
A Pattern-Based Approach for
GUI Modeling and Testing

Rodrigo M. L. M. Moreira, Ana C. R. Paiva
Department of Informatics Engineering

Faculty of Engineering, University of Porto, Porto, Portugal
Email: {pro08007, apaiva}@fe.up.pt

Atif Memon
Department of Computer Science

University of Maryland, College Park, MD, USA
Email: atif@cs.umd.edu

Abstract—User Interface (UI) patterns are used extensively in
the design of today’s software. UI patterns embody commonly
recurring solutions that solve common GUI design problems,
such as “login,” “file-open,” and “search.” Yet, testing of GUIs for
functional correctness has largely ignored UI patterns. This paper
formalizes the notion of a Pattern-Based Graphical User Interface
(GUI) Testing method (PBGT) for systematizing and automating
the GUI testing process. The space of all possible interactions with
a GUI is typically very large. PBGT presents a new methodology
to sample the input space using “UI Test Patterns,” that embody
commonly recurring solutions to test GUIs. Our empirical studies
show that the PBGT methodology is effective in revealing faults
in fielded GUIs.

Index Terms—GUI Testing, GUI Modeling, Model-based GUI
Testing, Software Testing, UI Patterns, UI Test Patterns.

I. INTRODUCTION

Graphical user interfaces (GUIs) appear as fundamental
components in today’s software. GUIs have become an ideal
way of interacting with computer programs, making the soft-
ware friendlier for its users by offering flexibility in how users
perform tasks. For example, while formatting a document in
Microsoft’s Word software, a user may format a paragraph in
a multitude of ways. Users can perform tasks by interacting—
via events—with GUI widgets; by and large, the sequence of
events that they execute are not restricted.

Unfortunately, this flexibility that makes GUIs easy to use
also makes testing them for functional correctness notoriously
more difficult. The tester has to check whether all—or a
reasonable subset—of the possible sequences of events that
an end user can execute for a task execute correctly. This task
is compounded by the fact that despite all of the advances in
automated testing tools and frameworks over the last decade,
manual testing still represents the majority of testing effort
within most software development organizations. GUI testing
in practice remains a huge resource intensive task.

In this paper, we make 2 observations: (1) Developers use
specific tools to assist the creation of GUIs. The majority
of such tools provide a useful contribution to support and
enhance teams’ productivity in the construction of GUIs. (2)
However, these tools and toolkits are only able to support the
initial phases of the GUI development process, i.e., they do
not provide means to support verification phases.

A specific tool that embodies our 2 above observations is the
user interface (UI) pattern. UI patterns represent commonly

recurring solutions that solve common GUI design problems.
Because of the high-level nature of this definition, there are
different types of UI patterns at multiple levels of abstraction.
Perhaps the most widely quoted high-level UI pattern is
the Model View Controller (MVC)1 that advocates a clear
division between domain objects that model the real world,
and presentation objects that are the GUI elements.

More relevant to our work are more concrete low-level
UI patterns that describe specific parts of GUIs, how they
should behave on user interaction, and how they should be
implemented. For example, the Double List2 pattern that “is
used for making selections. It consists of two sets: all items
and the selected items. The user collects a set of items he
needs for further processing from one list (or table or tree
view etc.) to another. Depending on the goal, the items may
be copied or moved to the other list.” or a Calendar Strip
that “is a continuous calendar for operating with dates”
and has specific features. Numerous other examples of such
concrete patterns abound in text books (e.g., “Object-Oriented
Design and Patterns,” by Cay Horstmann has a chapter entitled
Patterns and GUI Programming which discusses “Observer
Layout Managers and the Strategy Pattern;” “Containers, and
the Composite Pattern”; and “Scroll Bars and the Decorator
Pattern”) and the web.3 Despite the abundance of patterns in
the GUI design field, model-based testing of GUIs has largely
ignored UI patterns.

We posit that GUIs that are similar in design, i.e., based on
the same UI pattern, should share a common testing strategy.
We develop the notion of a “UI Test Pattern” that provides a
configurable test strategy to test a GUI that was implemented
using a specific UI pattern or a set of UI patterns. Because
a UI pattern may be realized using different implementations,
the configurations in a UI test pattern allow us to test different
implementations by setting different parameters to the testing
strategy. As an example, consider the Login UI Test Pattern,
discussed in detail later in the paper. This pattern defines a
test strategy to test the authentication process that is very
common in software applications. However, the authentication
process can be implemented differently in different software

1martinfowler.com/eaaDev/uiArchs.html
2www.cs.helsinki.fi/u/salaakso/patterns/Double-List.html
3www.welie.com, time-tripper.com/uipatterns, toastytech.com/guis

288978-1-4799-2366-3/13/$31.00 ©2013 IEEE

applications, e.g., when the authentication fails, a pop-up
message may optionally appear. The Login UI Test Pattern
may be configured to specify which is the expected behavior in
that specific situation and to allow checking if the test passed
or failed.

We call our new approach Pattern Based GUI Testing
(PBGT), which aims to provide a new model-based GUI
testing paradigm that promotes reuse of GUI testing strategies.
More specifically, the main contributions of PBGT are:

– A testing framework that allows combining test patterns
to build newer ones and promote reuse;

– A domain specific language (DSL) – PARADIGM – for
GUI modeling;

– A modeling environment (PARADIGM – ME) to support
the modeling, test case generation and test case execution;

– A dynamic testing approach that does not need access to
the code of the application under test and is cross platform
(e.g., web, mobile and desktop).

