
Information and Software Technology 55 (2013) 1679–1694
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Graphical user interface (GUI) testing: Systematic mapping
and repository
0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.03.004

⇑ Corresponding author at: Electrical and Computer Engineering, University of Calgary, Calgary, Canada. Tel.: +1 403 210 5412.
E-mail addresses: ishan@cs.umd.edu (I. Banerjee), baonn@cs.umd.edu (B. Nguyen), vgarousi@ucalgary.ca (V. Garousi), atif@cs.umd.edu (A. Memon).
Ishan Banerjee a, Bao Nguyen a, Vahid Garousi b,c,⇑, Atif Memon a

a Department of Computer Science, University of Maryland, College Park, MD 20742, USA
b Electrical and Computer Engineering, University of Calgary, Calgary, Canada
c Informatics Institute, Middle East Technical University, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 August 2012
Received in revised form 11 March 2013
Accepted 11 March 2013
Available online 5 April 2013

Keywords:
Systematic mapping
GUI application
Testing
Paper repository
Bibliometrics
Context: GUI testing is system testing of a software that has a graphical-user interface (GUI) front-end.
Because system testing entails that the entire software system, including the user interface, be tested
as a whole, during GUI testing, test cases—modeled as sequences of user input events—are developed
and executed on the software by exercising the GUI’s widgets (e.g., text boxes and clickable buttons).
More than 230 articles have appeared in the area of GUI testing since 1991.
Objective: In this paper, we study this existing body of knowledge using a systematic mapping (SM).
Method: The SM is conducted using the guidelines proposed by Petersen et al. We pose three sets of
research questions. We define selection and exclusion criteria. From the initial pool of 230 articles, pub-
lished in years 1991–2011, our final pool consisted of 136 articles. We systematically develop a classifi-
cation scheme and map the selected articles to this scheme.
Results: We present two types of results. First, we report the demographics and bibliometrics trends in
this domain, including: top-cited articles, active researchers, top venues, and active countries in this
research area. Moreover, we derive the trends, for instance, in terms of types of articles, sources of infor-
mation to derive test cases, types of evaluations used in articles, etc. Our second major result is a publicly-
accessible repository that contains all our mapping data. We plan to update this repository on a regular
basis, making it a ‘‘live’’ resource for all researchers.
Conclusion: Our SM provides an overview of existing GUI testing approaches and helps spot areas in the
field that require more attention from the research community. For example, much work is needed to
connect academic model-based techniques with commercially available tools. To this end, studies are
needed to compare the state-of-the-art in GUI testing in academic techniques and industrial tools.

� 2013 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 1680
2. Background. 1680
3. Goals, questions, and metrics . 1681
4. Article selection . 1682
4.1. Step 1: Article identification. 1682
4.2. Step 2: Exclusion criteria . 1682
4.3. Step 3: Inclusion criteria. 1682
4.4. Our final article set . 1683
5. Iterative development of the systematic map . 1683
6. Mapping research and evaluation . 1683
7. Mapping demographics . 1688
8. Mapping limitations and future directions . 1690
9. Discussion. 1691

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.03.004&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.03.004
mailto:ishan@cs.umd.edu
mailto:baonn@cs.umd.edu
mailto:vgarousi@ucalgary.ca
mailto:atif@cs.umd.edu
http://dx.doi.org/10.1016/j.infsof.2013.03.004
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1680 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
10. Related work . 1691

10.1. Secondary studies in software testing . 1691
10.2. Online article repositories in SE . 1691
11. Conclusions. 1692
Acknowledgements . 1692
References . 1692
1. Introduction

Whenever the number of primary studies—reported in articles
(we use the term article to include research papers, book chapters,
dissertations, theses, published experimental results, and pub-
lished demonstrations of techniques)—in an area grows very large,
it is useful to summarize the body of knowledge and to provide an
overview using a secondary study [1]. A secondary study [2–5]
aggregates and objectively synthesizes the outcomes of the pri-
mary studies. By ‘‘mapping the research landscape,’’ a secondary
study helps to identify sub-areas that need more primary studies.
Because the synthesis needs to have some common basis for
extracting attributes in the articles, a side effect of the secondary
study is that it encourages researchers conducting and reporting
primary studies to improve their reporting standard of such attri-
butes, which may include metrics, tools, study subjects, limita-
tions, etc.

In the field of Software Engineering (SE), a systematic mapping
(SM) study is a well-accepted method to identify and categorize re-
search literature [6,1]. An SM [2,7–12] study focuses on building
classification schemes and the results show frequencies of articles
for classifications within the scheme. These results become one of
the outputs of the SM in the form of a database or map that can be a
useful descriptive tool itself. An SM uses established searching pro-
tocols and has rigorous inclusion and exclusion criteria.

In this paper, we leverage the guidelines set by Petersen et al.
[1] and Kitchenham and Charters [13] to create an SM for the area
of GUI testing. We define the term GUI testing to mean that a GUI-
based application, i.e., one that has a graphical-user interface (GUI)
front-end, is tested solely by performing sequences of events (e.g.,
‘‘click on button’’, ‘‘enter text’’, ‘‘open menu’’) on GUI widgets (e.g.,
‘‘button’’, ‘‘text-field’’, ‘‘pull-down menu’’). In all but the most trivial
GUI-based systems, the space of all possible event sequences that
may be executed is extremely large, in principle infinite, e.g., con-
sider the fact that a user of Microsoft Word can click on the File
menu an unlimited number of times. All GUI testing techniques
are in some sense sampling the input space, either manually
[14,15] or automatically [16,17]. In the same vein, techniques that
develop a GUI test oracle [18]—a mechanism that determines
whether a GUI executed correctly for a test input—are based on
sampling the output space; examining the entire output, pixel by
pixel, is simply not practical [19,20]. Techniques for evaluating
the adequacy of GUI test cases provide some metrics to quantify
the test cases [21–23]. Techniques for regression testing focus on
retesting the GUI software after modifications [24–26].

The above is just one possible classification of GUI testing tech-
niques. The goal of our SM is to provide a much more comprehen-
sive classification of articles that have appeared in the area since
1991 (our search revealed that the first paper on GUI testing ap-
peared in 1991). Given that now there are regular events such as
the International Workshop on TESTing Techniques & Experimen-
tation Benchmarks for Event-Driven Software (TESTBEDS) [27–
30] in the area, we expect this number to increase. We feel that this
is an appropriate time to discuss trends in these articles and pro-
vide a synthesis of what researchers think are limitations of exist-
ing techniques and future directions in the area. We also want to
encourage researchers who publish results of primary studies to
improve their reporting standards, and include certain attributes
in their articles to help conduct secondary studies. Considering
that many computer users today use GUIs exclusively and have
encountered GUI-related failures, research on GUIs and GUI testing
is timely and relevant.

There have already been 2 smaller, preliminary secondary stud-
ies on GUI testing. Hellmann et al. [31] presented a literature re-
view of test-driven development of user interfaces; it was based
on a sample of 6 articles. Memon and Nguyen [32] presented a
classification of 33 articles on model-based GUI test-case genera-
tion techniques. To the best of our knowledge, there are no other
secondary studies in the area of GUI testing.

In our SM, we study a total of 230 articles. We formulate 3 sets
of research questions pertaining to the research space of GUI test-
ing, demographics of the studies and authors, and synthesis and
interpretation of findings. We describe the mechanisms that we
used to locate the articles and the set of criteria that we applied
to exclude a number of articles; in all we classify 136 articles.
Our most important findings suggest that there is an increase in
the number of articles in the area; there has been lack of evaluation
and validation, although this trend is changing; there is insufficient
focus on mobile platforms; new techniques continue to be devel-
oped and evaluated; evaluation subjects are usually non trivial,
mostly written in Java, and are often tested using automated mod-
el-based tools; and by far a large portion of the articles are from the
US, followed by China.

We have published our SM as an online repository on Google
Docs [33]. Our intention is to periodically update this repository,
adding new GUI testing articles as and when they are published.
In the future, we intend to allow authors of articles to update the
repository so that it can become a ‘‘live’’ shared resource main-
tained by the wider GUI testing community.

The remainder of this paper is structured as follows. Section 2
presents background on GUI testing. Section 3 presents our goals
and poses research questions. The approach that we used to select
articles is presented in Section 4. Section 5 presents the process
used for constructing the systematic map. Sections 6–8 present
the results of the systematic mapping. Section 9 presents a
discussion of results. Finally, Section 10 presents related work
and Section 11 concludes with a summary of our findings and
future work.
2. Background

A GUI takes events (mouse clicks, selections, typing in text-
fields) as input from users, and then changes the state of its wid-
gets. GUIs have become popular because of the advantages this
‘‘event-handler architecture’’ offers to both developers and users
[34,35]. From the developer’s point of view, the event handlers
may be created and maintained fairly independently; hence, com-
plex systems may be built using these loosely coupled pieces of
code. From the user’s point of view, GUIs offer many degrees of
usage freedom, i.e., users may choose to perform a given task by
inputting GUI events in many different ways in terms of their type,
number and execution order.

