
Piecing Together App Behavior from Multiple
Artifacts: A Case Study

Emily Kowalczyk∗, Atif M. Memon∗ and Myra B. Cohen†
∗Department of Computer Science, University of Maryland, College Park, MD 20742, USA

Email:{emily,atif}@cs.umd.edu
†Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Email:myra@cse.unl.edu

Abstract—Recent research in mobile software analysis has
begun to combine information extracted from an app’s source
code and marketplace webpage to identify correlated variables
and validate an app’s quality properties such as its intended
behavior, trust or suspiciousness. Such work typically involves
analysis of one or two artifacts such as the GUI text, user ratings,
app description keywords, permission requests, and sensitive API
calls. However, these studies make assumptions about how the
various artifacts are populated and used by developers, which
may lead to a gap in the resulting analysis. In this paper, we
take a step back and perform an in-depth study of 14 popular
apps from the Google Play Store. We have studied a set of 16
different artifacts for each app, and conclude that the output of
these must be pieced together to form a complete understanding
of the app’s true behavior. We show that (1) developers are
inconsistent in where and how they provide descriptions; (2) each
artifact alone has incomplete information; (3) different artifacts
may contain contradictory pieces of information; (4) there is a
need for new analyses, such as those that use image processing;
and (5) without including analyses of advertisement libraries,
the complete behavior of an app is not defined. In addition, we
show that the number of downloads and ratings of an app does
not appear to be a strong predictor of overall app quality, as
these are propagated through versions and are not necessarily
indicative of the current app version’s behavior.

I. INTRODUCTION

The use of mobile devices has created an enormous and
lively marketplace for application development and deploy-
ment [1]–[4]. A developer can create a mobile application
(or app) and provide it for users to download with only
a small monetary investment [5], [6]. Apps exist to help
users with almost any conceivable task. For instance, to track
finances, provide meta-data about products when shopping,
manage health, or play games (either alone or with friends).
Millions of apps are found in marketplaces like the Google
Play store [7], yet this type of distributed development comes
with some downsides [8]–[11]. For the user who is concerned
about application quality, it is difficult to discern what an app
actually does [12], or to know if one can trust that it won’t
perform malicious acts [13]–[15]. If an unexpected behavior
occurs, it may not be clear if this is intended or is a fault –
without a formal specification [16], [17], it is not possible to
reliably check the behavior of these apps [18].

There are no formal requirements that must be adhered to
when uploading an app to a marketplace [3], [9], [19], and no
set standards for how to describe and document exactly how an

app is supposed to behave [20], [21]. The marketplaces provide
ample space for developers to upload this information, but as
we have learned, the structure for documentation is loose and
its use open to choice and style [22], [23]. For instance, a
developer can write a complete natural language description
of their app, or they can provide screenshots or videos – or
use a mixture [24]. They might instead, rely on the crowd and
provide only a brief description, expecting users to comment
on the other behavior within their reviews [25]–[27]. Some
hints can be inferred about an application’s intention [28], such
as the request for user permissions [29] to utilize particular
resources (e.g. a camera), however, some apps use alternative
mechanisms that rely on other apps (and their permissions)
to access these resources (e.g. an app might use a camera
Intent to utilize a camera via another app and this would
not require explicit user permissions [30]), or they may over
request, meaning that the user has no real idea of what the
actual behavior will be [31]. Having such flexibility makes
the release of new apps easy on the developer, however it
means that users have incomplete information, and may end
up surprised later. Even the use of a simple mechanism such
as user reviews seems to be open to interpretation, since as we
have learned, reviews from one version of an app appear to
follow it to the next version. New faulty behavior, or malicious
intent will not be exposed [32].

Recent research has focused on ways to automatically
extract particular types of app behavior, such as those that
might violate user privacy or that may indicate the existence
of malware or stealthy methods [14], [33]. Other research has
looked at ways to measure the amount of trust one should
have in an app (by rating developers, comments, etc.) [34].
But most of these approaches use limited information. For
instance, there has been work on finding mismatches between
the online descriptions with the requested permissions [35],
[36]. While this provides some notion of intended vs. hidden
behaviors, we have learned that neither information source
gives complete and accurate information. Other research has
focused on comparing descriptions vs. API calls, however
there is often a lot of dead code in the form of API calls
leading to a large overapproximation [31]. Other analyses
remove advertisement or analytic libraries [37], [38], for
simplification. We have learned that the external libraries often
have their own behavior, and require their own permissions –

and that they should not be ignored. Finally, there has been
work on comparing user ratings, descriptions and permissions,
but this is only a partial view [25], [26]. While all of these
approaches extract important behavioral information, and each
provides a useful analysis technique, they often target specific
data elements which may expose only a subset of app behavior.

In this paper, we take a step back and ask what information
should be utilized and pieced together to complete the puzzle
of an apps true specification. We believe that this question is
important, yet has not been previously answered. We present
an in-depth case study on 14 highly downloaded apps from
differing domains. We quantify the different sources of infor-
mation that the developers use and look for inconsistencies
between them. We synthesize these findings into a set of
observations that should be used moving forward to provide
a way to piece together the puzzle of understanding app
behavior. The contributions of this work are:
(1) A case study on a set of 14 apps that identifies where app
specifications are contained and how they are used.
(2) A synthesis of what we have learned that can provide a
roadmap for extracting and combining information to develop
the true specification of an app.

In the next section we provide some background on Android
and present related work. In Sections III and IV we present
our case study and discussion. We end with conclusions and
future work (Section V).

II. BACKGROUND AND RELATED WORK

Unlike traditional software applications that come bundled
with extensive user guides, reference manuals, troubleshooting
guides, etc., mobile apps are rarely supplied with such detailed
artifacts. Instead, where they lack in providing extensive
documentation and manuals, they attempt to make up for with
a variety of concise artifacts, such as Description, Reviews,
What’s New, Number of Installs, Platform Requirements, Con-
tent Rating, Permissions, Vendor Name, Category, Developer
Contact, screenshots, Demonstrational Videos, and Size. End
users browse through these artifacts before purchasing an app
from marketplaces such as Google Play, Amazon Appstore for
Android, and the Apple App Store.

App code binary updates are frequent and are typically
downloaded and installed automatically unless they require
user consent or have been disabled. The app’s correspond-
ing artifacts may be updated in the marketplace, but this
responsibility of keeping an app’s artifacts consistent with each
other as well as providing accurate information is distributed
across multiple stakeholders, namely developers, users, and
marketplace managers.