We empirically evaluate PBGT on two fielded applications:
(1) www.mobile.de: for buying and selling new and used
vehicles, and (2) australian-charts.com: a site that shows the
best selling music albums in Australia. Our results show that
we are able to detect faults in fielded application. We also
show that the overall PBGT approach is scalable and usable.

II. OVERVIEW

Several software applications have a restricted functional-
ity that is only accessible after a successful authentication.
Independently of the specific implementation, a typical au-
thentication mechanism is normally comprised by two input
fields – username and password – and a submit button.
One implementation of such functionality can be found in
www.mobile.de and is illustrated in Figure 1.

Fig. 1. Mobile.de website Login Form.

In this case, the username corresponds to email and the
submit button is labeled as continue. Besides those small
differences, the overall behavior – provide a username, a
password, and submit the data – is the same. Hence, the end-
user is able to provide valid and/or invalid inputs: (i) valid
username and password; (ii) invalid username and password
(because the username is invalid; because the username is
left blank or because the password is left blank). In addition,
the outcome may vary according to the implementation. For
instance, upon authentication failure, the system may display

an error message in a particular area of the form or display a
pop-up window with the error message. The error message
may also vary from “Login failed” to “Invalid username”
among others. Concerning a successful log on, we still have
different possible implementations, i.e., the end-user may be
redirected to a different location or he can stay in the same
location but with a different UI that enables higher privileged
features that were not available before.

Considering that UI patterns have common behavior that
can be implemented in slightly different ways, the goal of
PBGT is to provide generic test strategies with possible
different configurations in order to allow testing different
implementations of the UI pattern promoting reuse. This led
to the concept of UI Test Patterns. A UI Test Pattern provides
a way to test UI patterns (for instance, authentication) across
its several implementations and particular demands.

As such, a UI Test Pattern provides a test strategy with a
set of possible tests (or testing goals). Each testing goal has
a set of input variables, a sequence of “user” actions, a set
of possible checks to perform during test case execution, and
a precondition defining the states in which it is possible to
perform the actions and the checks. To be executed, the test
has to be configured with appropriate test input data for each
situation regarding the state of the GUI being tested.

As an example, a UI Test Pattern defining a test strategy
for the authentication UI pattern, would have two different
testing goals: test the authentication for (1) valid and (2)
invalid Login/Password. The actions to perform will be [fill
in Login; fill in Password; press Submit]. In addition, the
possible checks to perform could be: “check if it remains
in the same page” or “check if a message box pops up”
among others. For each testing goal the user/tester defines the
input data for the variables Login and Password, selects the
checks to perform during test case execution and defines the
corresponding precondition. A testing goal can be used several
times with different configurations to test a GUI.

Nowadays, UIs are in a constant changing. In this context,
the PBGT framework offers the possibility to extend the initial
set of UI Test Patterns in order to adapt the test strategies
to new trends. This can be done in two different ways: (i)
during implementation time, by the Developer, extending
the framework with additional test patterns; and (ii) during
modeling phase, by the Tester, defining new UI Test Patterns
by combining the existing ones through connectors.

III. UI TEST PATTERNS

Nowadays, it has become noticeable that different GUIs
implement common behavior and the majority put into practice
the concept of UI patterns providing both similar and recur-
ring solutions (behaviors) for common problems. During this
research work, several UI patterns [1]–[6] were identified and
analyzed in order to identify general test strategies that could
be used to test them. The test solutions defined were named
UI Test Patterns (general test solutions for testing common
behavior within GUIs).

289

Definition 1. A UI Test Pattern defines a test strategy which is
formally defined by a set of test goals (for later configuration)
with the form:

< Goal, V,A,C, P >

Goal is the ID of the test. V is a set of pairs {[variable,
inputData]} relating test input data with the variables involved
in the test. A is the sequence of actions to perform during test
case execution. C is the set of possible checks to perform
during test case execution, for example, “check if it remains
in the same page”. P is a Boolean expression (precondition)
defining the set of states in which it is possible to execute the
test.

In another way, Goal is the “name” of the test goal; A and
the variables in V describe “what” to do and “how” to execute
the test. C describes the final purpose (or why) the test should
be executed. P defines when can be executed.

The Goal, variables in V, A and C are defined by the devel-
oper during the implementation phase. During the modeling
phase, the tester needs to configure each UI Test Pattern within
the model. He has to select the test Goals and, for each of those
Goals, provide test input data, select the checks to perform,
and define the precondition. The tester can select the same test
Goal multiple times for a UI Test Pattern providing different
configurations. Furthermore, regarding the supply of test input
data, UI Test Patterns do not impose any particular technique,
so the tester has the freedom to use/select the technique he
desires, for instance, equivalence class partition (in which the
input domain is divided in classes selecting one value from
each class, based on the principle that the behavior of the
system under test will be the same for every value within
the same class) or boundary value analysis (select the values
that are at the border of equivalence classes, because they are
expected to have more probability of finding bugs).

A. Base UI Test Patterns

The UI Test Patterns identified, until now, are denoted as
Input, Login, Master/Detail, Find, Sort and Call. We name
them Base UI Test Patterns.

Input UI Test Pattern: The Input UI Test Pattern should be
used to test the behavior of input fields for valid and invalid
input data. Accordingly, this pattern has two possible test
Goals: “Valid data” (INP VD) and “Invalid data” (INP ID).
The set of variables is {input}. The set of possible checks to
perform is: {“message box”, “label”, “error provider”}. The
sequence of actions is [provide input]. During configuration,
the user has to provide valid input data for INP VD (and
invalid input data for INP ID), select the checks to perform
and define the precondition.