I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694 1681
Software testing is a popular QA technique employed during
software development and deployment to help improve its qual-
ity [36,37]. During software testing, test cases are created and
executed on the software under test. One way to test a GUI is
to execute each event individually and observe its outcome,
thereby testing each event handler in isolation [16]. However,
the execution outcome of an event handler may depend on its
internal state, the state of other entities (objects, event handlers)
and the external environment. Its execution may lead to a
change in its own state or that of other entities. Moreover, the
outcome of an event’s execution may vary based on the se-
quence of preceding events seen thus far. Consequently, in GUI
testing, each event needs to be tested in different states. GUI
testing therefore involves generating and executing sequences
of events [38,35]. Most of the articles on test-case generation
that we classify in our SM consider the event-driven nature of
GUI test cases, although few mention it explicitly.

3. Goals, questions, and metrics

We use the Goal–Question–Metric (GQM) paradigm [39] to
form the goals of this SM, raise meaningful research questions,
and carefully identify the metrics that we collect from the primary
studies and how we use them to create our maps. The goals of this
study are:

G1: To classify the nature of articles in the area of GUI testing,
whether new techniques are being developed, whether they
are supported by tools, their weaknesses and strengths, and
to highlight and summarize the challenges and lessons
learned.

G2: To understand the various aspects of GUI testing (e.g., test-
case generation, test coverage) that are being investigated
by researchers.

G3: To study the nature of evaluation, if any, that is being con-
ducted, the tools being used, and subject applications.

G4: To identify the most active researchers in this area and their
affiliations, and identify the most influential articles in the
area.

G5: To determine the recent trends and future research direc-
tions in this area.

Goals G1, G2, and G3 are all related to understanding the trends
in GUI testing research and evaluation being reported in articles.
These goals lead to our first set of research questions. Note that
as part of the research questions, we include the metrics (under-
lined) that we collect for the SM.

RQ 1.1: What types of articles have appeared in the area? For
example, we expect some articles that present new techniques,
others that evaluate and compare existing techniques.
RQ 1.2: What test data generation approaches have been pro-
posed? For example, some test data may be obtained using man-
ual approaches, others via automated approaches. We examine
this question because of the central role that test data plays in
software testing.
RQ 1.3: What type of test oracles have been used? A test oracle is a
mechanism that determines whether a test case passed or
failed. A test case that does not have a test oracle is of little
value as it will never fail. We expect some test cases to use a
manual test oracle, i.e., manual examination of the test output
to determine its pass/fail status. Other test cases may use an
automated test oracle, in which the comparison between
expected and actual outputs is done automatically.
RQ 1.4: What tools have been used/developed? We expect that
some techniques would have resulted in tools; some are based
on existing tools. Here we want to identify the tools and some
of their attributes, e.g., execution platform.
RQ 1.5: What types of systems under test (SUT) have been used?
Most new techniques need to be evaluated using some software
subjects or SUTs. We want to identify these SUTs, and charac-
terize their attributes, e.g., platform (such as mobile, web), size
in lines of code (LOC).
RQ 1.6: What types of evaluation methods have been used? We
expect that some techniques would have been evaluated using
the type and amount of code that they cover, others using the
number of test cases they yield, and natural or seeded faults
they detected.
RQ 1.7: Is the evaluation mechanism automated or manual? A
new technique that can be evaluated using automated mecha-
nisms (e.g., code coverage using code instrumentation) makes
it easier to replicate experiments and conduct comparative
studies. Widespread use of automatic mechanisms thus allows
the research area to encourage experimentation.

To answer all the above questions, we carefully examine the arti-
cles, collect the relevant metrics, create classifications replying explic-
itly on the data and findings reported in the articles, and obtain
frequencies when needed. All the metrics are objective, i.e., we do
not offer any subjective opinions to answer any of these questions.

Goals G4 and parts of G1 and G5 are concerned with under-
standing the demographics and bibliometrics of the articles and
authors. These goals lead to our second set of research questions.

RQ 2.1: What is the annual articles count?
RQ 2.2: What is the article count by venue type? We expect the
most popular venues to be conferences, workshops, and
journals.
RQ 2.3: What is the citation count by venue type?
RQ 2.4: What are the most influential articles in terms of citation
count?
RQ 2.5: What are the venues with highest articles count?
RQ 2.6: What are the venues with highest citation count?
RQ 2.7: Who are the authors with the highest number of articles?
RQ 2.8: What are the author affiliations, i.e., do they belong to aca-
demia or industry?
RQ 2.9: Which countries have produced the most articles?

Again, we observe that the above questions may be answered
by collecting objective metrics from the articles.

Goals G5 and parts of G1 are concerned with the recent trends,
limitations, and future research directions in the area of GUI testing;
we attain these goals by studying recent articles, the weaknesses/
strengths of the reported techniques, lessons learned, and future
trends. More specifically, we pose our third set of research
questions.

RQ 3.1: What limitations have been reported? For example, some
techniques may not scale for large GUIs.
RQ 3.2: What lessons learned are reported?
RQ 3.3: What are the trends in the area? For example, new tech-
nologies may have prompted researchers to focus on develop-
ing new techniques to meet the needs of the technologies.
RQ 3.4: What future research directions are being suggested?

Due to the nature of the questions and to prevent our own bias,
their answers are based on opinions of the original authors who
conducted the primary studies.

m

Fig. 1. Protocol guiding this SM. The five distinct phases are Article selection, Map construction, RQ 1.⁄, RQ 2.⁄, RQ 3.⁄.

1 http://ieeexplore.ieee.org/.
2 http://dl.acm.org/.
3 http://scholar.google.com/.
4 http://academic.research.microsoft.com/.
5 http://www.sciencedirect.com/.
6 http://citeseer.ist.psu.edu.

1682 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
Having identified the goals for this work, linking them to re-
search questions, and identifying the metrics that we collect, we
have set the stage for the SM. The remainder of this paper is based
on the protocol that lies at the basis of this SM; it is outlined in
Fig. 1. The figure describes the workflow, inputs and outputs of
the SM. Each row in this figure is a distinct phase having clearly de-
fined inputs and outputs. From this figure, the protocol distin-
guishes five such phases. They are described in Sections 4–8.
More specifically, we describe the process of Article Selection in
Section 4, Map Construction in Section 5, and address research
questions RQ 1.⁄ in Section 6, RQ 2.⁄ in Section 7, and RQ 3.⁄ in
Section 8.

4. Article selection

As can be imagined, article selection is a critical step in any sec-
ondary study. Indeed, it lays the foundation for the synthesis of all
of its results. Consequently, in any secondary study, article selec-
tion must be explained carefully so that the intended audience
can interpret the results of the study keeping in mind the article
selection process. In this work, the articles were selected using a
three step process using guidelines presented in previous system-
atic mapping articles [40,13,1]: (1) article identification, done using
digital libraries and search engines, (2) definition and application of
exclusion criteria, which exclude articles that lie outside the scope
of this study, and (3) definition and application of inclusion criteria,
which target specific resources and venues that may have been
missed by the digital libraries and search engines to hand-pick rel-
evant articles. These steps are illustrated in the top part of Fig. 1.
We now expand upon each step.

4.1. Step 1: Article identification

We started the process by conducting a keyword-based search
to extract a list of articles from the following digital libraries and
search engines: IEEE Xplore,1 ACM Digital Library,2 Google Scholar,3

Microsoft Academic Search,4 Science Direct,5 and CiteSeerX.6 The fol-
lowing keywords were used for searching: GUI testing, graphical user
interface testing, UI testing, and user interface testing; we looked for
these keywords in article titles and abstracts. This step yielded 198
articles forming the initial pool of articles.
4.2. Step 2: Exclusion criteria

In the second step of the process, the following set of exclusion
criteria were defined to exclude articles from the above initial pool.
C1: languages other than English, C2: not relevant to the topic, and
C3: that did not appear in the published proceedings of a confer-
ence, symposium, or workshop, or did not appear in a journal or
magazine.

These criteria were then applied by defining application proce-
dures. It was fairly easy to apply criterion C1 and C3. For criterion
C2, a voting mechanism was used amongst us (the authors) to as-
sess the relevance of articles to GUI testing. We focused on the
inclusion of articles on functional GUI testing; and excluded arti-
cles on non-functional aspects of GUIs, such as stress testing GUI
applications [41] and GUI usability testing [42]. Application of
the above exclusion criteria resulted in a filtered set of 107 articles.
4.3. Step 3: Inclusion criteria

Because search engines may miss articles that may be relevant
to our study, we supplemented our article set by manually

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://scholar.google.com/
http://academic.research.microsoft.com/
http://www.sciencedirect.com/
http://citeseer.ist.psu.edu

Included articles Excluded articles

0 25 50 75 100

Conference
Journal

Workshop
Symposium

Magazine
Thesis
Patent

Course Rep.
Book

Technical Rep.
Lecture

Keynote
While Paper

Other
Unknown

Number of articles

Fig. 2. Total articles studied = 230; final included = 136.

I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694 1683
examining the following three sources: (1) web pages of active
researchers, (2) bibliography sections of articles in our filtered
pool, and (3) specific venues. These sources led to the definition
of 3 corresponding inclusion criteria, application of which resulted
in the final pool of articles containing 136 articles.

4.4. Our final article set

Fig. 2 shows the distribution of the 230 articles analyzed during
this study. The dark shaded part of each horizontal bar shows the
number that we finally included, forming a total of 136 articles. A
few articles are classified as ‘‘Unknown’’ because, despite numer-
ous attempts, we were unable to obtain their full-text version. In
summary, we have included all articles presented at all venues that
print their proceedings or make them available digitally.