Our work in this paper requires that we analyze a subset
of Android app artifacts to understand and compare what they
tell us about how an app behaves. While some of these (rating,
description, videos) are straightforward to understand, several
others (permissions, Intents) require background in Android
app structure, operation, and security features. We summarize
some of the fundamental concepts needed to understand our
study and results.

An end user downloads and installs an Android .apk file
from a marketplace, which is actually a zip compression
package containing several code artifacts needed to install and
execute the app. Of interest to us are the Classes.dex file, res/
folder, and AndroidManifest.xml file.
• Classes.dex is a java byte code file in Dalvik executable
format, generated after compilation from java source, and used
by the Dalvik virtual machine in Android. There are various
tools that can disassemble and decompile .dex files such as
dexdump, dex2jar and apktool. These allow .dex files to be
viewed on their byte- and source-code levels. For example, we
obtain the following decompiled code segment for one app:
virtual methods
.method public onClick(Landroid/view/View;)V
.registers 6
.parameter "v"
.prologue
.line 58

...
invoke-virtual {v0,v1,v2,v3},Landroid/hardware/

Camera;->takePicture(Landroid/hardware/Camera\
$ShutterCallback;Landroid/hardware/Camera\
$PictureCallback;Landroid/hardware/Camera\
$PictureCallback;)V

.line 59
return-void

.end method

We show the recovered signature of the invocation of Cam-
era.takePicture() and its invoking onClick() method. Such
information may be mined to determine the resources (e.g.,
the Camera API) used by an app.
• The res/ folder contains all the resources: an image resource,
layout resources, launcher icons, and string resources. All this
information may be used to better understand the app, e.g., by
reading its strings, and examining its icons and GUI widgets.
• The AndroidManifest.xml file presents essential information
about the app to the Android system. Of importance to us is it
declares the permissions the app must have in order to access
protected parts of the API and interact with other applications.
For example, to take a picture, using the aforementioned
Camera.takePicture() method, the app needs to declare the
following permission in its AndroidManifest.xml file:
<uses-permission android:name="android.permission.

CAMERA"/>

Such permissions are used by Google Play to inform
end users about an app’s access to resources and
its capabilities, e.g., by the following pop-up dialog:

As discussed above, an app may use cameras on Android
devices by invoking the Camera API and adding a uses-

permission block in the AndroidManifest.xml file. An alterna-
tive way is using the camera via an Intent (for our purpose, an
Intent is an inter-app message) to invoke an existing Android
camera app. A camera intent makes a request to capture a
picture or video clip through an existing camera app. The
app using the Intent mechanism does not need to request
permission in the AndroidManifest.xml file. The developer
simply has to create an Intent object that requests an image or
video, set a resulting image/video file location, and to “send”
the Intent, using code much like the following:

// create Intent to take a picture and return
control to the calling application

Intent intent = new Intent(MediaStore.
ACTION_IMAGE_CAPTURE);

// create a file to save the image
fileUri = getOutputMediaFileUri(MEDIA_TYPE_IMAGE);
// set the image file name
intent.putExtra(MediaStore.EXTRA_OUTPUT, fileUri);
// start the image capture Intent
startActivityForResult(intent,

CAPTURE_IMAGE_ACTIVITY_REQUEST_CODE);

After the Intent starts, the Camera app user interface appears
on the device screen and the user can take a picture or video.
When the user finishes taking a picture or video (or cancels
the operation), the system returns control to the calling app.

A. Related Work

Several researchers have started to analyze various app
artifacts with focus on security, quality and reliability. Qu
et al. [39] examine the app’s Description and Permission
requests. Their analysis tries to determine whether text in
the app description provides any indication for why the
app needs a specific permission (they considered only 3
permissions: READ CONTACTS, READ CALENDAR, and
RECORD AUDIO). They selected from the top 500 apps
specifically for each of the 3 permissions of interest, and
analyzed each description with respect to only one permission
for which the app was selected. In later work [40], they
check for consistency between Description and Permissions,
which they call description-to-permission fidelity. Their results
show that the description-to-permissions fidelity is generally
low on Google Play with only 9.1% of applications having
permissions that can all be inferred from the descriptions. They
hypothesize that new or individual developers—those not from
a software company—may fail to completely discuss the need
for some permission in the app description.

Gorla et al. [35] make use of app Description and API
usage. Their goal is to identify suspicious/outlier apps in
respect to API usage. They first examine the description
text to cluster descriptions into topics, and then use API
calls to reclassify apps as normal or abnormal depending on
whether their API usage falls in “normal” behavior, where
normal is defined by other apps in the cluster. They mention
several weaknesses with the app artifacts in their dataset: code
dominated with advertisement frameworks because they used
free apps; use of certain words in the description text led to
misclassification; analysis of code artifacts may be incomplete

because of their inability to follow reflective calls and recover
source code from obfuscated binaries.

Chia et al. [14] examine User Ratings, Description, and
Permissions to determine that the current forms of community
ratings used in app markets today are not reliable indicators
of privacy risks of an app. Their large-scale study provided
evidence indicating attempts to mislead or entice users into
granting permissions. In terms of app artifacts, they conclude
that popular and free apps request more permissions than
they need. Hence, studies that rely only on such apps may
unknowingly skew their analysis of permissions.

The work by Dini et al. [34] uses the largest variety of app
artifacts to evaluate app “trust.” They label an app as trusted,
untrusted, or deceptive, based on a weighted formula that
takes Developer Rating, Number of Downloads, Market Name,
User Rating, Number of Crashes, and Battery Consumption.
Because of their focus on trust, they ignore app functionality,
and consequently code artifacts. Their weighted function gives
high weightage to Developer Rating (to reward historically
trusted developers), with the result that poor quality apps by
a trusted developer may be ranked as trusted.

Other researchers have examined only code artifacts to
assess security and trust. Huang et al. [33] compare text strings
used in the user interface of an app with API calls to determine
whether the API usage is consistent with user expectation. We
have learned that developers may not always use the .xml files,
and instead, choose to hardcode the strings into the Java source
code, or use images for buttons. Moreover, they may not use
all the strings in the .xml files.

Fuchs et al. [41] extract security specifications from man-
ifests that accompany such applications, and check whether
data flows through those applications are consistent with the
specifications. Linares-Vásquez et al. [42] analyze how the
fault- and change-proneness of APIs used by 7,097 (free)
Android apps relates to its lack of success. They used the apps’
average ratings as a measure of app success; the number of bug
fixes in a particular version as a measure of fault proneness;
and the number of code changes at method level in a particular
version as a measure of fault proneness.