Login UI Test Pattern: This test pattern should be used
to verify user authentication. The goal is to check if it is
possible to authenticate with a valid username/password and
check if it is not possible to authenticate otherwise. The Login
UI Test Pattern has two possible test goals: “Valid login”
(LG VAL) and “Invalid login” (LG INV). The set of variables
is: {username, password}. The set of checks available is:

{“change page”, “pop-up error”, “same page”}. The sequence
of actions (A) defined for this test pattern is: [provide user-
name; provide password; press submit]. During configuration
the user has to provide valid username/password input data
for LG VAL (and invalid username/password for LG INV),
select the checks to perform and define the precondition.

Master/Detail UI Test Pattern: Master/Detail UI Test Pat-
tern should be applied to GUIs with two related objects (master
and detail) in order to verify if changing the master’s value
correctly updates the contents of the detail. This UI Test
Pattern has one possible test goal: “Change master” (MD).
The set of variables is {master, detail}. The set of possible
checks to perform is {“detail has value X”, “detail does not
have value X”, “detail is empty”}. The sequence of actions is
[select master]. During configuration the user has to provide
master input data for MD, select the checks to perform and
define the precondition.

Find UI Test Pattern: This UI Test Pattern has the purpose
to test if the result of a search is as expected (if it finds
the right set of values). Moreover, it should be used when
someone wants to check the result of a search that shows
up after a submit action. The Find UI Test Pattern has two
possible test goals: “Value found” (FND VF) and “Value not
found” (FND NF). The set of variables is {v1,...,vN} where
N is defined during configuration time by the user/tester. The
set of possible checks to perform is {“empty set”, “if it has
X elements”, “if it does not have element X”, “if the result in
line X is Y”}. The sequence of actions (A) is: [provide v1,... ,
provide vN]. During configuration, the user has to define the
value for N, provide input data for variables v1,...,vN , select
the check to perform and define the precondition.

Sort UI Test Pattern: The Sort UI Test Pattern is used to
check if the result (of a sort action) is ordered accordingly to
the chosen sort criterion. The idea is to test user interfaces that
contain sortable items/elements, such as, tables and lists. This
test pattern has two test goals: “ascending” (SRT ASC) and
“descending” (SRT DESC). The set of variables is {v1,...,vN}
where N is defined by the user/tester during configuration
time. The set of possible checks to perform is {“element from
field X in position Y has value Z”}. The sequence of actions
(A) is: [provide v1,... , provide vN]. During configuration, the
user has to define the value for N, provide input data for
variables v1,...,vN , select the check to perform and define the
precondition.

Call UI Test Pattern: The Call UI Test Pattern is used to
check the functionality of the corresponding invocation. This
test pattern has two test goals: “Action succeeded” (CL AS)
and “Action failed” (CL AF). This UI Test Pattern does not
involve input data so the set of variables is empty. The set of
possible checks to perform is {“pop-up message”, “stay in the
same page”, “change to page X”}. The sequence of actions (A)
is: [press]. During configuration, the user has only to select
the check to perform and define the precondition.

290

IV. IMPLEMENTATION

The PBGT framework aims to allow the construction of
models where the focus is to model the behavior to test
(tester perspective) and not model the behavior of a GUI
(user/developer perspective). In order to tailor these objec-
tives, a new domain-specific language (DSL) was developed,
hereby called PARADIGM. The DSL was created by taking
into account the following method [7]: (i) definition of the
PARADIGM’s core language model; (ii) definition of the
behavior of the PARADIGM language elements; (iii) definition
of the PARADIGM’s syntax and; (iv) PARADIGM integration
with a platform. These activities are described throughout this
paper.

A. PARADIGM Language

PARADIGM is a DSL to be used in the domain of PBGT.
The goal of the language is to gather applicable domain
abstractions (e.g., test patterns), allow specifying relations
between them and also provide a way to structure the models
in different levels of abstraction to cope with complexity.
PARADIGM’s meta-model is illustrated in Figure 2.

Fig. 2. PARADIGM Language Meta-model.

The PARADIGM language (Figure 2) is comprised by
elements and connectors. There are four types of elements:
Init (to mark the beginning of a model), End (to mark the
termination of a model), Structural (to structure the models
in different levels of abstraction), and Behavioral (UI Test
Patterns describing the behavior to test).

As models become larger, coping with their growing com-
plexity forces the use of structuring techniques such as dif-
ferent hierarchical levels that allow use one entire model “A”
inside another model “B” abstracting the details of “A” when

within “B”. It is like what happens in programming languages,
such as C and Java, with constructs such as modules. Form is
a structural element that may be used for that purpose. A Form
is a model (or sub-model) with an Init and an End elements.
Group is also a structural element but it does not have Init and
End and, moreover, all elements inside the Group are executed
in an arbitrary order.

The PARADIGM’s elements and connectors are described
by: (i) an icon/figure to represent the element graphically and;
(ii) a short label to name the element. The overall syntax of the
DSL is illustrated in Figure 3. Additionally, elements within a
model have a number to identify them and, optional elements
have a “op” label next to its icon/figure.

Fig. 3. PARADIGM’ Syntax

Connectors: This language has three connectors (the def-
inition of these connectors is based on ConcurTaskTrees
- CTT [8]): “Sequence”; “SequenceWithDataPassing”; and
“SequenceWithMovedData”. The “Sequence (�)” connector
indicates that the target element cannot start until the source
element has completed. The “SequenceWithDataPassing ([
]�)” connector has the same behavior as “Sequence” and,
additionally, indicates that the target element receives data
from the source element. “SequenceWithMovedData (o[]�)”
has a similar meaning to the “SequenceWithDataPassing”
connector, however, the source element transfers data to the
target, so the source loses the data that was transferred. In
addition, there is another kind of relation among elements -
“Dependency” - indicating that the target element depends on
the properties of a set of source elements, for instance, when
it is the result of a calculation.