5. Iterative development of the systematic map

As mentioned earlier, a map is the tool used for classification of
the selected articles. Development of the map is a complex and
time-consuming process. Indeed the map that we have made avail-
able in a publicly accessible repository [33] is one of the most
important contributions of our work. Fortunately, because we
use the GQM approach, we already have research questions and
metrics; we use the metrics as a guide for map construction. For
RQ 1.⁄, we need to collect the metrics: ‘‘types of articles,’’ ‘‘test data
generation approaches,’’ ‘‘type of test oracles,’’ ‘‘tools,’’ ‘‘types of
SUT,’’ ‘‘types of evaluation methods,’’ and ‘‘evaluation mechanism.’’
This list in fact forms a set of attributes for the articles. We define
these attributes in this section and present the map structure. With
this map (also called attribute framework [43]), the articles under
study can be characterized in a comprehensive fashion.

The map was developed in an iterative manner. In the first iter-
ation, all articles were analyzed and terms which appeared to be of
interest or relevance for a particular aspect (e.g., ‘subject under
test’, ‘testing tool’), were itemized. This itemization task was per-
formed by all of us. To reduce individual bias, we did not assume
any prior knowledge of any attributes or keywords. The result after
analyzing all articles was a large set of initial attributes. After the
initial attributes were identified, they were generalized. This was
achieved through a series of meetings. For example, under ‘‘test
data generation approaches,’’ the attributes ‘finite-state machine
(FSM)-based’ method and ‘UML-based’ method were generalized
to ‘model-based’ method.

Defining attributes for ‘‘types of articles’’ was quite complex. As
one can imagine, there are innumerable ways of understanding the
value of a research article. To make this understanding methodical,
we defined two facets—specific ways of observing a subject—which
helped us to systematically understand the contribution and re-
search value of each article. The specific facets that we used, i.e.,
contribution and research were adapted from [1].

The resulting attributes for each facet were documented, yield-
ing a map that lists the aspects, attributes within each aspect, and
brief descriptions of each attribute. This map forms the basis for
answering the research questions RQ 1.⁄.

Similarly, for RQ 2.⁄ we need the following metrics: ‘‘annual
articles count,’’ ‘‘article count by venue type,’’ ‘‘citation count by
venue type,’’ ‘‘citation count,’’ ‘‘citation count by venue,’’ ‘‘venues
with highest article counts,’’ ‘‘authors with maximum articles,’’
‘‘author affiliations,’’ and ‘‘countries.’’ The first two metrics were
obtained directly from our spreadsheet. The remaining metrics
lead us to develop our second map. As before, the map lists the
attributes and brief descriptions of each attribute. This map forms
the basis for answering the research questions RQ 2.⁄.

Finally, for RQ 3.⁄, we need to collect the metrics: ‘‘limitations,’’
‘‘lessons learned,’’ ‘‘trends,’’ and ‘‘future research directions.’’ This
led us to develop our third map, which forms the basis for answer-
ing the research questions RQ 3.⁄. The final map used in this re-
search for all questions is shown in Fig. 3.
6. Mapping research and evaluation

We are now ready to start addressing our original research
questions RQ 1.1 through RQ 1.7.

RQ 1.1: What types of articles have appeared in the area? As dis-
cussed earlier in Section 5, we address this question using two fac-
ets, primarily taken from [1]. The contribution facet broadly
categorizes the type of contributions(s) made by a given article,
and can be one or more of the following types: test method, test
tool, test model, metric, process, challenge, and empirical study.
On the other hand, the research facet—solution proposal, validation,
evaluation research, experience, philosophical and opinion arti-
cles—broadly categorizes the nature of research work presented
in the article. Every article has been attributed with at least one
category. Some articles have been placed in more than one cate-
gory. For example, Belli [44] presents a testing technique based
on FSMs. This article is placed under both ‘test method’ as well
as ‘test model’ in contribution facet.

Fig. 4a shows the contribution facet for all the 136 articles. The
y-axis enumerates the categories, and the x-axis shows the number
of articles in each category. Most articles (90 articles) have contrib-
uted towards the development of new or improved testing tech-
niques. Few articles have explored GUI testing metrics, or
developed testing processes. Fig. 4c shows an annual distribution
of the contribution facet. The y-axis enumerates the period
1991–2011, the x-axis enumerates the categories, the integer indi-
cates the number of articles in each category for a year. During the
period 1991–2000, most of the work focused on testing techniques.
On the other hand, during 2001–2011, articles have contributed to
various categories. This trend is likely owing to the rising interest
in GUI testing in the research community.

Fig. 4b shows the research facet for all the 136 articles. Most
articles propose solutions, conduct various types of experiments
to validate techniques. There are very few philosophical or opinion
articles. Fig. 4d shows an annual distribution of the research facet.
The figure shows that there is an increasing number of articles in
recent years, with most articles in solution proposal, validation
and evaluation research facets. In the year 2011, the largest num-
ber of articles were on validation research, a promising develop-
ment, showing that researchers are not only proposing novel
techniques, but they are also supporting them with lab
experiments.

Fig. 3. The final map produced by and used in this research.

1684 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
To get a better understanding of the contribution and research
focus of each article, we also visualize the relationship between
the research and contribution facets in Fig. 4e The y-axis enumer-
ates the research facet categories; the x-axis enumerates the con-
tribution facet categories. The intersection of each pair of
categories is an integer whose value corresponds to the number
of articles at that point. Work on exploring new and improved
techniques dominate with focus on validation research with 46
articles.

RQ 1.2: What test data generation approaches have been pro-
posed? Of the 136 articles, 123 articles reported generation of test
artifacts. The term test ‘‘artifacts’’ in this context denotes any type

Technique
Tool

Model
Metric

Process
Challenge
Empirical

Other

Number of articles
0 25 50 75 10 20 30 40 50 60 70

Solution

Validation

Evaluation

Experience

Philoso.

Opinion

Other

Number of articles
(a) Contribution facet distribution. (b) Research facet distribution.

(c) Contribution facet – annual trend (d) Research facet – annual trend

(e) Contribution vs. Research facet

Fig. 4. Data for RQ 1.1.

0 30 60 90

Capture/Rep.

Model

Random

Other

None

Number of articles
0 10 20 30

EFG
FSM
EIG

GUI tree
CIS

Spec#
ESIG
UML

Other

Number of articles
(a) Test generation methods (b) Model based methods

Fig. 5. Data for RQ 1.2.

I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694 1685
of artifacts generated and used for purpose of GUI testing, e.g., test
cases, test input data, expected outputs and test oracle, test
requirements, test harness, test code, etc. Fig. 5a shows the distri-
bution of test data generation methods. The x-axis shows the num-
ber of articles for each method and the y-axis enumerates the
methods.

By far, the most articles (72 articles) relied on a model for test
generation. Fig. 5b shows the composition of these 72 articles.

0 20 40 60

State Ref.

Crash Test

Formal Verif.

Manual Verif.

Multiple

Other

None

Number of articles

Fig. 6. Data for RQ 1.3: Oracle type.

1686 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
The x-axis shows the number of articles using a model, y-axis enu-
merates the models. Models such as event flow graphs (EFG) and
finite state machines (FSM) were most common. An EFG is a state-
less directed graph that contains nodes that represent an event in
the GUI and edges that represent a relationship between events. An
edge from node ex to node ey means that the event represented by
ey may be performed immediately after the event represented by
ex. On the other hand, an FSM contains nodes that are explicit
states and edges represent state transitions. For example, if the
state represents the current GUI window (as in [45]), then the
number of states is equal to the number of windows in the GUI.
Events are represented by transitions because they may open/close
windows, taking the FSM from one state to another. There are 25
articles which use less common models such as Probabilistic model
[46] and Function trees [47].

Another popular approach (23 articles) was capture/replay (e.g.,
Ariss et al. [14]) in which a human tester interacts with the SUT,
performing sequences of events. During the interaction, a cap-
ture/replay tool records/captures all the events performed and
saves them in a database. A replay part of the tool can then auto-
matically perform the recorded interactions, thereby mimicking
the human tester.

The remaining 37 articles use less popular methods such as
symbolic execution [48], formal methods [49], AI planning [16],
and statistical analysis [50].

RQ 1.3: What type of test oracles have been used? We remind the
reader that a test oracle is a mechanism that determines if a test
case passed or failed. As Fig. 6 shows, state reference (37 articles)
is the commonly used oracle. In this method the state of the GUI
is extracted while the SUT is executing, and is stored. At a later
time, this state may be compared with another execution instance
for verification [20,19]. SUT crash testing is another popular oracle
(22 articles). In this method, if the SUT crashes during the execu-
tion of a test case, then the test case is marked as failed, i.e., the
‘crash’ state of the SUT is interpreted as an oracle [22,51]. Formal
verification methods (13 articles) use a model or specification to
verify the correctness of the output of a test case [52,49]. Manual
(a) Tool usage

Number of articles

Fig. 7. Data fo
verification (13 articles) is also used. In this method a human tester
is involved in verifying the result of executing a test case [17,53].