Barrera et al. [43] analyze the Android permission model
to investigate how it is used in practice and to determine its
strengths and weaknesses, and usage patterns by apps. Peng
et al. [44] use probabilistic models to assign each app a risk
score based on its requested permissions.

Finally, some researchers have used non-code and non-
developer artifacts to assess quality. Galvis et al. [45] pro-
cess user comments to extract the main topics mentioned as
well as some sentences representative of those topics. This
information can be useful for requirements engineers to revise
the requirements for next releases. Results show that the
automatically extracted topics match the manually extracted
ones, while also significantly decreasing the manual effort. Fu
et al. [46] identify users major concerns and preferences of
different types of apps through user ratings and comments.
Malmi [47] show how the quality of an app, as reflected in
how people start to use it, is linked to the popularity of the

app. They also show the connection between app popularity
and the past popularity of other apps from the same publisher
and find a small correlation between the two.

Although much of the work on understanding app artifacts
is new, there is related work on the topic of general program
understanding using reverse engineering [48], which identifies
software artifacts in the subject system, and then aggregates
these artifacts to form more abstract architectural models [49].
Some of this work has also been applied to specific domains
such as the web [50] and service-oriented software [51] that
are constantly expanding from simple systems (simple web-
sites and message passing) toward the construction of full-
fledged applications. A richer set of artifacts is available
when understanding code by programmers for maintenance
and evolution of large-scale code [52]. As end users provide
online feedback (in the form of accessible reviews), these have
also been mined and summarized [53]. Our own recent work
on understanding GUI behaviors from test execution [54], [55]
is rooted in test case repair and combinatorial coverage [56].

In this paper we attempt to complement prior work by
providing an in-depth study that is conducted from a more
holistic view. We aim to identify the pieces of the puzzle that
contribute to an apps overall specification.

III. STUDY

In this study we ask three research questions that aim to find
out what types of information are required to piece together
an app’s true specification. Our first question looks at the
descriptive artifacts provided by the developer. The second
question examines artifacts that provide indirect information.
Our last research question evaluates information provided by
stakeholders besides the developer. The questions are:
RQ1: Which artifacts provide descriptive information of
an app’s behavior and are these consistent across artifacts?
RQ2: What information can be inferred indirectly from
other artifacts?
RQ3: What type of specification information and app
behaviors are not controlled by the developer?

A. Selecting the Apps

We performed in-depth manual analysis on 14 free apps
selected from the Google Play Store. We chose apps that span
categories and size (as determined by apk size). Table I shows
our sample in more detail. The apps sizes range from 806KB
to 49MB and are distributed across 10 different categories.
We only selected apps which were expected to be of average
to high quality. Such app’s we assumed would be better
documented and contain more consistent artifacts. Both of
these properties should facilitate our goal of spec construction.
The ratings range from 3.6 to 4.6 on a 5.0 rating scale and
include several developers with Top Developer badges.1

1Study artifacts can be found at: http://www.cs.umd.edu/∼atif/puzzle/

TABLE I: Apps in Case Study

App Name Category Developer APK Size
Rating listed actual

HealthTap (HT) Health/Fitness Top 47M 49.5M
Android Auto (AA) Transportation Top 27M 27.9M
Nest (NST) Lifestyle Standard 24M 25.3M
Kids Puzzle: Vehicles (KPV) Educational Standard 21M 20.7M
Peel Smart Remote (PSR) Entertainment Standard 17M 17.5M
Diabetes Logbook by mySugr (DL) Medical Standard 14M 14.9M
Timely Alarm Clock (TAC) Lifestyle Top 9.4M 9.9M
HiFont - Cool Font Text Free (HF) Personalization Standard 6.1M 6.4M
Paint for Kids (PFK) Casual Standard 6.8M 6.3M
Water Your Body (WB) Health/Fitness Standard 5.7M 6M
Spell Checker - Spelling boost (SP) Books/Reference Standard 2.9M 3M
IDO Calculators Plus Free (ICP) Tools Standard 2.7M 2.7M
Pedometer (PED) Health/Fitness Standard 1.9M 2M
Barcode Scanner (BS) Shopping Standard Varies 806K

B. Preparing the Apps for Evaluation

To prepare the apps for manual evaluation, we began by
collecting information from each app’s Google Play Store
page as well as downloading the respective .apk file. We then
performed the following:
(1) From each app’s Play Store page, we scraped the page
for developer rating, user rating, user comments, number of
installs, screenshots, video (if uploaded), permission request
text, listed interactive elements text, whether the app contained
in-app purchases, and the text in the app’s description.
(2) From each app’s .apk file, we obtained source code files
by disassembling the .apk file into smali byte code files with
apktool [57]. We also decompiled the .apk file with dex2jar
[58] to obtain the app’s Java source code files.

This resulted in a collection of quantitative, categorical,
text, and image based information on the app that guided the
evaluations discussed in Section IV-D.

C. Evaluation Methods

Additional preparation was required for each app’s text,
video and image-based artifacts. This included parsing the
app’s Manifest file for permission and library usage, parsing
code files for API calls and Intents, as well as manual analysis.
Manual analysis required the evaluator to watch a video, read
text or view a collection of images. After viewing, reading
or watching, the evaluator then produced a set of behaviors
that the non-code related video, text, or images described.
Behaviors were defined as a higher-level action the app could
perform that required permission. To address ambiguity within
the artifacts and implementation, we listed all possible related
behaviors. For example, a description may list ”Share with
friends” as a feature. This would result in messaging and
social media behaviors. Images often contain many behaviors
in a single image. For example, suppose a screenshot shows
the device with a map and consequently shows the UI which
contains a download and sync button. Such a screenshot would
result in maps, navigation, download, sync, location behaviors.
The reason for including these clusters was to ensure that the
inconsistencies found were less a matter of evaluator opinion.

To determine incompleteness of descriptions against per-
missions, we took each description’s set of behaviors and
converted them into the permissions they require. We then
went through the app’s requested permissions. First, we looked
to see if the permission was accounted for in the desc’s set.
If there was a permission unaccounted for in the description
that was requested by the app then the descriptions was
marked incomplete. If all permissions were accounted for
by the description, we then evaluated the app’s behavior on
a higher level by comparing its higher level features with
its screenshots, videos and our own use of the app. If the
app’s behaviors contained in the description were in the app
when we used it, we called this app description complete. If
there were features in the description not in the app, it was
labeled contradictory. The only app we could not use (due
to compatibility issues) was Android Auto, but the app was
already inconsistent and did not require such analysis.