1) Constraints: The modeling environment (ME) to support
the construction of models written in PARADIGM language
(Figure 2) was developed on top of the Eclipse Modeling
Framework [9]. Besides imposing the syntax of the language,
the ME also imposes language constraints to guaranty building
well-formed models. These constraints express restrictions on
the way it is possible to dispose elements within a model and
how to connect them in order to ensure that GUI models are
not ambiguous and allow the subsequent generation of test
cases. Some of those constraints are as follows:

– A Connector cannot connect an element to itself;
– A Connector cannot have Init as destination neither End

as source;
– An Init element cannot connect directly to an End ele-

ment;
– Two elements cannot be connected more than once by

291

connectors of the same type;
– Two Elements can only be connected if they belong to

the same Structural Element (Model; Form; Group);
– Elements inside a Form (but not inside Groups of that

Form) cannot be loose, i.e., for all elements within a
Form, there is at least one path from the Init to the End
that traverses that element.

B. High-order UI Test Patterns

In order to promote, even further, reuse when construct-
ing GUI models for testing, PARADIGM language can be
extended. It allows the definition of additional test patterns
(behavioral elements) on top of the existing base patterns
(Input, Login, Master/Detail, Find, Sort and Call). The newer
test patterns are called Higher Order Patterns (HOP).

Besides allowing to structure the models in different levels
of abstraction, Form element can be seen has an extension
mechanism of the language that supports the definition of
Higher Order Patterns (HOP). HOP can be created by Testers
and are always comprised by at least two other (either BP or
HOP) patterns combined by the existing connectors.

The main benefit of the language extension possibility, is
that each Tester may have his own set of UI Test Patterns that
form a kind of test library that can evolve as desired according
to the specific characteristics of the GUIs they test. Consider
a HOP (h) resulting from the combination between two BP
(b1 and b2): the set of tests of h will be the union between
the tests of b1 and b2.

C. Test Case Generation

After a model has been constructed and configured,
PARADIGM ME is able to generate automatically test cases
from such model. Test cases are generated according to a
set of rules. Generally, the algorithm traverses the model
elements considering the connectors along the way. During
test execution, whenever a behavioral element is traversed,
the set of the checks, previously defined (configured) by the
tester, are performed. In addition, elements within the model
can be optional. When an element is optional, it means that
there will be test cases that skip the corresponding test strategy.
Group elements have a particularity: the inner elements can be
executed arbitrarily. Regarding test case generation, it means
that there will be test cases for different permutations of those
elements. Regarding this particularity, the maximum number
of test paths for Groups is given by the following formulas.

Definition 2. A Group with N loose mandatory elements, will
generate at most

N !

test paths.

Definition 3. A Group with M loose optional elements, will
generate at most

M∑
i=M−1

i! ·MCi + 1

test paths.

Definition 4. A Group with MT mandatory and OP optional
loose elements will generate at most

MT ! +

OP∑
i=OP−1

(MT + i)! · OPCi

test paths.

Definition 5. Two connected Groups g1 and g2 with t1 and
t2 number of test paths each, will generate at most (if pre-
condition of internal elements is True)

t1 · t2

test paths.

Definition 6. Overall, a set of M test paths, where some of
them (N) have a Group with T number of test paths will
generate at most

(M −N) +N · T

test paths.

Consider for all permutations of elements within groups
and further permutations for samples with different lengths
when that group has optional elements gives rise to many
test paths. For example, in the case of N optional elements
within a Group, we could generate test cases for samples with
2 elements, 3 elements, .. , N-1 elements. In the formulas
above we have only considered permutations over samples of
N-1 elements. Yet it is easy to check that, even for a small
model and in case of preconditions true, the number of test
cases generated is enormous.

Despite providing an algorithm for test case generation,
the framework allows the addition of new algorithms for that
purpose during implementation time, by the developer.

V. DEMONSTRATION

The objective of this section is to illustrate the PBGT ap-
proach and evaluate whether it is possible to use PARADIGM
language for modeling real applications available on the web
and to use the overall approach for finding errors.

The subject for this demonstration section is a German
website (www.mobile.de) for buying and selling new and used
vehicles [10]. In addition to the features available to the
public: search vehicles according to various parameters, sort
the search result according to a set of parameters, refine the
search, among others, the site also allows registration for users
who, after authentication, can insert vehicles for sale, among
other functionalities. For illustration purposes and due to space
limitations, the model of Mobile.de presented in the sequel
does not contain all the testing goals needed to test the overall
functionality of the site. However, unless the Call UI Test
Pattern, the models constructed for the selected testing goals
illustrate the use of all the other Base UI Test Patterns of the
language PARADIGM.

292

A. Mobile.de Model

Mobile.de has a page (Car Search) where it is possible to
set the search parameters and see the number of elements in
the search result set. Upon submission, another page (Show
results) shows the elements within the results set obtained.
Generally, the goal is to test whether the search functionality
works correctly, i.e., if it is possible to search for models
of a particular car brand, check whether the number of the
cars within the results set is correct and has the elements
is supposed to have, check if it possible to sort the results
providing different criteria, check if it is possible to refine the
search and, in particular, check if the items selected to limit
the search are transferred to the search criteria area and vice
versa.

The overall model of the Mobile.de is structured in different
levels of abstraction. Figure 4 corresponds to the first level of
the model and presents an overview of the site functionality
to test. The two pages of the site are modeled by Forms
(CarSearch and ShowResults) and the flow of data between
those forms is modeled via the “Sequence with passing data”
connector. Subsequent levels of the model will detail the inner
testing goals of the forms.