We observed that a large number of articles (49 articles) did not
use a test oracle. Of these, 13 articles are experience, philosophical
or opinion articles and do not require a test oracle for evaluation.
The remaining 36 articles are solution proposal, validation or eval-
uation but do not use/propose a test oracle (e.g., [48,24]).

RQ 1.4: What tools have been used/developed? Testing of GUI
based applications typically require the use of tools. A tool, for
the purpose of this paper, is a set of well defined, packaged, distrib-
utable software artifacts which is used by a researcher to evaluate
or demonstrate a technique. Test scripts, algorithm implementa-
tions and other software components used for conducting experi-
ments, which were not named or made public, have not been
considered as tools.

A tool is considered as a new tool if it has been developed spe-
cifically for use for the first time in an article. A tool is considered
as an existing tool if it has been developed in a previous work or has
been developed by a third party—commercially available, open
source, etc.

Fig. 7a shows the composition of new and existing tools used for
all 136 articles. It can be seen that 32 articles (23.52%) introduced a
new tool only, 48 articles (35.29%) used an existing tool only, 29
articles (21.32%) used both new and existing tools, whereas 27 arti-
cles (19.85%) did not use a clearly defined tool. From this figure it
can be seen that most articles (109 articles) used one or more tools.
Certain articles, such as experience, philosophical and opinion arti-
cles, for example by Robinson et al. [54], did not require a tool.

From the 109 articles that used a tool, a total of 112 tools were
identified. Note that a tool may have been used in more than one
article. Similarly, an article may have used more than one tool.
Fig. 7b shows the ten most popular tools and their usage count.
The x-axis shows the number of articles where the tool was used,
y-axis enumerates the 10 most popular tools. GUITAR [55], which
ranks highest, has been used in 22 articles. 91 tools were used in
only 1 article, 15 tools were used in 2 articles and so forth. Only
1 tool, GUITAR [55], was used in 22 articles.

New GUI testing tools were described in 61 articles. Fig. 7c
shows the distribution of programming languages in which the
tools were developed, which also usually implies the programming
languages that it supports in terms of the SUT. The x-axis shows
the number of articles in which a new tool was developed in a par-
ticular language, y-axis enumerates the languages. From the figure,
Java is by far the most popular choice with 23 articles.

RQ 1.5: What types of systems under test (SUT) have been used? Of
the 136 articles, 118 reported the use of one or more SUT. Note that
an SUT may have been used in different articles, conversely, more
than one SUT may have been used in an article. Fig. 8a shows the
number of SUTs that were used in each article. This figure helps
us understand how many SUTs are typically used by researchers
to evaluate their techniques. The x-axis enumerates the SUT count
from 1 to 6 and P7. The y-axis shows the number of articles using
0 5 10 15 20 25

Java
.NET
I.P.P
C++

C#
Spec#

Perl
Others

Number of articles
(c) Prog. Lang. of Tools(b) Popular tools

Number of articles

r RQ 1.4.

0

20

40

60

80

Number of SUT(s)

15

30

45

60

Programming language
0 1 2 3 4 5 6 >=7 Java C++ .NET C# Others

0
<1K 1K-10K 10K-100K >100K

0

5

10

15

20

Lines of code

N
um

be
r o

f a
rti

cl
es

(a) Number of SUTs per article (b) Programming Language of SUTs (c) Lines of code of SUTs

N
um

be
r o

f a
rti

cl
es

N
um

be
r o

f a
rti

cl
es

Fig. 8. Data for RQ 1.5.

I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694 1687
a given number of SUTs. From the figure, it can be seen that out of
136 articles, 118 used one or more SUTs. Only 1 SUT was used in 64
articles, while a small number of articles (5) [56–59,47] used 7 or
more SUTs. A total of 18 articles (e.g., [60]) did not use any SUT.

Fig. 8b shows the programming language of SUTs reported by
71 articles. The x-axis enumerates the common languages, y-axis
shows the number of articles for each language. We see that Java
applications are by far the most common SUT with 48 articles
using Java based SUT(s) [35,61,62]. C/C++ [54,63] and .NET
[64,65] based SUTs have been used in 16 articles. The remaining
7 SUTs are based on MATLAB [66], Visual Basic [67] and Objective
C [68].

SUTs also differed in their underlying development technology.
For example, some SUTs were developed using Java’s Abstract Win-
dow Toolkit (AWT), while others were developed using the Swing
technology. Classifying their development technology helps under-
stand the experimental environment that are the focus of new GUI
testing techniques. We found that Java Swing is by far the most
common technology, with 25 out of 36 articles using an SUT based
on Swing. This is consistent with a large number of SUTs being
based on Java.

SUTs used for the evaluation of techniques proposed in the arti-
cles varied in size, in terms of lines-of-code (LOC)—some less than
1000 lines while some more than 100,000 lines. Only 28 articles
out of 136 reported this information. If more than one SUT was
used in a given article and if their LOC sizes were reported, we cal-
10 20 30 40 50

Feasibility
Fault seeding

Natural fault
Performance

Code cov.
GUI cov.

Mathematical
Manual effort

Disk usage
TC generation

Number of articles
(a) Evaluation method

<1K 1K-
2

9

16

23

30

Numb

N
um

be
r o

f a
rti

cl
es

(c) Num

Fig. 9. Data fo
culated the cumulative value of LOC measures. Fig. 8c shows the
cumulative LOC of SUTs used in each article. The x-axis enumerates
ranges of LOC, y-axis shows the number of articles in each range.
Most articles used SUTs in the range 10,000–100,000 (17 articles).
Only 5 articles [69,64,70,25,71] used SUTs with LOC totaling more
than 100,000 lines.

The SUTs were also classified as large-scale or small-scale. This
classification helps us understand if some articles used small or
toy SUTs. SUTs such as commercially available software—Microsoft
WordPad [72], physical hardware such as vending machines [73],
mobile phones [74] and open source systems [25] have been clas-
sified as large-scale systems. SUTs such as a set of GUI windows
[75], a set of web pages [60], small applications developed specif-
ically for demonstration [76,77] have been classified as small-scale
SUTs. Of the 118 articles which used one or more SUTs, 89 articles
(75.42%) used a large-scale SUT.

RQ 1.6: What types of evaluation methods have been used? Many
articles studied in this SM focused on the development of new GUI
testing techniques. The techniques developed in the article were
evaluated by executing test cases on an SUT. Different methods
and metrics were applied to determine the effectiveness of the
testing technique.

A total of 119 articles reported one or more evaluation methods.
Fig. 9a shows the distribution of evaluation methods. The x-axis
shows the count of articles in each method, eleven evaluation
methods are enumerated on the y-axis. For example, 47 articles
0 10 20 30 40

Faults

Time

Code cov.

Test cases

Space usage

Statistics

(b) Evaluation metric

10K 10K-100K >100K
er of test cases
ber of test cases

Number of articles

r RQ 1.6.

1990 1993 1996 1999 2002 2005 2008 2011
0

60

120

180

240

Year

C
ita

tio
n

co
un

t

Fig. 11. RQ 2.4: Citations vs. year.

1688 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
demonstrated the feasibility of the technique using a simple exam-
ple. Fig. 9b shows the metrics used in the evaluation. The x-axis
shows the number of articles for each evaluation metric, y-axis
enumerates evaluation metrics. Out of 136 articles, 75 articles
specified an evaluation metric. Of these, the number of faults de-
tected was the common metric (32 articles).

The number of generated test cases were reported and used in
52 of the 136 articles for the evaluation process. Fig. 9c shows
the number of test cases used. The x-axis enumerates ranges of test
case counts, y-axis shows the number of articles in each range.
Most articles used less than 1000 test cases. Four articles used
more than 100,000 test cases [78–80,35].

RQ 1.7: Is the evaluation mechanism automated or manual? Of the
136 articles, 86 articles reported execution of test cases for evalu-
ation, of which 72 reported automated test case execution, 11 arti-
cles reported manual test case execution while 3 articles [81–83]
reported both automated and manual test case execution.
7. Mapping demographics

We now address the RQ 2.⁄ research questions set, which is
concerned with understanding the demographics of the articles
and authors.

RQ 2.1: What is the annual articles count? The number of articles
published each year were counted. The trend of publication from
1991 to 2011 is shown in Fig. 10. An increasing trend in publication
over years is observed. The two earliest articles in the pool were
published in 1991 by Yip and Robson [84,85]. The total article
counts of GUI testing articles in 2010 and 2011 was 19.

RQ 2.2: What is the articles count by venue? We classify the arti-
cles by venue type—conference, journal, workshop, symposium or
magazine. Fig. 12 shows that the number of conference articles
(72) are more than the articles in the other four categories com-
bined (64).

RQ 2.3: What is the citation count by venue type? The number of
citations for each article was extracted and aggregated for each ve-
nue type. Fig. 12 shows the number of citations from different ve-
nue types. Conferences articles have received the highest citations
at 1544.

RQ 2.4: What are the most influential articles in terms of citation
count? This research question analyzes the relationship between
the citations for each article and its year of publication. Fig. 11
shows this data. The x-axis is the year of publication, and the y-axis
0 5 10 15 20
1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

2011

Number of articles

Ye
ar

Fig. 10. RQ 2.1: Annual counts.
is the number of citations. Each point in the figure represents an
article.

