240 2891 54.0 26.0 2203.0 688.0 76.2% 71.0 31.5% 180.6 93.8% 25607.3 1.45d 59.4 10.0% 0.0 100.0% 20806.2 20.67h

2Cons 5 35 270 234 33.0 19.0 169.0 65.0 72.2% 43.0 30.3% 25.2 89.2% 201.0 20.21m 40.2 21.8% 0.0 100.0% 232.8 12.04m
10 310 3240 3024 54.0 18.8 1682.2 1341.8 55.6% 71.0 31.5% 429.0 85.8% 32428.0 1.74d 65.8 21.9% 0.0 100.0% 25473.4 1.08d

2Excl 5 35 270 200 33.0 14.0 126.0 74.0 63.0% 43.0 30.3% 21.4 89.3% 198.0 20.39m 31.6 -4.2% 0.0 100.0% 241.0 11.70m
10 310 3240 2400 54.0 6.0 640.0 1760.0 26.7% 71.0 31.5% 624.4 74.0% 28468.7 1.51d 59.8 10.7% 0.0 100.0% 22513.2 22.94h

3Cons 5 45 640 637 64.0 60.8 608.0 29.0 95.4% 84.0 31.3% 9.4 98.5% 318.3 33.50m 69.2 8.1% 0.0 100.0% 347.0 17.04m
10 410 7680 7672 132.0 117.8 7325.2 346.8 95.5% 172.0 30.3% 115.4 98.5% 43594.7 2.14d 145.0 9.8% 0.0 100.0% 32219.0 1.29d

3Excl 5 55 1250 1240 153.0 144.0 1192.0 48.0 96.1% 199.0 30.1% 19.8 98.4% 925.3 1.67h 163.4 6.8% 0.0 100.0% 966.8 57.63m
10 510 1500014880 261.0 173.8 12412.4 2467.6 83.4% 340.0 30.3% 900.0 94.0% 59586.0 1.51d 305.4 17.0% 0.0 100.0%221286.4 13.93h

Cmpd 5 55 1250 987 153.0 68.0 598.0 389.0 60.6% 199.0 30.1% 205.6 79.2% 3066.7 5.56h 177.6 16.1% 2.0 99.8% 3054.4 3.54h

This is not unexpected given our implementation, but even in
cases such as 2Excl, 3-way which has a 4.2% reduction or a
10.7% increase (for length 5 and 10 sequences respectively)
for the genetic algorithm, a 30% increase in test cases does
not necessarily improve coverage. The random suites, with
up to 35% more test cases, have only 89% and 74% coverage
compared to 100% for the genetic algorithm.

Finally we examine the run time and number of executed
test cases. Since we set the timeout of the random algorithm
to be approximately 1.5 times of the time used by the genetic
algorithm, the repair time for each of the groups using the
random algorithm is longer than that using genetic algo-
rithm. However, we can see that except Disb and 2Cons, 2-
way for length 5, all the groups using the random algorithm
have a lower final coverage than the genetic algorithm.

From this data we answer RQ2 by concluding that the
genetic algorithm outperforms the random algorithm.

C. RQ3: Scalability of the Genetic Algorithm

Our last research question examines scalability. To answer
this, we examine length 15 and 20 sequences. We only show
data for 2-way coverage due to resource limitations. The
results of this experiment are shown in Table IV. In this
table we show the coverage of pairs of events, the number
of executed test cases and the time in hours and days. We
show missing coverage in bold. As can be seen, we have
achieved 100% coverage in all cases but two. Both cases of
missing coverage occur on the 3Excl subject where we have
to exclude any combination of a specific 3-event sequence.
Although we have not achieved 100% coverage we are only
missing on average 3.0 and 9.0 pairs respectively for length
15 and 20 which is a minor percentage of the final coverage.
We have also increased our original coverage by more than
90% since none of the initial test cases ran to completion.



The time data is not as encouraging. The shortest running
repair takes slightly less than one day to complete, while
most repairs take from one to two days of computational
time. The longest running repair, the compound constraint
of length 20, takes almost 3 weeks to converge.
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We examine this further in Figure 9. In the two graphs
we plot first the number of executions and then the time
in hours for each program. We examine data for length 5,
10, 15 and 20. The curves of the lines are similar between
graphs, indicating that the overriding factor in execution time
is the number of test cases executed. This is consistent with
other research that points out that setup time to execute a
test case is more important than the length of the sequence
[5]. These programs have dummy events so this may not
always be true in real systems. More notably, these graphs
point out that there is a big jump in both executions and run
time moving from length 10 to 15.

This data leads us to answer RQ3 as follows. From
the perspective of coverage the algorithm appears to scale
well. However, execution time does not. We believe that
optimizations and other heuristics to terminate the genetic
algorithm and to tune the parameters are needed before this
can be applied to large systems. We believe that an adaptive
method that repairs test suites incrementally during testing
may be effective.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a framework for GUI
test suite repair. We generated test suites to cover all pairs
or three-way combinations of event sequences for length 5,
10, 15, and 20 in seven synthetic programs. The programs
contain event dependencies that may not be discovered
during GUI ripping, and that will cause test execution to fail.
We examined test suite repair using both a genetic algorithm
and a random algorithm. From our experiments we conclude

that we can successfully increase the feasible coverage of
our test suites and that the genetic algorithm outperforms
the random algorithm. This is consistent for both 2- and 3-
way coverage. When we run longer test sequences of length
15 and 20 we conclude that our algorithm still scales for
the coverage metric; we increase our coverage in all cases.
However the execution time increases and may prevent this
from scaling to large applications.

In future work we plan to examine the issue of scalability
by tuning the genetic algorithm more finely for execution
time and to examine an adaptive approach where we incre-
mentally repair. We plan to apply this framework to real GUI
applications to study both effectiveness of coverage as well
as fault detection effectiveness of the repaired test cases.
We will also examine different types of coverage other than
CIT. In this paper we have only considered the test input and
assume the existence of a global, generic test oracle. In the
future we plan to consider the issue of oracle repair as well.
Finally, we plan to develop an automated method to classify
the missing coverage so that we can provide automated
feedback to the graph models as the repair proceeds.
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