Fig. 4. Mobile.de website Model

The CarSearch Form is detailed in Figure 6. It contains
one Group element and a Find UI Test Pattern. The Group
element includes three MasterDetail UI Test Patterns to model
the relation between the brand of a vehicle (the “Make” combo
box in Figure 5) and the models available for that brand
(“Model” combo box in Figure 5) and one Input UI Test
Pattern (referred in Figure 6 as ChangeLanguage) to change
the language of the site (e.g., English, Spanish, etc.). This
Group is optional which means that the corresponding test
strategy of the inner elements can be globally skipped. The
subsequent Find UI Test Pattern gets data from the Group
(modeled by the connector “[]�”) and submits it to the
following element.

The CarSearch Form is connected to the ShowResults Form
through the “[]�” connector (Figure 4). The Show Results
Form models the page of the site that shows the results of
the search configured previously (Figure 7). In addition, this

Fig. 5. Mobile.de Car Search Form

Fig. 6. Mobile.de Car Search Form Model

page supports refining the search (through adjust and limit
search); navigating throughout the result set; and changing
the overall system’s language among other functionalities. The
Show Results Form is detailed in Figure 8. It is comprised
by an Init, a Group element (ResultsGroup) and an End. The
Group (ResultsGroup) is optional and is comprised by another
Group (referred as FilterGroup), a Sort, a Find and an Input
UI Test Patterns. The ResultsGroup receives data from the Init
element (“[]�”) (in this case it means that it gets data from
the CarSearch Form within Figure 4.

Fig. 7. Mobile.de Show Results Form

Furthermore, FilterGroup contains two UI Test Patterns:
Input (Limit Search) and MasterDetail (Filter). These two UI
Test Patterns are double connected with two SequenceWith-
MovedData (o[]�) connectors meaning that there is data
exchanging between them. The AdjustSearch is a Find UI Test
Pattern and is responsible for testing the corresponding search.

293

Fig. 8. Mobile.de Show Results Form Model

B. Generated Test Cases

After the model has been constructed, it is possible to
generate test cases from it. These test cases are generated
automatically by PARADIGM ME. Hence, for the given model
of the Mobile.de, the test cases are then generated according
to the following sequential steps: (1st) test paths are created
without detailing test strategies of the UI Test Patterns; (2nd)
test paths generated in the previous step are unfolded for
encompassing the test strategies of each UI Test Pattern.

C. Test Paths

The test path at the higher level of the model is Init – 1
– 2 – End (Figure 4). The final test paths are constructed
by expanding recursively each of those Form elements (this
case 1 and 2). The Car Search Form element within Figure
4 is detailed in Figure 6. Such Form is comprised by an
optional Group and a Find UI Test Pattern. Since the Group
element (1.1) is optional, it is possible to navigate directly
to the Find element (1.2). This means that there will be a
test path containing only the Find element (1.2). According to
Definition 3, the maximum number of test paths for the Group
element (1.1) will be

4∑
i=3

i! · 4Ci + 1 = 49

The ShowResults Form within Figure 4 is detailed in Figure
8. It has Init, ResultsGroup and End. ResultsGroup (2.5)
has four elements: AdjustSearch (2.2), ChangeLanguage (2.3),
Sort (2.4) and FilterGroup (2.1). According to Definition 3, the
number of test paths for the Group 2.1 is

2∑
i=1

i! · 2Ci + 1 = 5

The number of test paths for the ResultsGroup (according to

Definition 3) without expanding FindGroup (2.1) is

4∑
i=3

i! · 4Ci + 1 = 49

From the 49 test paths of Group 2.1, 7 of them does not contain
element 2.1. So, according to Definition 4, the number of test
paths for the overall model in Figure 8 will be:

(49− 42) + 42 · 5

which is 217 test paths. These paths are the ones necessary to
fulfill the goals identified earlier in this section, according to
our methodology.

D. UI Test Patterns Configuration

After building the model, the Tester configures each test
UI Test Pattern so the previously 217 test paths are expanded
according to the test configurations defined for each UI Test
Pattern which results in the final test cases that are needed to
fulfill the test goals defined in Section V A.

PARADIGM ME allows manual insertion of test data. The
configuration for the UI Test Patterns in the path “Init – 1.2
– 2.2 – End” and corresponding checks were:

– UI Test Pattern 1.2 (Figure 6): {<FND VF, {[Make,
“Any”], [Model, “”]}, [Provide Make, Provide Model],
#Results: 1.471.315, True>; <FND NF, {[Make, “Bent-
ley”], [Model, “Turbo RT”]}, [Provide Make, Provide
Model], #Results: 0, True>};

– UI Test Pattern 2.2 (Figure 8) : {<FND NF, {[Price
until, “Any”],[km until, “Any”]}, [Provide Price un-
til, Provide km until], #Results: 0, True>; <FND VF,
{[Price until, “Any”], [Km until, “Any”]}, [Provide Price
until, Provide km until], #Results: 1.471.315, True>};

During test execution, the correspondent checks for each
configuration are performed. If one of those checks fails, the
test case fails and an error is reported. For the above test path,
the check “Results: 1.471.315” within test “FND VF” of the
UI Test Pattern 2.2 fails. After reviewing the problem reported,
we realized that the number of elements of the search results
set shown in page “Car Search” (Figure 5) is different from the
number of the elements shown on page “Show results” (Figure
7) after submission when no search refinement is performed,
as is the case of this test.