The points for the recent articles (from 2006 to 2011) are clo-
ser to each other, denoting that most of the recent articles have
received relatively same number of citations, due to short time
span as it takes time for a (good) article to have an impact in
the area and be cited. The three earliest articles (two in 1991
and one in 1992) have received relatively low citations. The
article with the highest number of citations is a 2001 IEEE TSE
article by Memon et al. titled ‘Hierarchical GUI Test Case Genera-
tion Using Automated Planning’ [16] and has received 204
citations.

RQ 2.5: What were the venues with highest articles count?
Fig. 13 shows a count of articles from the top twenty venues,
which contributed 80 articles. The annual International Work-
shop on TESTing Techniques & Experimentation Benchmarks for
Event-Driven Software (TESTBEDS) is a relatively new venue,
started in 2009. Since the venue has the specific focus on testing
GUI and event-driven software, it has published the largest
number, 16, of articles during 2009–2011. The International Con-
ference on Software Maintenance (ICSM) with 8 and IEEE Trans-
actions on Software Engineering (TSE) with 6 articles follow.

RQ 2.6: What were the venues with highest citation count? Fig. 14
shows that the top three cited venues are (1) IEEE TSE, (2) ACM
SIGSOFT Symposium on the Foundations of Software (FSE) (3)
International Symposium on Software Reliability Engineering
(ISSRE). Some venues such as FSE did not publish many GUI testing
articles (3). However, those articles have received a large number
of citations (349). The correlation between the number of articles
in each venue versus the total number of citations to those articles
was 0.46 (thus, not strong).

RQ 2.7: Who are the authors with maximum articles? As Fig. 15
shows, Atif Memon (University of Maryland) stands first with 32
articles. The second and third highest ranking authors are Qing
Xie (Accenture Tech Labs) and Mary Lou Soffa (University of Vir-
ginia) with 13 and 7 articles, respectively.

RQ 2.8: What are the author affiliations, i.e., do they belong to aca-
demia or industry? We classify the articles as coming from one of
the following three categories based on the authors’ affiliations:
academia, industry, and collaboration (for articles whose authors
come from both academia and industry). 73.52%, 13.23%, and
13.23% of the articles have been published by academics only, by
industrial practitioners only, and with a collaboration between
academic and industrial practitioners, respectively. The trend in
each category over the years were tracked to see how many articles
were written by academics or practitioners in different years. The
results are shown in Fig. 16. There is a steady rise in the number
of articles published from academia and industry in recent years.
Also the number of collaborative articles between academics and
practitioners has been on the rise.

0 500 1000 1500 2000

Conference

Journal

Workshop

Symposium

Magazine

Citation count

Conference

Journal

Workshop

Symposium

Magazine

Number of articles
0 20 40 60 80

Fig. 12. RQ 2.2 and 2.3: Venue types.

Fig. 13. Data for RQ 2.5: Top 20 venues.

Fig. 14. Data for RQ 2.6: Venues most cited.

Fig. 15. Data for RQ 2.7: Top 20 authors.

Academic Industry Collaboration

1991
1993

1995
1997

1999
2001

2003
2005

2007
2009

2011
0

5

10

15

20

Year

N
um

be
r o

f a
rti

cl
es

Fig. 16. Data for RQ 2.8: Author affiliation trend.

I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694 1689
RQ 2.9: Which countries have produced the most articles? To rank
countries based on number of articles published, the country of the
residence of the authors was extracted. If a article had several
authors from several countries, one credit for each country was
assigned.
The results are shown in Fig. 17. The American researches have
authored or co-authored 51.47% (70 of the 136) articles in the pool.
Authors from China and Germany (with 12 and 9 articles, respec-
tively) stand in the second and third ranks. Only 20 countries of
the world have contributed to the GUI testing body of knowledge.
International collaboration among the GUI testing researchers is
quite under-developed as only 7 of the 136 articles were collabora-
tions across two or more countries. Most of the remaining articles
were written by researchers from one country.

Fig. 17. Data for RQ 2.9: Top author countries.

1690 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
8. Mapping limitations and future directions

The research questions RQ 3.⁄ are addressed by classifying the
reported limitations and future directions from the articles.

RQ 3.1: What limitations have been reported? Many of the arti-
cles explicitly stated limitations of the work. The limitations were
broadly categorized as follows:

� Algorithm: The techniques or algorithms presented has known
limitations—for example, an algorithm might not handle loops
in the source code well [77].
� Applicability: Limitations on usability under different environ-

ments—for example, a tool or algorithm may be specific to
AWT based applications [22].
� Manual: Manual steps are used in the experiments which may

limit the usability and scalability of the method. Manual steps
may also affect the quality of the experiment or technique—
for example, manual effort may be required to maintain a model
[86].
� Oracle: The oracle used for experiments may be limited in its

capabilities at detecting all faults—for example, an oracle might
be limited to detecting SUT crashes or exceptions [46], as
opposed to comparing GUI states.
Alg.

Appl.

Comp.

Fault

Manual

Oracle

Lang.

Scal.

Tool

Validity

N/S

Number of articles
0 25 50 75 100

C

C

E

(a) Limitations

Fig. 18. Data f
� Fault: Limitations on the ability to detect all kinds of faults or
may detect false defects—for example, a tool might not handle
unexpected conditions well [68].
� Scalability: The approach does not scale well to large GUIs—for

example, time taken to execute the algorithm may increase
exponentially with GUI size [87].
� Tool: There is some known tool limitation or obvious missing

features in the tools used or proposed—for example, a tool
may handle only certain types of GUI events [88].
� Validity: Experimental results are subject to internal or external

validity [51,89].

Note that the authors of this SM did not judge the limitation
themselves, but rather, we extracted the limitations when they
were explicitly mentioned in each primary study. Out of the 136
articles, 45 articles reported one or more limitation of the research
work. The extracted information is shown in Fig. 18a. This figure
helps us understand the kind of limitations of the research work
that were noted by the authors. The x-axis shows the number of
articles in each category, the y-axis enumerates each category.
The most common limitation is validity.

RQ 3.2: What lessons learned are reported? Only a small number
of authors explicitly reported the lessons learned from their stud-
ies. Lesson learned were reported in only 11.76% (16/136) of all the
articles. Lessons learned varied from author to author. They largely
depend on individual research and study context. Hence, we con-
ducted a qualitative analysis, instead of a quantitative analysis. It
is important to note that they should be interpreted within the
context of the studies.

Depending on the proposed testing techniques, the research les-
sons particularly associated with these techniques were reported.
For example, in some cases, the authors who focus on model based
testing where the model is created by hand, noted that in their ap-
proaches, a large amount effort would be spent on model creation
[15]. In some other cases, the authors who used automated reverse
engineered model based techniques, concluded that most of the
tester’s effort would be spent on test maintenance since the model
is automatically created [20,90]. The model in those techniques can
be obtained at a low cost.

Similarly, the experimentation environment has also influenced
the authors’ suggestions. Some authors with limited computation
resources suggested that more research effort should be spent on
test selection [91], test prioritization [17] and test refactoring
[92] to reduce the number of test cases to execute. However, some
0 10 20 30 40

Alg.

Analysis

ase std.

overage

SUT

valuate

Oracle

Platform

Model

Scal.

Tool

N/S

Number of articles
(b) Future research

or RQ 3.⁄.

I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694 1691
other authors with rich computation resources suggested that fu-
ture research should focus on large scale studies [93].

RQ 3.3: What are the trends in the area? A widespread use of Java
based SUTs and tools appears common. A notable development is
the emergence of GUI testing work on mobile platforms during
the years 2008–2011–8 article [88,94,46,95,89,96,73,97]), com-
pared to only 1 article in the period 1991–2007 [74].

Another notable trend is a shift from unit script testing to large-
scale automated system testing. Several large scale empirical stud-
ies have been conducted [51,69,38] thanks to the availability of
automation tools and inexpensive computation resources.

RQ 3.4: What future research directions are being suggested? GUI
testing is a relatively new research area in software engineering.
Most of the articles provided guidance for continuing research,
which may be broadly classified into the following categories:

� Algorithmic: Extend existing algorithms or develop new ones—
for example, extend the algorithm to handle potentially large
number of execution paths [98].
� Analysis: Further investigation based on results from the given

study—for example, investigate interaction of different GUI
components with complete interaction sequence (CIS) [17].
� Coverage: Coverage-based techniques presented in the article

can be further improved or evaluated. The coverage technique
may be applicable for either code, GUI or model coverage—for
example, the study reported in [23] has developed a new cover-
age criterion.
� Evaluate: Evaluate of the proposed methods, and techniques

further, extend investigation based on existing results—for
example, conduct more controlled experiments [46].
� Platform: Extend the implementation for other platforms, e.g.,

web and mobile [87].
� Model: Improve or analyze the model presented in the article—

for example, automatic generation of a model [99].
� Scalability: Scale the proposed algorithms to larger systems,

reduce computation cost—for example, scaling the algorithm
to handle larger GUIs while improving execution performance
[100].
� SUT: Evaluate the proposed techniques with a more SUTs—for

example, use complex SUTs for evaluation [101].
� Tool: Extend or add new capability or features to tools discusses

in the article—for example, improve a tool to support better pat-
tern matching and have better recovery from errors [102].