In order to determine each app’s use of advertisement (ad)
and analytic libraries, we evaluated the app’s source code
files. Specifically, an app was said to use ads and analytics
if their disassembled code contained both of the following:
(1) the app contained a key for the package in its Android
Manifest file and (2) the library’s code was included in the
app’s disassembled byte code. We then obtained each of the
library’s use of sensitive methods by string searching through
the app’s code for API calls found by PScout [59], a tool that
extracts the permission specification from the app source code
using static analysis, for each app’s Android build and parsing
the results for the identified library-related class paths.

To evaluate an app’s use of non-permission protected In-
tents, we consulted Android documentation. Android lists
common Intents and describes several which to do not require
permissions. While there are many Intents, we focused our
studies on those related to otherwise permission-sensitive
behaviors—specifically those related to SMS, contacts, inter-
net, phone, calendar and camera/video—in order to see where
permissions were lacking information about program behavior.
We did not account for those that open a user’s settings
although the addition of these could only keep or enhance
the findings we present.

In order to evaluate user comments, we obtained the first
20 comments on the app’s Play Store page ranked by newest
to oldest and filtered for all versions. This is in contrast to
filtering the comments for those only on the latest versions –
another option provided by the Play Store. The resulting com-
ments were then combined with the first 20 returned comments
ranked from most helpful to least helpful on any version of the
app. Helpfulness is determined by fellow users who can rate
the comments on the page. Duplicate comments were removed
and the resulting set consisted of both most recent ratings as
well as those that have been voted as providing the most useful
information about the app’s functionality. When evaluating the
comments, a comment was considered negative if it indicated
either a functionality problem or an indication that the app
should undergo changes. This included comments reporting
crashes, bugs, freezing, hanging, missing features, and ads.

D. Threats to Validity

This study has some potential threats to validity that we
outline here.

Threats to External Validity. First with respect to external
validity, we used only 14 apps and we do not span all
categories (we cover 10 of 26). We also do not evaluate only
the highest rated apps such as those with 4.6 or above, but
instead chose to use a variety of ratings. Given that this is
meant as a case study and we are not necessarily generalizing,
we believe that this is valid.

Threats to Internal Validity. With respect to internal
validity, the behaviors we extract may be subjective and
require extensive background knowledge of Android’s API and
framework. Consistency and incompleteness suffer from the
same problem. We erred on the side of caution and always
gave the benefit of doubt for consistency when a case was
too close to determine. This means that our results should be
conservative.

Another internal threat is that the manual analysis was
performed by one of the authors of this paper. The manual
work might also be subject to mistakes, but we double checked
our results to improve our confidence in their correctness.
To reduce both of the previous threats we are providing our
artifacts and data on our study website.

Another internal threat is that the use of the apps and
their documentation were limited to the free portion of the
application (features or descriptions that are provided with
the paid version are missed). Since we compared artifacts all
within the free domain, we believe our results are at least
consistent. Additionally, some apps described pro and paid
versions on these pages as well as free in their descriptions.
Further, each artifact is subject to threats to validity associated
with human actions (e.g, any errors the user may have made
when filling out the forms). These may contribute to the
study’s observed contradictions and inconsistencies. Finally,
one app, Android Auto, could not be used manually due to
compatibility issues, therefore for that app we were restricted
to static analysis.

Threats to Construct Validity. With respect to construct
validity, we could have chosen different artifacts or measures,
but we based our analysis on other types of studies that have
been performed before on Android.

IV. RESULTS

We now look at the results for each of our three research
questions. We then discuss some observations in more detail
and summarize what we have learned from this study.

A. RQ1: Descriptive Artifacts

To answer RQ1 we examined the data that developers
explicitly provide on the Google Play store. When a developer
publishes their app on the Google Play Store they are required
to give a description with a 4000 character limit. This descrip-
tion then appears on the app’s Play Store page, which in turn
can be seen by users to help them determine whether or not
to install the app.

As we read each of the apps descriptions, we noticed our
apps’ developers were using this space in different ways. Not
only were there varying lengths ranging from as few as 57
words to 622 words, but there were differing uses of the
descriptions. Some developers were explicitly stating the app’s
use of permissions (or providing a link to a site which did
so), many others included a bulleted list of the app’s features,
while others focused less on its complete behavior, and instead
focused on it’s benefits, how it could be used (in a generic
way), or just quoted positive reviews.

Table II divides our apps’ descriptions by the type and
amount of information present in the description. The first
column (len) shows the variation in user description length.
The second (Exp) shows whether the permissions were explicit
or contained in a link, and the third (List) whether a list of
features was provided. In addition, Table II shows whether
the description provides extra (non-behavioral) information
(Other) such as the benefits of downloading the app. This
text does not provide specifications and may actually hurt an
NLP analysis. Finally, we show whether descriptions offered
incomplete or contradictory information with respect to the
app’s actual behavior.

As can be seen from Table II, 7 of the 14 apps had
incomplete descriptions and one contained a contradictory
statement. The contradictory statement in IDO Calculator
Plus’s description said that the app did not contain ads when
in fact it did. Interestingly, the apps which listed features and
stated the permissions explicitly weren’t necessarily immune
from being incomplete.

During our evaluations, we noticed that other artifacts on the
app’s Play Store page disclosed behaviors that the descriptions
had excluded, and as a result, realized that looking at the
description alone may be too limited of a scope. Specifically,
developers were using assets such as videos, screenshots and
the What’s New section to provide relevant spec information
not present in the description. The most blatant example of this
was in Google’s Android Auto. The description contains only
57 words and states the app “brings familiar apps and services
to a car”. However, it provides a video which demos the app’s
use, and screenshots which shows the app’s UI and core capa-
bilities. This shows the user the UI as well as functionalities
like the use of maps and navigation, SMS, phones calls, voice
commands and scheduling reminders and events. Further, in
the app’s What’s New section, it includes 74 words explaining
the features (16 more words than its description). The new
features listed included all of the behaviors shown in the
video and screenshots, which were missing from its description
(navigation, SMS sending, scheduling & notifications, phone
calls, and voice commands). Therefore, while Android Auto’s
description provided little information on the app’s behavior,
other accessible information on the app’s page could impact
their expectations. One thing that we noticed is that some of
the videos and other artifacts were in languages other than
English, which will complicate an analysis.