VI. FEASIBILITY STUDY

The objective of this study (or experiment) is to assess the
PBGT general approach, in order to ascertain whether it can
be used by common people (not involved in the development
of the language PARADIGM nor the development of its
supportive environment) and to measure the amount of time
required to begin getting benefits of the approach and start
finding bugs in real applications. In particular, this case study
was designed to answer the following research questions:

• Time: How long it takes to start using PARADIGM
language and finding errors?

294

• Expressive power: Are the Base UI Test Patterns cur-
rently provided by PARADIGM enough for modeling real
applications? Does the language have sufficient expres-
sive power to model the testing goals that we propose?

• Modeling environment usability: Does the modeling
environment needs improvement? In particular, does it
allow building and configuring models easily?

A. Metrics

In order to answer the research questions above, we defined
a set of metrics to be gathered during the execution of the
experiment. In particular, we registered the time needed to
introduce the language and the modeling environment to the
students and asked the students to register the time taken for
building and configuring the model. In addition, we asked the
students to indicate all the problems they had to face during
the experiment, for instance, doubts concerning how to model
and configuring a specific testing goal and problems with the
usability of the PARADIGM environment, such as, too many
steps needed for configuration.

B. Subject Application

For this case study, we selected an Australian site – austra
lian-charts.com/ [11], that in short, reflects the best selling
music singles and albums in Australia.

This website shows the current top 50 and the best of all
time singles and albums; allows searching for songs, albums,
compilations and DVDs; shows a score based on reviews;
allows new user registration and, afterwards, authentication;
provides support for forums; among other functionalities.

In addition, this site has another functionality that allows
to access sites for the same purpose (listing the best selling
music) from other countries, such as, Finland, Germany, etc.

C. Procedure

We asked three students, who have never seen PARADIGM,
to embrace the role Tester. The PARADIGM language and the
modeling environment (ME) were introduced to the students
during a 2-hour session. We clarified all students doubts and
presented some modeling examples. Afterwards, we delivered
the testing goals for them to model. Hence, the defined testing
goals were:

1) test if the authentication is functioning correctly by
displaying a message when the login fails;

2) test if it is possible to register new users and if messages
are displayed for successful and unsuccessful registra-
tion;

3) test the dependency between the selection of a different
country and the contents of a list with different options;

4) test the dependency between the selection of an ele-
ment within a list of options and the content displayed
in the middle panel (e.g., selecting “Top 50 Singles”
displays “Of Monsters and Men – Little Talks” in the
6th position; selecting “Search” displays a search area;
selecting “Best of All Time” displays an area with the
“best singles” since 1989);

5) test different searches (top, simple, extended) available
(e.g., search “Song” with name “nothing” and check if
the first artist is “Alesha Dixon”; search “Album” with
the name “justice for all” and check if the first artist
is “Metallica”; search “forum” without parameters and
check if the result displays “show all topics”).

The students then started the experiment, and subsequently,
created the models to fulfill the testing goals and config-
ured the UI Test Patterns (Behavior elements) present in the
models. Next, they generated automatically the test cases via
PARADIGM ME. Afterwards, they analyzed the test paths and
documented the errors found.

D. Findings

All the students were able to build the model and fulfilled
the expected testing goals, however they constructed different
models. After a more detailed analysis on the models pro-
duced, we could conclude that the differences were related to
the fact that they were using different levels of abstraction.
One used more levels than the others, because he opt to
use Forms detailed in other levels of detail. They spent, in
average, approximately 44 minutes modeling and 31 minutes
with configuration. All students were able to detect the same
set of errors. Some of them were related to a search followed
by an invalid login and other related with the dependency
between UI elements, as follows:

1) Selecting “Top 50 Singles” and afterwards performing
an invalid login shows a empty white page.

2) Performing a top search looking for forum and af-
terwards performing an invalid login, shows an error
message: “Microsoft OLE DB Provider for SQL Server
error...”.

3) Performing a simple (or extended) search looking for
songs with name “nothing” and performing an invalid
login afterwards, does not show the invalid login mes-
sage as expected.

4) In addition, changing the country to “United Kingdom”
does not show “Search” neither “UK Charts” in the
related area as what happens with other countries.

The students did register some complaints about the usabil-
ity of the modeling environment. They complained that some
configurations, in particular the configuration of the Find UI
Test Pattern, demanded too many steps, which became boring.
They also had difficulty in modeling a situation in which a B
element appears after an optional A element, but that should
only be run when A is executed. In fact, at present, for a path
A-B the modeling environment generates test paths A; B; and
A-B. The students wanted to generate only the paths A; and
A-B not allowing the generation of a path in which B occurs
alone.

We think that we can improve the language with an ad-
ditional connector imposing a strict sequence between the
connected elements. Right now, the connectors do not allow to
invert the sequence between the elements, for instance, it does
not generate a test path B-A when the elements are connected
and B comes after A.

295

VII. RELATED WORK

Our work borrows from prior work on UI and test patterns
to build upon existing work on model-based GUI testing. In
this section, we discuss prior research in these three areas.

A. UI Patterns

UI patterns, in our terms, represent generic graphical
implementations of a given functionality. Although certain
functionalities, such as “Login”, can have different layouts,
the aspect that is particular relevant for our work is the
common behavior (that is repeated over time) described by
these common implementations. The research of several UI
Patterns was the entry point that led us in the direction of UI
Test Patterns. The Master/Detail UI Pattern allows the user
to stay in the same screen while navigating through items. In
addition, it features two areas: master and detail. The content
of the detail area is displayed based upon the current selection
in the master area. One practical example of this pattern is
iTunes [12]. The UI Pattern that provides a way for the user
to enter data in the system, is known as the Input Prompt UI
Pattern. Another popular UI Pattern is the Auto-Complete. It
can be found in the Google search engine [13]. While the user
types a word, a list of possible matches appear and then the
user selects the desired item. The Input Feedback UI Pattern
provides feedback to the user after submitting data. The goal
is to notify users about errors that occurred during submission.