The future directions of research stated in the articles were ex-
tracted. Fig. 18b shows this data. This figure helps us understand
what guidance has been provided by researchers. Although this
data contains future directions dating back to the year 1991, it
helps us understand the thoughts of researchers during this period
and what they perceived as missing pieces at the time their work
was performed and published.

In Fig. 18b the x-axis shows the number of articles in each cat-
egory, the y-axis enumerates each category. It can be seen that
improving algorithms (35 articles) as been perceived as the area
requiring them most work. Improving and developing better GUI
testing tools has also been perceived as an area requiring further
work (27 articles).
7 http://sourceforge.net/projects/jfcunit/.
8 www.hp.com/QuickTestPro.
9 http://seleniumhq.org/.
9. Discussion

The systematic mapping presented in this paper documents
certain aspects of GUI testing. In this section we present an objec-
tive summary of trends in GUI testing.

From the data collected, it can be seen that model-based GUI
testing techniques have attracted the most attention in the
research community. However, industrial tools such as JFCUnit,7

Android’s Monkey, Quick Test Pro,8 Selenium9 are not model based.
There are no articles comparing the GUI testing techniques, methods
and practices prevalent in the industry with those being developed
in the research community. There has also been a general lack of col-
laboration between practitioners and researchers (see Fig. 16),
although with exceptions in recent years.

In keeping with recent trends in computing technology, there
has been a recent presence of GUI testing articles on mobile and
web based platforms.

A large number of articles (109 out of 136) used GUI testing
tools. As many as 112 tools were used. This indicates that while
there has been a lot of effort in developing tools for GUI testing
activities, there has not been much standardization of GUI testing
tools. Different researchers develop their own custom tools for a
specific research purpose. These tools are typically not usable by
other researchers because they are not widely applicable. Also,
the tools are often not maintained, debugged and developed over
multiple years to be usable by other researchers.

From the data collected, most articles discuss new GUI testing
techniques and tools. There has been a general lack of articles pre-
senting opinion of researchers about the state-of-the-art tech-
niques or providing guidance about possible future development
and research directions.
10. Related work

10.1. Secondary studies in software testing

There have been 14 reported secondary studies in different
areas of software testing, 2 related to GUI testing. We list these
studies in Table 1 along with some of their attributes. For example,
the ‘‘number of articles’’ column (No.) shows that the number of
primary studies analyzed in each study varied from 6 (in [31]) to
264 (in [5]), giving some idea of the comprehensiveness of the
studies.

In [31] a study of the interaction between agile test driven
development methods and usability evaluation of user interfaces
is presented. The article discusses the development of a low-fidel-
ity prototype user-interfaces which are refined based on feedback
from users.

Of particular interest to us are the SMs and structured literature
reviews (SLRs). An SLR analyzes primary studies, reviews them in
depth and describes their methodology and results. SLRs are typi-
cally of greater depth than SMs. Often, SLRs include an SM as a part
of the study. Typically SMs and SLRs formally describe their search
protocol and inclusion/exclusion criteria. We note that SMs and
SLRs have recently started appearing in the area of software test-
ing. There are four SMs: product lines testing [8], SOA testing
[11], requirements specification and testing [7] and non-functional
search-based software testing [2]. There are two SLRs—search-
based non-functional testing [3] and search-based test-case gener-
ation [103].

The remaining eight studies are ‘‘surveys’’, ‘‘taxonomies’’, ‘‘liter-
ature reviews’’, and ‘‘analysis and survey’’, terms used by the
authors themselves to describe their studies.
10.2. Online article repositories in SE

Authors of a few recent secondary studies have developed
online repositories to supplement the study. This is a large

http://sourceforge.net/projects/jfcunit/
http://www.hp.com/QuickTestPro
http://seleniumhq.org/

Table 1
14 Secondary studies in software testing.

Type Secondary study area No. Year Refs.

SM Non-functional search-based soft. testing 35 2008 [2]
SOA testing 33 2011 [11]
Requirements specification and testing 35 2011 [7]
Product lines testing 45 2011 [8]

SLR Search-based non-functional testing 35 2009 [3]
Search-based test-case generation 68 2010 [103]

Survey Object oriented testing 140 1996 [4]
Testing techniques experiments 36 2004 [104]
Search-based test data generation 73 2004 [105]
Combinatorial testing 30 2005 [106]
Symbolic execution for software testing 70 2009 [107]

Taxonomy Model-based GUI testing 33 2010 [32]

Lit rev. Test-driven development of user interfaces 6 2010 [31]

Analysis/survey Mutation testing 264 2011 [5]

1692 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
undertaking as even after the study is published, these repositories
are updated regularly, typically every 6 months to a year. Main-
taining and sharing such repositories provides many benefits to
the broader community. For example, they are valuable resources
for new researchers (e.g., PhD students) and for other researchers
aiming to do additional secondary studies.

For example, Mark Harman and his team have developed and
shared two online repositories, one in the area of mutation testing
[5], and another in the area of search-based software engineering
(SBSE) [108,109]. The latter repository is quite comprehensive
and has 1014 articles as of 2011, a large portion of which are in
search-based testing.
11. Conclusions

This SM is the most comprehensive mapping of articles in the
area of GUI Testing. A total of 230 articles, from the years 1991–
2011, were collected and studied, from which 136 articles were in-
cluded in the SM.

Because of our own contributions to the field of GUI testing, we
feel that we are reasonably qualified to provide an informed
assessment of the survey results. First, we note that although there
has been increased collaboration between academia and industry,
no study has yet compared the state-of-the-art in GUI testing be-
tween academic and industrial tools and techniques. Such a study
is sorely needed. Second, although there is a large focus on model-
based testing with models such as FSM, EFG and UML in the liter-
ature, none of the commercially available tools are model based.
This might signal a disconnect between researchers and practitio-
ners. Some articles have started to bridge this gap [54,101] but
much work is needed. Finally, an important result of this SM is that
not all articles include information that is sought for secondary
studies. We recommend that researchers working on GUI testing
consider providing information in their articles using our maps
as guides. Because of the increase in the number of articles on
GUI testing, this is an ideal time to start supplying this information
to support secondary studies. Our own effort in support of this en-
deavor is that we will continue to maintain an online repository
[33] of GUI testing articles. We intend to continue analyzing the
repository to create a systematic literature review (SLR).

Acknowledgements

The initial data collection stage of this work was started in a
graduate course offered by Vahid Garousi in year 2010, in which
the following students made some initial contributions: Roshanak
Farhoodi, Shahnewaz A. Jolly, Rina Rao, Aida Shirvani, and Christian
Wiederseiner. Their efforts are hereby acknowledged. Vahid Gar-
ousi was supported by the Discovery Grant 341511-07 from the
Natural Sciences and Engineering Research Council of Canada and
by the Visiting Scientist Fellowship Program (#2221) of the Scien-
tific and Technological Research Council of Turkey (TÜB_ITAK). The
US authors were was partially supported by the US National Sci-
ence Foundation (NSF) under NSF Grants CCF-0447864, CNS-
0855055, and CNS-1205501.
References

[1] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: 12th International Conference on Evaluation and
Assessment in Software Engineering, vol. 17, issue 1, 2007, pp. 1–10.

[2] W. Afzal, R. Torkar, R. Feldt. A systematic mapping study on non-functional
search-based software testing, in: 20th International Conference on Software
Engineering and Knowledge Engineering (SEKE 2008), 2008.

[3] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based testing for
non-functional system properties, Information and Software Technology 51
(2009) 957–976.

[4] R.V. Binder, Testing object-oriented software: a survey, in: Proceedings of the
Tools-23: Technology of Object-Oriented Languages and Systems, 1997, pp.
374–.

[5] Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Transactions on Software Engineering 2008 (2010) 1–32.

[6] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using mapping studies in
software engineering, in: Proceedings of PPIG 2008, Lancaster University,
2008, pp. 195–204.

[7] Z.A. Barmi, A.H. Ebrahimi, R. Feldt, Alignment of requirements specification
and testing: a systematic mapping study, in: Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, ICSTW ’11, 2011, pp. 476–485.

[8] P.A. da Mota Silveira Neto, I.d. Carmo Machado, J.D. McGregor, E.S. de
Almeida, S.R. de Lemos Meira, A systematic mapping study of software
product lines testing, Information and Software Technology 53 (2011) 407–
423.

[9] A. Fernandez, E. Insfran, S. Abrah£o, Usability evaluation methods for the
web: a systematic mapping study, Information and Software Technology 53
(8) (2011) 789–817.

[10] B.A. Kitchenham, D. Budgen, O.P. Brereton, Using mapping studies as the basis
for further research ¢ a participant–observer case study, Information and
Software Technology 53 (6) (2011) 638–651.

[11] M. Palacios, J. Garcı́a-Fanjul, J. Tuya, Testing in service oriented architectures
with dynamic binding: a mapping study, Information and Software
Technology 53 (2011) 171–189.

[12] J. Portillo-Rodriguez, A. Vizcaino, M. Piattini, S. Beecham, Tools used in global
software engineering: a systematic mapping review, Information and
Software Technology (2012).

[13] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Version, 2(EBSE 2007-001):2007-001, 2007.

[14] O.E. Ariss, D. Xu, S. Dandey, B. Vender, P. McClean, B. Slator. A systematic
capture and replay strategy for testing complex GUI based java applications,
in: Conference on Information Technology, 2010, pp. 1038–1043.