The apps we studied used on average 9.9 screenshots and
nearly half of them included a video that was on average 2

TABLE II: Description Lengths & Usage. ”I” are incomplete
descriptions. ”C” are contradictory descriptions.

App Len Exp. List Other I C

AA 57 3 3
BS 184 3 3 3
DL 243 3 3 3
HF 197 3 3 3
HT 622 3 3 3 3
ICP 184 3 3 3
KPV 184 3 3 3
NST 104 3 3
PED 251 3
PFK 105 3 3 3
PSR 317 3 3
SC 197 3
TAC 257 3 3
WB 198 3 3 3

Totals 3(20%) 9(64%) 14(100%) 7(50%) 1(7.14%)

TABLE III: Permission Requests, Intents and API calls.

App # of Non-permission App # of Non-permission
App protected Intents App protected Intents

BS 3 PFK 1
AA 1 SP 1
DL 1 WB 1
HF 1 ICP 0
HT 1 PED 0

KPV 1 PSR 0
NST 1 TAC 0

minutes long. The use of the What’s New section varied in our
apps. Some developers simply listed ”fixed bugs”, while others
offered long explanations of new features like Android Auto.
Most importantly, we identified approximately 8 behaviors that
were not included in the apps’ descriptions that were contained
in the videos and screenshots. In summary, nearly half of our
apps’ descriptions did not exhaustively and explicitly explain
their app’s behavior, and we identified alternative artifacts
within an app’s Play Store page where developers disclose
spec related information on the app’s behavior.
Summary of RQ1: Play Store app descriptions are used
in varying ways. Most of the apps studied had incomplete
descriptions and one had contradictory information. Some
developers opt to use alternative assets like images, videos,
or the What’s New field to reveal additional behavior.

B. RQ2: What Types of Inferred Information Exists

To answer this research question we examine types of infor-
mation that are provided by alternative artifacts (not explicitly
provided). For this we use the AndroidManifest.xml file and
the user interface (UI) itself. We begin with the manifest
file. Since prior studies show that the manifest file often
over requests permissions, we were surprised to find several
cases where the opposite was true, and the permissions lacked
important information on the app’s behavior. Specifically, we
observed apps that were using Intents to perform significant
actions without the need to request permission. These Intents
are not those defined in the manifest file, but could be found

by searching the app’s decompiled java files. We provide some
examples here.
Paint for Kids. Paint for Kids is a kid’s app that provides
pages for children to color. It has a user rating of 3.6 and
approximately 1,000,000-5,000,000 installations. Its descrip-
tion says it can color, save and share pictures as well as take
pictures which can be turned into coloring pages for use in the
app. The Play Store page contains a video which demos the
app and shows the app taking a picture and then turning it into
a coloring page. Screenshots show painted pictures as well as
buttons with icons for saving, sharing, painting and taking
pictures. Despite all indications of camera usage, however,
when a user asks to install the app, no camera permission
is requested and no permission request appears in the app’s
manifest file. When the app is used, the camera is indeed
opened by the camera button, and everything else proceeds as
demoed in the developer’s video.

What allows Paint for Kids to use the camera without a
user’s permission is that the app is invoking the camera via
a non-permission protected Intent. This Intent allows the app
to employ another app on the device to take and save the
picture. Paint for Kids then has access to the saved image
and can do what it likes with the file. Intents exist for other
typically sensitive operations such as creating and writing SMS
texts, editing contacts, dialing phone numbers and capturing
video [60]. An app (possibly malicious) may circumvent the
permissions by accessing these sensitive operations via Intents.

Table III shows the number of such Intents not accounted
for by an app’s permission list, along with the number of
permissions the app does request. 10 of the 14 apps used
this mechanism to access protected resources. Surprisingly,
Paint for Kids was not the only app aimed at children with
such behavior. Kid Puzzle-Vehicles included an ad-related class
that dialed phone numbers. Although the phone itself is not
invoked, the dial pad will pop up with a number, and a child
can then easily press the call button to execute the call.

The second artifact we used for inference was the UI since
it offers additional information about what an application does
and impacts the user’s expectation. For example, a user might
see an icon of an envelope and will expect the app to be
associated with some sort of messaging or email behavior.
Several studies have identified the UI as a source of valuable
information for program understanding [33], but most evaluate
the app’s strings statically and leave the icons as future
work. As a result we were interested in evaluating how an
app’s strings and icons interact with respect to what unique
information they each provide. In short, do our app’s icons
provide information that is not available in the app’s strings?

To answer this question, we manually evaluated all of the
app’s strings defined in values and values-en as well as all in-
cluded .png files in drawables, drawables-nopi and drawables-
hdpi that were icons (i.e., not images or graphics used for
content or background purposes) and listed the associated
behaviors for each string and icon. Because app’s often include
the same icon for different states (such as pressed and active),
the unique images within the drawables was typically much

less then the number of included .png files. During our analysis
we failed to find a icon-related .png that did not contain a
defined string that defined it. That said, the set of defined
strings in our apps greatly outnumbered the defined icons so
this may be a superset of information.

In summary, the collective set of icon-related .pngs in draw-
ables, drawables-nopi, and drawables-hddpi was contained in
the combined set of strings in values and values-en. What
remains unclear and may be a subject for future work is
either set’s relationship to our app’s actual UI and behavior–
whether the icons are a more concise representation of the UI
or whether the strings define too many false values not used
by the app.
Summary of RQ2. We conclude additional (and possibly
differing) information for an app’s spec is indirectly available
through the permission set, non-permission protected Intents,
and/or the app’s UI as represented by sets of icons and strings.
Our research suggests that the icons an app defines have
significant overlap with its strings.