B. Testing Patterns

To the best of our knowledge, approaches have yet to
appear concerning the matter of Pattern-Based GUI Testing.
However, the concept of patterns has been used in the domain
of software testing [14]. This approach consists in ensuring the
implementation of a given design pattern (micro-architecture)
corresponds to its design [15]. Thus, in this approach each
pattern has associated a set of pattern test case templates
(PTCTs). A PTCT represents a reusable test case structure
designed to identify defects associated with application of the
pattern. One drawback of this approach is that it requires deep
knowledge over the structure of the actual system and full
source-code access. This approach performs a static analysis
over the code. Our approach (PBGT) performs a dynamic
analysis over the GUI and because of that, it is independent
from platform and programming language. This is the major
difference between these approaches.

C. Model-Based GUI Testing

State machine models are the most popular models for
testing, and have been effectively used to model GUIs [16],
[17]. In the context of GUI models, windows and controls
represent states, and user events represent transitions among
states. However, when modeling a full scale GUI, the enor-
mous set of states and transitions would be very high, turning
the model very hard to work with due to its complexity.
Additionally, state-charts’ models can also be used for both
modeling and generating test cases for GUIs [18]. The use of
state-charts in GUI testing has not yet received great interest

which is due to the lack of approaches and contributions to
this matter. Furthermore, this approach has the same problem
as the state machines. The size of the model will make difficult
to work with as well as maintain it.

Labeled State Transition Systems (LSTSs) are an alternative
approach to finite state machines. LSTSs are an extension of
the Labeled Transition System (LTS) format by adding up
labels to both states and transitions. A LTS consists of a set
of states and a set of transitions among those states. These
transitions are labeled by actions and one state is designated as
the initial state. This approach uses keyword and action word
techniques. In one hand, action words describe user events
with a high level of abstraction. On the other hand, keywords
correspond to key presses and menu navigation. The main
idea is to provide simple means for the domain experts so
that they can design test cases with action words even before
the system implementation. This simplifies the work of testers
since programming skills will not be required. According to
[19], by varying the order of events it becomes possible to
find previously undetected events. In this approach, formal
models can be built by using tools from a custom (Tampere
Verification Tool - TVT) verification toolset [19]. This method
is very formal in a way that models must be created by hand,
and its syntax is not straightforward to use. In addition, the
toolset lacks support and comes into sight that LTSs are less
expressive than finite state machines.

Other approach makes use of Event Flow Graphs (EFG)
to create a GUI model [20]. The idea behind this concept
is to capture the flow of events, featuring all possible event
interactions in the UI. The EFG is comprised by nodes
and edges. An edge from one node to another means that
the second node can be executed immediately after the first
one. EFG edges are not labeled, nor do EFGs have states.
Furthermore, models are generated directly from an executable
by means of a GUI Ripping Tool. As best of our knowledge,
no tool exists to model an EFG by hand so it is not possible to
edit the ripped models. For complex applications GUI ripping
falls short in generating the full model [21]. Current ripping
tools are architecture dependent; versions for web, desktop,
mobile, .NET platforms are available.

Another approach to create GUI models is to use Event
Sequence Graphs (ESG) [22], [23], which are extensions of
EFGs in that ESGs allow multiple start and final nodes. In
order to model such behavior, pseudo entry nodes denoted by
“[”, and pseudo finish nodes denoted by “]”, are used to mark
start and finish events, respectively.

Other approach features a GUI mapping tool [24], where the
GUI model is written in Spec# with state variables to model
the state of the GUI and methods to model the user actions on
the GUI. However, the effort required for the construction of
Spec# GUI models is too high. In the context of this work [24],
another attempt was made to reduce the effort to construct a
GUI model. A visual notation entitled VAN4GUIM [25] was
designed and translated to Spec# automatically. The aim was
to have a visual front-end that could hide Spec# formalism
details from the testers.

296

Additionally, task models can be used in MBGT [26]. The
use of task models reduces the effort in creating test oracles.
The approach described in [26] focuses on user errors, and ex-
amines the feasibility of using task models to test GUIs against
erroneous user behavior. Moreover, it uses ConcurTaskTrees
(CTT) as the task modeling notation and offers tool support
(CTT Model Transformation Tool - CMTTool). The aim of
this tool is to generate several mutants from the task model
for testing purposes.

VIII. CONCLUSIONS

This paper presented a Pattern-Based approach for GUI
modeling and testing (PBGT). This testing approach is based
on a DSL language, called PARADIGM, which aims to
simplify the modeling process by promoting reuse. Test cases
are automatically generated from PARADIGM models.

In the future, we intend to experiment our approach in real
industrial environments projects, within different contexts, like
developments from scratch and maintenance. We also intend
to study the possibility to extend the set of Base UI Test
Patterns available within PARADIGM language. In addition,
the number of connectors may also be extended, for example,
to address the need identified by the students, helping to
increase the expressiveness of the PARADIGM language.

ACKNOWLEDGMENTS

This work is supported by (1) European Regional Devel-
opment Fund (ERDF) through the COMPETE Programme
(operational programme for competitiveness), (2) National
Funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020554, and (3) US
National Science Foundation (NSF) via grant number CNS-
1205501.

REFERENCES

[1] T. Neil, “12 Standard Screen Patterns,”
http://designingwebinterfaces.com/designing-web-interfaces-12-screen-
patterns, accessed November, 2012.

[2] Patternry, “UI Design Patterns and Library Builder,” http://patternry.com,
accessed November, 2012.