[15] A.C.R. Paiva, N. Tillmann, J.C.P. Faria, R.F.A.M. Vidal, Modeling and testing
hierarchical GUIs, in: Workshop on Abstract State Machines, 2005.

I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694 1693
[16] A.M. Memon, M.E. Pollack, M.L. Soffa, Hierarchical GUI test case generation
using automated planning, IEEE Transactions on Software Engineering 27 (2)
(2001) 144–155.

[17] L. White, H. Almezen, Generating test cases for GUI responsibilities using
complete interaction sequences, in: Symposium on Software Reliability
Engineering, 2000, p. 110.

[18] L. Baresi, M. Young, Test Oracles. Technical Report CIS-TR-01-02, University of
Oregon, Dept. of Computer and Information Science, Eugene, Oregon, USA,
August 2001.

[19] J. Takahashi, An automated oracle for verifying GUI objects, ACM SIGSOFT
Software Engineering Notes 26 (4) (2001) 83–88.

[20] Q. Xie, A.M. Memon, Designing and comparing automated test oracles for
GUI-based software applications, ACM Transactions on Software Engineering
and Methodology 16 (1) (2007) 1–36.

[21] A.M. Memon, M.L. Soffa, M.E. Pollack, Coverage criteria for GUI testing, in:
Software Engineering Conference held Jointly with ACM SIGSOFT Symposium
on Foundations of Software Engineering, 2001, pp. 256–267.

[22] X. Yuan, M.B. Cohen, A.M. Memon, GUI interaction testing: incorporating
event context, in: IEEE Transactions on Software Engineering, 2010.

[23] L. Zhao, K.-Y. Cai, Event handler-based coverage for GUI testing, in:
Conference on Quality Software, 2010, pp. 326–331.

[24] Z. Hui, R. Chen, S. Huang, B. Hu, Gui regression testing based on function-
diagram, in: Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE
International Conference on, vol. 2, October 2010, pp. 559–563.

[25] A.M. Memon, Automatically repairing event sequence-based GUI test suites
for regression testing, ACM Transactions on Software Engineering and
Methodology 18 (2) (2008) 1–36.

[26] L.J. White, Regression testing of GUI event interactions, in: Conference on
Software Maintenance, 1996, pp. 350–358.

[27] http://www.cs.umd.edu/atif/testbeds/testbeds2009.htm.
[28] http://www.cs.umd.edu/atif/testbeds/testbeds2010.htm.
[29] http://www.cs.umd.edu/atif/testbeds/testbeds2011.htm.
[30] http://www.cs.umd.edu/atif/testbeds/testbeds2013.htm.
[31] F.M. Theodore, D. Hellmann, Ali. Hosseini-Khayat, Agile Interaction Design

and Test-Driven Development of User Interfaces – A Literature Review, vol. 9,
Springer, 2010.

[32] A.M. Memon, B.N. Nguyen, Advances in automated model-based system
testing of software applications with a GUI front-end, in: M.V. Zelkowitz
(Ed.), Advances in Computers, vol. 80, Academic Press, 2010. pp. nnn–nnn.

[33] http://www.softqual.ucalgary.ca/projects/2012/GUI_SM/.
[34] M.B. Dwyer, V. Carr, L. Hines, Model checking graphical user interfaces using

abstractions, in: ESEC/SIGSOFT FSE, 1997, pp. 244–261.
[35] X. Yuan, A.M. Memon, Generating event sequence-based test cases using GUI

runtime state feedback, IEEE Transactions on Software Engineering 36 (2010)
81–95.

[36] M.J. Harrold, Testing: a roadmap, in: Proceedings of the Conference on The
Future of Software Engineering, ICSE ’00, ACM, New York, NY, USA, 2000, pp.
61–72.

[37] S. McConnell, Daily build and smoke test, IEEE Software 13 (4) (1996) 143–
144.

[38] X. Yuan, A.M. Memon, Using GUI run-time state as feedback to generate test
cases, in: Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, IEEE Computer Society, Washington, DC, USA, 2007, pp.
396–405.

[39] V. Basili, G. Caldiera, H. Rombach, Encyclopedia of Software Engineering, John
Wiley & Sons Inc., 1994. Chapter Goal Question Metric Approach, pp. 528–
532.

[40] H. Zhang, M.A. Babar, P. Tell, Identifying relevant studies in software
engineering, Information and Software Technology 53 (2011) 625–637.

[41] N. Abdallah, S. Ramakrishnan, Automated stress testing of windows mobile
GUI applications, in: International Symposium on Software Reliability
Engineering, 2009.

[42] H. Okada, T. Asahi, GUITESTER: a log-based usability testing tool for graphical
user interfaces, IEICE Transactions on Information and Systems 82 (1999)
1030–1041.

[43] M. Safoutin, C. Atman, R. Adams, T. Rutar, J. Kramlich, J. Fridley, A design
attribute framework for course planning and learning assessment, IEEE
Transactions on Education 43 (2) (2000) 188–199.

[44] F. Belli, Finite-state testing and analysis of graphical user interfaces, in:
Symposium on Software Reliability Engineering, 2001, p. 34.

[45] R.K. Shehady, D.P. Siewiorek, A method to automate user interface testing
using variable finite state machines, in: Symposium on Fault-Tolerant
Computing, 1997, p. 80.

[46] C. Bertolini, A. Mota, Using probabilistic model checking to evaluate GUI
testing techniques, in: Conference on Software Engineering and Formal
Methods, 2009, pp. 115–124.

[47] K. Magel, I. Alsmadi, GUI structural metrics and testability testing, in:
Conference on Software Engineering and Applications, 2007, pp. 91–95.

[48] S. Ganov, C. Killmar, S. Khurshid, D.E. Perry, Event listener analysis and
symbolic execution for testing GUI applications, Formal Methods and
Software Engineering 5885 (1) (2009) 69–87.

[49] Y. Tsujino, A verification method for some GUI dialogue properties, Systems
and Computers in Japan (2000) 38–46.

[50] J. Strecker, A. Memon, Relationships between test suites, faults, and fault
detection in GUI testing, in: Conference on Software Testing, Verification, and
Validation, 2008, pp. 12–21.
[51] D. Amalfitano, A.R. Fasolino, P. Tramontana, Rich internet application testing
using execution trace data, in: Conference on Software Testing, Verification,
and Validation Workshops, 2010, pp. 274–283.

[52] A.M. Memon, M.E. Pollack, M.L. Soffa, Plan generation for GUI testing, in:
Conference on Artificial Intelligence Planning and Scheduling, 2000, pp. 226–
235.

[53] P. Li, T. Huynh, M. Reformat, J. Miller, A practical approach to testing GUI
systems, Empirical Software Engineering 12 (4) (2007) 331–357.

[54] B. Robinson, P. Brooks, An initial study of customer-reported GUI defects, in:
Conference on Software Testing, Verification, and Validation Workshops,
2009, pp. 267–274.

[55] GUITAR – A GUI Testing frAmewoRk. <http://guitar.sourceforge.net>.
[56] A. Derezinska, T. Malek, Unified automatic testing of a GUI applications’

family on an example of RSS aggregators, in: Multiconference on Computer
Science and Information Technology, 2006, pp. 549–559.

[57] A. Derezinska, T. Malek, Experiences in testing automation of a family of
functional-and GUI-similar programs, Journal of Computer Science and
Applications 4 (1) (2007) 13–26.

[58] C. Hu, I. Neamtiu, Automating gui testing for android applications, in:
Proceedings of the 6th International Workshop on Automation of Software
Test, 2011, pp. 77–83.

[59] C. Hu, I. Neamtiu, A gui bug finding framework for android applications, in:
Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11,
ACM, 2011, pp. 1490–1491.

[60] A. Holmes, M. Kellogg, Automating functional tests using selenium, in: agile
Conference, 2006, pp. 270–275.

[61] L. Feng, S. Zhuang, Action-driven automation test framework for graphical
user interface (GUI) software testing, in: Autotestcon, 2007, pp. 22–27.

[62] Y. Hou, R. Chen, Z. Du, Automated GUI testing for J2ME software based on
FSM, in: Conference on Scalable Computing and Communications, 2009, pp.
341–346.

[63] K. Conroy, M. Grechanik, M. Hellige, E. Liongosari, Q. Xie, Automatic test
generation from GUI applications for testing web services, in: Conference on
Software Maintenance, 2007, pp. 345–354.

[64] V. Chinnapongsea, I. Lee, O. Sokolsky, S. Wang, P.L. Jones, Model-based testing
of GUI-driven applications, in: Workshop on Software Technologies for
Embedded and Ubiquitous Systems, 2009, pp. 203–214.

[65] M. Alles, D. Crosby, C. Erickson, B. Harleton, M. Marsiglia, G. Pattison, C.
Stienstra, Presenter First: Organizing Complex GUI Applications for Test-
Driven Development, in: Proceedings of the conference on AGILE 2006, 2006,
pp. 276–288.

[66] T. Daboczi, I. Kollar, G. Simon, T. Megyeri, Automatic testing of graphical user
interfaces, in: Instrumentation and Measurement Technology Conference,
2003, pp. 441–445.

[67] R. Lo, R. Webby, R. Jeffery, Sizing and estimating the coding and unit testing
effort for GUI systems, in: Software Metrics Symposium, 1996, p. 166.