C. RQ3: What Externally Controlled Information is Avail-
able?

To answer the last research question, we turn to three pieces
of information that are not explicitly provided by the developer
– advertisements, user ratings and user comments.
Advertisements. Little information on advertisements (ads),
analytics and social media libraries was contained on the app’s
Play Store page, yet these libraries present obstacles in specifi-
cation construction at the code level. First, they introduce extra
code in the source code files, icons, and strings which may
potentially cause a specification to include behaviors an app
doesn’t actually perform. Second, they often employ reflection
causing an app’s API calls to be incomplete [38], and as
confirmed in our case studies, little information about them
can be obtained from the Play Store – apps tend not to be
upfront about their usage. Last, they can be dynamically added
and removed (e.g., the app might cycle through or change
their advertisers on a regular basis, and the ads themselves,
may evolve on a cycle that differs from the app evolution). In
fact, some other studies have chosen to remove ads from their
analyses [37], [38]. Since our case studies were all free apps,
the use of ads, analytics and social media service libraries may
not be surprising. We observed on average 2 such libraries in
each app with one app containing as many as 5 and another
not containing any. It is relatively easy to determine if an app
includes a library based on the source code, but it is difficult
to determine what aspects it uses due to the presence of dead
code and use of reflection. Two cases that we present next
help us show some behaviors found in our app’s code that
appeared related to the libraries.
Kids Puzzle - Vehicles. Kids Puzzle - Vehicles is a children’s
game app that also teaches the user different languages. Its
description describes the different levels and characters of the
game as well as the benefits of learning a new language.
Its Play Store page confirms these behaviors and includes
screenshots of the different games children can play as well

as different languages to use while playing. It has over
50,000 downloads and a user rating of 3.9. Five of the
28 comments evaluated reported the app hanging, crashing,
or freezing and one of these comments reported crashing
because of ads. This comment was the only mention of
ads on the page. The app requested 12 permissions and
included several which were not described by its descrip-
tion, UI or comments. These included READ LOGS and
MOUNT UNMOUNT FILESYSTEM. While evaluating the
byte code further, we found that the app included the Umeng
ad library, which has been reported as harmful adware [61].
No mention of Umeng were in the description and the app
did not include an interactive elements section. Umeng could
be detected when inspecting the resource files for the app.
Execution of the app also revealed ads, which were not
mentioned in the app description.
HealthTap. HealthTap is a health related app that allows a
user to search and consult with doctors via text, video and
phone as well as send them medical documents and images.
Its developed by a Top Developer, has 1,000,0000-5,000,000
installs and a rating of 4.4. It requests 22 permissions in-
cluding those related to location, camera, recording audio,
accounts, contacts, and internet. While their app requires a
lot of permissions, each of these could be reasoned from the
description, which is over 600 words long. In the description,
videos and screenshots, no mention of ads or social media
services appears, however they were included in the app’s
code and were in the UI pics and strings as well as the
Android Manifest file where their keys and meta data were
included. When viewing the page, a viewer may infer the app
used location to personalize feeds as well as facilitate other
features like searching for doctors and prescription delivery,
which were features of the app. The byte code indicated other
undisclosed uses such as tracking the user to send localized
marketing via push notifications.

In summary, we saw that apps only occasionally mention
ad libraries to users in the app’s descriptions, never disclosed
the use of analytics, and never showed ads or analytics in
screenshots or videos. Furthermore, when ads were mentioned
they were typically inferred when the description mentioned
that the paid version contained no ads or in user comments
complaining about them. The store’s new interactive elements
category [62] (described in Table V) may help with this,
although it is still new and not all developer’s have updated
their pages to include this information. For the purposes of
constructing the app’s specification, this category will not
solve all the presented issues. These two examples help
demonstrate that while the use of ad and analytics libraries
may be expected in free apps, their specific behaviors are
important to include.
User Provided Information. Every app’s Google Play Store
page contains several user-controlled categories that display
information submitted or defined by the app’s users. These
categories include developer ratings, number of installs, user
comments and user ratings. We included these artifacts in our
evaluation to assess what information they could provide and

to determine whether they could be used as indicators of the
app’s general quality.

Table IV presents these artifacts and other measures of
quality for each app in our study. We were surprised to see the
apps that had reports of major functionality issues– such as
reported crashes, freezing, and buttons not working– continued
to be downloaded by many users and receive high user ratings.
Two examples are discussed next.
Peel Smart Remote. Peel Smart Remote is a remote control
which enables a user’s Android device to control his or her
television, Apple TV, etc. The app’s description explains that
Peel can personalize viewing, set reminders and change and
customize channels. When evaluated against the app’s per-
missions, the artifacts appeared relatively consistent. Despite
its overall consistency, user comments suggest the app may
functionally be sub-optimal. At the time of the study, 3 out
of it’s then 20 latest reviews report crashing and 4 additional
comments reported freezing and dysfunctional button usage.
Despite these complaints, the app holds a 4.4 rating on a 5.0
scale.
Timely Alarm Clock. Timely Alarm Clock is an app that
allows you to synchronize alarms across multiple devices.
Its description describes the app’s ability to sync devices
and customizable interface, and its UI is straightforward with
clock-related icons and strings. Its video highlights the app’s
customizable UI and alarms as well as its ability to sync
with devices, work as a timer, and adjust audio with different
user gestures. Like Peel, Timely Alarm Clock received many
complaints. Seven of the last 20 comments at the time of the
study reported functionality issues such as not being able to
turn off the alarm, the set alarm not going off or going off late,
and its time lagging behind the system clock. In the combined
set of helpful and new user comments spanning all versions,
25 out of 40 were negative. Nonetheless, Timely maintains a
very high user rating of 4.4 as well as a Top Developer badge.

Such contradictions were witnessed in several other apps
as well. Table IV lists the apps by decreasing percentage of
negative comments received. Apps with 5 million downloads
and user ratings of 4.4 received a high percentage of negative
comments. Furthermore, as indicated by the location of the
check marks in the table, developers with Top Developer
badges appeared to receive just as many negative comments
as non-top developers, with some receiving as many as 60-
70% negative comments. Such results suggests that either user
ratings and developer ratings were not indicators of quality in
our study or perhaps the sample of user comments were biased
towards negative reviews.

We did identify one potential reason for this discrepancy,
which might help explain Peel Smart Remote. User ratings
are cumulative and include ratings from older versions of the
application, while user comments can be sorted by decreasing
variables (such as date, helpfulness and rating) and filtered by
the latest or by all versions. When evaluating the different
filters, the returned results tended to favor more recently
submitted comments even when sorted by helpfulness. As a
result, for some apps, this inconsistency between ratings and

TABLE IV: Negative Comments, User Ratings & Quality. ”TD” indicates whether the app was developed by a Top Developer. ”DR” is
whether the number of times the developer responded to negative comments. ”CR” is the number of comments that indicated crashing or
freezing. ”LH” is whether the app had the <:largeHeap> attribute set to true. This determines whether the app’s processes are created
with a large Dalvik heap and is discouraged by Android.