[3] J. Tidwell, Designing Interfaces. Sebastopol, CA: O’Reilly, 2011.
[4] A. Toxboe, “UI Patterns - User Interface Design Pattern Library,”

http://ui-patterns.com, accessed November, 2012.
[5] M. van Welie, “Interaction Design Pattern Library,”

http://www.welie.com/patterns, accessed November, 2012.
[6] Yahoo!, “Yahoo! Design Pattern Library,”

http://developer.yahoo.com/ypatterns, accessed November, 2012.
[7] M. Strembeck and U. Zdun, “An approach for the systematic

development of domain-specific languages,” Softw. Pract. Exper.,
vol. 39, no. 15, pp. 1253–1292, Oct. 2009. [Online]. Available:
http://dx.doi.org/10.1002/spe.v39:15

[8] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees:
A Diagrammatic Notation for Specifying Task Models,” in
Proceedings of the IFIP TC13 International Conference on Human-
Computer Interaction, ser. INTERACT ’97. London, UK, UK:
Chapman & Hall, Ltd., 1997, pp. 362–369. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647403.723688

[9] N. Skrypuch, “Eclipse Modeling – EMF – Home,”
http://www.eclipse.org/modeling/emf, accessed November, 2012.

[10] “mobile.de - Germany’s Biggest Vehicle Marketplace Online. Search,
Buy and Sell Used and New Vehicles,” http://www.mobile.de, accessed
December, 2012.

[11] S. Hung, “Australian charts portal,” http://australian-charts.com, ac-
cessed February, 2012.

[12] A. Inc., “Apple – iTunes – Everything you need to be entertained.”
http://www.apple.com/itunes, accessed February, 2012.

[13] “Google,” http://www.google.com, accessed February, 2012.
[14] A. Pehmöller, F. Salger, and S. Wagner, “Patterns for testing in global

software development,” in Proceedings of the 13th International Con-
ference on Quality Engineering in Software Technology, 2010.

[15] N. Soundarajan, J. Hallstrom, G. Shu, and A. Delibas, “Patterns:
from system design to software testing,” Innovations in Systems and
Software Engineering, vol. 4, pp. 71–85, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11334-007-0042-z

[16] F. Belli, “Finite-State Testing and Analysis of Graphical User
Interfaces,” in Proceedings of the 12th International Symposium on
Software Reliability Engineering, ser. ISSRE ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 34–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=851028.856279

[17] L. White and H. Almezen, “Generating Test Cases for
GUI Responsibilities Using Complete Interaction Sequences,” in
Proceedings of the 11th International Symposium on Software
Reliability Engineering, ser. ISSRE ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 110–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=851024.856239

[18] H. Reza, K. Ogaard, and A. Malge, “A model Based Testing
Technique to Test Web Applications Using Statecharts,” in
Proceedings of the Fifth International Conference on Information
Technology: New Generations, ser. ITNG ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 183–188. [Online]. Available:
http://dx.doi.org/10.1109/ITNG.2008.145

[19] A. Kervinen, M. Maunumaa, T. Päakkönen, and M. Katara, “Model-
based testing through a GUI,” in In Proceedings of the 5th International
Workshop on Formal Approaches to Testing of Software (FATES 2005),
number 3997 in Lecture Notes in Computer Science. Springer, 2006,
pp. 16–31.

[20] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage Criteria
for GUI Testing,” in In Proceedings of the 8th European Software
Engineering Conference (ESEC) and 9th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE-9). ACM
Press, 2001, pp. 256–267.

[21] P. Aho, N. Menz, T. Räty, and I. Schieferdecker, “Automated Java
GUI Modeling for Model-Based Testing Purposes,” in Proceedings
of the 2011 Eighth International Conference on Information
Technology: New Generations, ser. ITNG ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 268–273. [Online]. Available:
http://dx.doi.org/10.1109/ITNG.2011.54

[22] F. Belli, M. Beyazit, and N. Güler, “Event-Based GUI Testing
and Reliability Assessment Techniques – An Experimental Insight
and Preliminary Results,” in Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing, Verification and
Validation Workshops, ser. ICSTW ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 212–221. [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2011.59

[23] A. Datentechnik, “TSD – Test Suite Designer,”
http://designingwebinterfaces.com/designing-web-interfaces-12-screen-
patterns, accessed November, 2012.

[24] A. C. R. Paiva, J. C. P. Faria, N. Tillmann, and R. F. A. M.
Vidal, “A Model-to-Implementation Mapping Tool for Automated
Model-Based GUI Testing.” in ICFEM, ser. Lecture Notes in
Computer Science, K.-K. Lau and R. Banach, Eds., vol. 3785.
Springer, 2005, pp. 450–464. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icfem/icfem2005.html#PaivaFTV05

[25] R. M. L. M. Moreira and A. C. R. Paiva, “Visual Abstract
Notation for GUI Modelling and Testing – VAN4GUIM.” in ICSOFT
(SE/MUSE/GSDCA), J. Cordeiro, B. Shishkov, A. Ranchordas,
and M. Helfert, Eds. INSTICC Press, 2008, pp. 104–111.
[Online]. Available: http://dblp.uni-trier.de/db/conf/icsoft/icsoft2008-
2.html#MoreiraP08

[26] A. Barbosa, A. C. Paiva, and J. C. Campos, “Test case generation
from mutated task models,” in Proceedings of the 3rd ACM SIGCHI
symposium on Engineering interactive computing systems, ser. EICS
’11. New York, NY, USA: ACM, 2011, pp. 175–184. [Online].
Available: http://doi.acm.org/10.1145/1996461.1996516

297