[68] T.-H. Chang, T. Yeh, R.C. Miller, GUI testing using computer
vision, in: Conference on Human factors in computing systems, 2010, pp.
1535–1544.

[69] S. Arlt, C. Bertolini, M. Schäf, Behind the scenes: an approach to
incorporate context in GUI test case generation, in: Proceedings of
the 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, ICSTW ’11, IEEE Computer Society,
2011, pp. 222–231.

[70] S. Herbold, J. Grabowski, S. Waack, U. Bünting, Improved bug reporting and
reproduction through non-intrusive gui usage monitoring and automated
replaying, in: Proceedings of the 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation Workshops, ICSTW ’11, 2011,
pp. 232–241.

[71] X. Yuan, A.M. Memon, Iterative execution-feedback model-directed GUI
testing, Information and Software Technology 52 (5) (2010) 559–575.

[72] A.M. Memon, M.E. Pollack, M.L. Soffa, Automated test oracles for GUIs, ACM
SIGSOFT Software Engineering Notes 25 (6) (2000) 30–39.

[73] A. Jaaskelainen, A. Kervinen, M. Katara, Creating a test model library for GUI
testing of Smartphone applications, in: Conference on Quality Software, 2008,
pp. 276–282.

[74] A. Kervinen, M. Maunumaa, T. Paakkonen, M. Katara, Model-based testing
through a GUI, Formal Approaches to Software Testing 3997 (1) (2006) 16–
31.

[75] M. Navarro, P. Luis, S. Ruiz, D.M. Perez, Gregorio, A proposal for automatic
testing of GUIs based on annotated use cases, Advances in Software
Engineering 2010 (1) (2010) 1–8.

[76] W.-K. Chen, T.-H. Tsai, H.-H. Chao, Integration of specification-based and CR-
based approaches for GUI testing, in: Conference on Advanced Information
Networking and Applications, 2005, pp. 967–972.

[77] S. Ganov, C. Kilmar, S. Khurshid, D. Perry, Test generation for graphical user
interfaces based on symbolic execution, in: Proceedings of the International
Workshop on Automation of Software Test, 2008.

[78] K.-Y. Cai, L. Zhao, H. Hu, C.-H. Jiang, On the test case definition for GUI testing,
in: Conference on Quality Software, 2005, pp. 19–28.

[79] Q. Xie, A. Memon, Rapid ‘‘Crash Testing’’ for continuously evolving GUI-based
software applications, in: Conference on Software Maintenance, 2005, pp.
473–482.

[80] Q. Xie, A.M. Memon, Using a pilot study to derive a GUI model for automated
testing, ACM Transactions on Software Engineering and Methodology 18 (2)
(2008) 1–33.

http://www.cs.umd.edu/atif/testbeds/testbeds2009.htm
http://www.cs.umd.edu/atif/testbeds/testbeds2010.htm
http://www.cs.umd.edu/atif/testbeds/testbeds2011.htm
http://www.cs.umd.edu/atif/testbeds/testbeds2013.htm
http://www.softqual.ucalgary.ca/projects/2012/GUI_SM/
http://guitar.sourceforge.net

1694 I. Banerjee et al. / Information and Software Technology 55 (2013) 1679–1694
[81] M. Grechanik, Q. Xie, C. Fu, Experimental assessment of manual versus tool-
based maintenance of GUI-directed test scripts, Conference on Software
Maintenance, 2009, pp. 9–18.

[82] C. McMahon, History of a large test automation project using selenium, in:
Proceedings of the 2009 Agile Conference, 2009, pp. 363–368.

[83] R.M. Patton, G.H. Walton, An automated testing perspective of graphical user
interfaces, in: The Interservice/Industry Training, Simulation and Education
Conference, 2003.

[84] S. Yip, D. Robson, Applying formal specification and functional testing to
graphical user interfaces, in: Advanced Computer Technology, Reliable
Systems and Applications European Computer Conference, 1991, pp. 557–
561.

[85] S. Yip, D. Robson, Graphical user interfaces validation: a problem analysis and
a strategy to solution, in: Conference on System Sciences, 1991.

[86] D.H. Nguyen, P. Strooper, J.G. Suess, Model-based testing of multiple GUI
variants using the GUI test generator, in: Workshop on Automation of
Software Test, 2010, pp. 24–30.

[87] M. Grechanik, Q. Xie, C. Fu, Maintaining and evolving GUI-directed test
scripts, in: Conference on Software Engineering, 2009, pp. 408–418.

[88] D. Amalfitano, A.R. Fasolino, P. Tramontana, A GUI crawling-based technique
for android mobile application testing, in: Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, ICSTW ’11, IEEE Computer Society, 2011, pp. 252–261.

[89] C. Bertolini, A. Mota, E. Aranha, C. Ferraz, GUI testing techniques evaluation
by designed experiments, in: Conference on Software Testing, Verification
and Validation, 2010, pp. 235–244.

[90] C. Lowell, J. Stell-Smith, Successful automation of GUI driven acceptance
testing, Extreme Programming and Agile Processes in Software Engineering
2675 (1) (2003) 1011–1012.

[91] M. Ye, B. Feng, Y. Lin, L. Zhu, Neural networks based test cases selection
strategy for GUI testing, in: Congress on Intelligent Control and Automation,
2006, pp. 5773–5776.

[92] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, M. Pezzè, Automated
GUI refactoring and test script repair, in: Proceedings of the First
International Workshop on End-to-End Test Script Engineering, ETSE ’11,
ACM, New York, NY, USA, 2011, pp. 38–41.

[93] Y. Shewchuk, V. Garousi, Experience with maintenance of a functional GUI
test suite using IBM rational functional tester, in: Proceedings of the
International Conference on Software Engineering and Knowledge
Engineering, 2010, pp. 489–494.

[94] C. Bertolini, G. Peres, M. Amorim, A. Mota, An empirical evaluation of
automated black-box testing techniques for crashing GUIs, in: Software
Testing Verification and Validation, 2009, pp. 21–30.
[95] C. Bertolini, A. Mota, A framework for GUI testing based on use case design,
in: Conference on Software Testing, Verification, and Validation Workshops,
2010, pp. 252–259.

[96] A. Jaaskelainen, M. Katara, A. Kervinen, M. Maunumaa, T. Paakkonen, T.
Takala, H. Virtanen, Automatic GUI test generation for smartphone
applications – an evaluation, in: Conference on Software Engineering, 2009,
pp. 112–122.

[97] O.-H. Kwon, S.-M. Hwang, Mobile GUI testing tool based on image flow, in:
Conference on Computer and Information Science, 2008, pp. 508–512.

[98] J. Chen, S. Subramaniam, Specification-based testing for GUI-based
applications, Software Quality Journal 10 (2) (2002) 205–224.

[99] A.C. Paiva, J.C. Faria, N. Tillmann, R.A. Vidal, A model-to-implementation
mapping tool for automated model-based GUI testing, Formal Methods and
Software Engineering 3785 (1) (2005) 450–464.

[100] R. Gove, J. Faytong, Identifying infeasible GUI test cases using support vector
machines and induced grammars, in: Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing, Verification and Validation
Workshops, 2011, pp. 202–211.

[101] A.C.R. Paiva, J.C.P. Faria, P.M.C. Mendes, Reverse engineered formal models for
GUI testing, Formal Methods for Industrial Critical Systems 4916 (1) (2008)
218–233.

[102] M. Cunha, A. Paiva, H. Ferreira, R. Abreu, PETTool: a pattern-based GUI testing
tool, in: International Conference on Software Technology and Engineering,
2010, pp. 202–206.

[103] S. Ali, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, A systematic review
of the application and empirical investigation of search-based test case
generation, IEEE Transactions on Software Engineering 36 (2010) 742–762.

[104] N. Juristo, A.M. Moreno, S. Vegas, Reviewing 25 years of testing technique
experiments, Empirical Software Engineering 9 (2004) 7–44.

[105] P. McMinn, Search-based software test data generation: a survey: research
articles, Software Testing, Verification and Reliability 14 (2004) 105–156.

[106] M. Grindal, J. Offutt, S.F. Andler, Combination testing strategies: a survey,
Software Testing, Verification, and Reliability 15 (2005) 167–199.

[107] C.S. Păsăreanu, W. Visser, A survey of new trends in symbolic execution for
software testing and analysis, International Journal on Software Tools for
Technology Transfer 11 (4) (2009) 339–353.

[108] S.A.M. Mark Harman, Y. Zhang, Search based Software Engineering: A
Comprehensive Analysis and Review of Trends Techniques and
Applications, Technical Report TR-09-03, Department of Computer Science,
King’s College London, April 2009.

[109] http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/.

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

	Graphical user interface (GUI) testing: Systematic mapping and repository
	1 Introduction
	2 Background
	3 Goals, questions, and metrics
	4 Article selection
	4.1 Step 1: Article identification
	4.2 Step 2: Exclusion criteria
	4.3 Step 3: Inclusion criteria
	4.4 Our final article set

	5 Iterative development of the systematic map
	6 Mapping research and evaluation
	7 Mapping demographics
	8 Mapping limitations and future directions
	9 Discussion
	10 Related work
	10.1 Secondary studies in software testing
	10.2 Online article repositories in SE

	11 Conclusions
	Acknowledgements
	References