App Installs TD User Rating Size Neg. Comments Repeating Issues DR CR Perm Lib LH

AA >10K 3 3.7 27M 28:38 (73.6%)
Compatibility, Night Mode Needed, Car
Display Requirements, Limited App
Support

0 1 16 0

PSR >10M 4.2 17.5M 20:29 (68.9%) Crashes, Issues w/ Update, no guide
available, button functionality issues 1 3 13 0

NST >500K 4.4 25.3M 25:38 (65.7%) Offline, Auto-Sched. & Geofencing
Doesn’t Work 0 1 12 2

TAC >5M 3 4.4 9.9M 25:40 (62.5%)

Can’t Dismiss Alarm, Alarm Doesn’t Go
Off When Phone is Silenced, Dislike of
Notifications for Upcoming Alarms,
Requests for Skip Next Features, Wrong
Time

0 1 14 1

BS >100M 4.1 806K 21:40 (52.5%) Slow to Scan, Won’t Scan 2 0 9 0

SC >1M 3.9 3M 16:32 (50%) Ads, Crashes, Trouble w/ Foreign
Languages, Doesn’t Work, Char. Limit 1 3 4 4

HT >1M 3 4.4 47M 12:29 (41.3%) Wrongly Charged For Services, Freezing 8 2 22 2 3
PFK >1M 3.6 6.4M 11:27 (40.7%) Ads, Slow to Download 0 1 4 1 3

DL >1K 4.6 14.9M 10:38 (26.3%) Include Carb Search, Too Expensive to
Upgrade 1 0 14 2 3

PED >1M 4.2 2M 9:38 (23.6%) Inaccurate Step Counting, Trouble
Resetting Session 0 0 4 2

KPV >100K 3.9 20.7M 5:28 (17.8%) 0 3 12 2
HF >10M 4.2 6.4M 7:40 (17.5%) Trouble Installing Fonts 0 0 19 5
ICP >500K 4.1 2.7M 4:29 (13.7%) Permanent Ads in Notification Bar 0 0 10 2
WB >5M 4.5 6M 4:37 (10.8%) Ads 0 11 1

comments may be explained by a high user rating reflecting
a history of high-quality and negative comments which may
reflect a poor release or update. In essence we are comparing
data from different points in time and this could be problematic
for a user.

In conclusion, we saw inconsistencies between user ap-
proval indicators such as user ratings and installs and app qual-
ity indicators such as developer ratings and user comments.
We also saw inconsistency between developer ratings and user
comments. These may be explained by the user approval being
unrelated to quality, or the user comments containing a bias in
either how they are ranked and displayed by the Play Store,
or how users use them (such as dissatisfied users are more
likely to submit a comment then satisfied users). Either way,
the app’s within our study with high user ratings or a Top
Developer badge did not appear to indicate that the latest
version available on the store was not buggy.
Summary of RQ3. We see that there is dynamically added
behavior (in the form of ads) that should be accounted for if
we want to understand an app’s true behavior. This is usually
not discussed by the developer and may not be known. We also
see that user approval and quality measures such as number of
downloads, user & developer ratings and user comments can
be utilized, but they were contradictory. Such contradictions
may be a result of versioning or suggest that comments and
ratings can not be compared.

D. Summary Discussion
We now synthesize what we have learned from this study.

Table V shows a summary of the artifacts we have studied

in this paper. For each it shows whether they are located
on the Play Store or in an apk file, their visibility to the
user, what information they contain, whether they provide
behavioral information, and an overview of their potential
source of inaccuracy when assembling an app’s specification.
Together these pieces should be combined to understand true
specifications. As can be seen, many new analyses are needed
to extract and merge this information. Our key findings are:
(1) The apps’ developers use descriptions in varying ways
and other artifacts on the webpage, such as screenshots and
videos, are also being used for specification purposes. We saw
that some may be presented in differing languages (e.g. the
app Paint for Kids has its app description in English but the
demonstrational video language is Portuguese). Such results
suggest that an app’s description alone is not an accurate
representation of either program behavior or user expectation
of a program’s behavior, and that alternative analyses that can
extract information from artifacts such as video or screenshots
is needed. To get a full specification, these analyses should
ultimately be merged.

(2) While it is known that apps over-request permissions and
therefore permissions may contain behavioral capabilities not
actually utilized by the app, we saw several apps whose
permission sets lacked information regarding important be-
haviors the apps perform. This offers yet another reason why
permissions alone cannot be used as an app’s specification.

(3) The majority of apps in our study contain ads and analytic
libraries. Under the current developer practices such libraries
present obstacles in program understanding. Specifically, they

TABLE V: Synthesized Android Artifacts Used in our Study. In the column ”Creator”, ”D” is for developer, ”U” users, and ”M” the Google
Play Store market. In the column ”Type”, ”N” is for numerical, ”C” categorical, ”T” textual, and ”P” pictorial.

Artifact Creator Type Potential Information Behavioral Source of Inaccuracy Previous
Work

Description D T App features and behaviors. 3 May be incomplete. Developers could
use other elements of the page instead.

[35, 36, 39,
40]

What’s New D T Features added to the latest
updates.

3 May be incomplete. Developers could
use other elements of the page instead.
May only include changes, not overall
app behavior.

Screenshots D P Visualization of app behavior
and design.

3 May be for an older version. May be
absent from the page.

Videos D P Real-time behaviors and de-
sign.

3 May be for an older version. May be
absent from the page.

G
oo

gl
e

Pl
ay

St
or

e
(v

is
ib

le
to

us
er

) Interactive Elements D C Whether the app does the fol-
lowing: shares personal in-
formation with third-parties,
shares location, allows pur-
chases, contains user-provided
uncensored content and/or has
unrestricted internet access.

3 May not be included by developer.

User Comments U T Functionality, user approval,
and behaviors

3 May include previous versions. May
be device specific.

[25, 26, 27,
45, 46, 53]

User Ratings U N User approval and quality. May not reflect the latest version. [34, 42, 46]
Developer Rating M C An indicator of developer trust

and app quality.
May not reflect the Developer’s latest
version or project.

[34]

Installs U N The number of times the app
has been downloaded by users.

Does not reflect number of uninstalls
after install.

[34]

Permissions (as
listed on the Play
Store)

D C The sensitive operations an
app can perform.

3 Displays certain categories of permis-
sions only, so list may not be an ex-
haustive. May include permissions not
used by the app. May miss behaviors
performed via non-protected intents.

[14, 29, 31,
33, 35, 36,
37, 39, 40,
43, 44, 59]

Strings (in
strings.xml)

D T Text that may appear in an
app’s UI.

3 May not be used at runtime. May
may be an incomplete set because of
hardcoding.

[33,36]

Images (in
/res/drawables)

D P Images that may appear in the
app’s UI.

3 May not be used at runtime.

Permissions (in
Android Manifest
file)

D C The sensitive operations an
app can perform.

3 May include permissions not used by
the app. May miss behaviors per-
formed via non-protected intents.

[14, 29, 31,
33, 35, 36,
37, 39, 40,
43, 44, 59]

.a
pk

fil
e Bytecode API

calls
D T Android library calls. 3 May contain dead code, include ads

which use reflection, obfuscation, ex-
cludes method arguments values that
are obtained at runtime.

[35, 36, 37,
38, 42, 43]

Source Code
API calls

D T Android library calls. 3 May contain dead code, include ads
which use reflection, obfuscation, ex-
cludes method arguments values that
are obtained at runtime.

<meta-data>
&
<uses-library>
elements

D T Libraries included. 3 May be dead code. [38]

complicate the use of API calls through their use of reflection
and injection of large amounts of dead code. Little information
about their behavior is available on an app’s Play Store page
other than the mention of their absence in paid versions
and user comments mentioning related crashes, freezing and
general annoyance. No mention is ever made about analytics.

(4) While the number of downloads, user ratings and user
comments may seem like similar measures of user approval
and even program quality, we observed contradictory results
in several apps where users reported many bugs but users
continued to download the app and rate it highly. Within our

study, such negative comments were independent of whether
the developer had received a Top Developer badge.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have tried to identify the puzzle pieces that
are required to determine an app’s true behavior. We call this
a puzzle because, as we have shown, the behavior (or app’s
specification) is never fully explicitly revealed to an end user
in a document. Instead, the behavior is revealed “in pieces”
across the multiple artifacts that typically accompany an app.
These pieces need to be put together to understand true be-

havior. This is important if we are concerned about evaluating
the app’s quality or testing it for functional correctness or
suspicious behavior.

In our study of Android apps, we have learned that develop-
ers do not use descriptions in a consistent manner. In order to
fully understand a complete description, one must add visual
(screenshot and video) analysis. We also find that artifacts that
provided inferred behavior (e.g., AndroidManifest.xml file’s
permissions section is thought to provide complete knowledge
of the app’s phone usage such as dialer, camera, and micro-
phone) may not be complete as there are dynamic behaviors
from advertisements that are almost completely ignored by
developers and poorly documented. Finally, we have learned
that user ratings and comments follow an app through its
history, therefore newly introduced faulty behavior will not
be reflected in ratings.

As future work, we are developing a multi-dimensional
analysis that can automate the extraction and merging of these
information sources. We also plan to add additional external
resources to our analyses, such as the Symantec website that
catalogs potentially harmful libraries like Umeng, or those
such as Android Central2 that provides additional reviews
of apps, of which this is a quote about Gentle Alarm:
“The free version of this app has all the features but there is
only one catch. The alarm will not ring on Wednesdays.” We
confirmed that this exceptional behavior is not mentioned on
the Marketplace website. We will then use these new analyses
and additional data sources to perform a larger scale case study
on more apps.

ACKNOWLEDGMENTS

This material is based on research sponsored by the Na-
tional Science Foundation CNS 1205501, CNS-1205472 and
DARPA under agreement number FA8750-14-2-0039. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon.

REFERENCES

[1] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and
T. Karagiannis, “Rise of the planet of the apps: A systematic study of
the mobile app ecosystem,” in Proceedings of the 2013 Conference on
Internet Measurement Conference, ser. IMC ’13. New York, NY, USA:
ACM, 2013, pp. 277–290.

[2] A. Jain, “Apps marketplaces and the telecom value chain,” Wireless
Communications, IEEE, vol. 18, no. 4, pp. 4–5, August 2011.

[3] S. Jansen and E. Bloemendal, “Defining app stores: The role of curated
marketplaces in software ecosystems,” in Software Business. From
Physical Products to Software Services and Solutions, ser. Lecture Notes
in Business Information Processing, G. Herzwurm and T. Margaria, Eds.
Springer Berlin Heidelberg, 2013, vol. 150, pp. 195–206.

[4] J. Annuzzi, L. Darcey, and S. Conder, Introduction to Android Ap-
plication Development: Android Essentials, ser. Developer’s Library.
Addison Wesley, 2014.

[5] J. Liberty and J. Blankenburg, “Get money: Profiting from your appli-
cations,” in Migrating to Windows Phone. Apress, 2011, pp. 217–242.

[6] K. J. Boudreau, “Let a thousand flowers bloom? an early look at
large numbers of software app developers and patterns of innovation,”
Organization Science, vol. 23, no. 5, pp. 1409–1427, 2012.

2http://www.androidcentral.com/best-alarm-clock-apps-android

[7] Google play store. [Online]. Available: http://play.google.com/store/
apps/

[8] G. Anthes, “Invasion of the mobile apps,” Commun. ACM, vol. 54, no. 9,
pp. 16–18, Sep. 2011.

[9] R. Sandberg and M. Rollins, “Making sure your app will succeed,” in
The Business of Android Apps Development. Apress, 2013, pp. 15–30.

[10] R. M. Müller, B. Kijl, and J. K. J. Martens, “A comparison of inter-
organizational business models of mobile app stores: There is more than
open vs. closed,” J. Theor. Appl. Electron. Commer. Res., vol. 6, no. 2,
pp. 63–76, Aug. 2011.

[11] A. Hammershoj, A. Sapuppo, and R. Tadayoni, “Challenges for mobile
application development,” in Intelligence in Next Generation Networks
(ICIN), 2010 14th International Conference on, Oct 2010, pp. 1–8.

[12] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models of
mobile app privacy through crowdsourcing,” in Proceedings of the 2012
ACM Conference on Ubiquitous Computing, ser. UbiComp ’12, 2012,
pp. 501–510.

[13] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and H. Borgthorsson,
“Leakiness and creepiness in app space: Perceptions of privacy and
mobile app use,” in Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems, ser. CHI ’14, 2014, pp. 2347–
2356.

[14] P. H. Chia, Y. Yamamoto, and N. Asokan, “Is this app safe?: a large
scale study on application permissions and risk signals,” in Proceedings
of the 21st international conference on World Wide Web. ACM, 2012,
pp. 311–320.

[15] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu, “Riskmon: Continuous and
automated risk assessment of mobile applications,” in Proceedings of
the 4th ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’14. New York, NY, USA: ACM, 2014, pp. 99–110.

[16] J. Ziegler, M. Graube, J. Pfeffer, and L. Urbas, “Beyond app-chaining:
Mobile app orchestration for efficient model driven software generation,”
in Emerging Technologies Factory Automation (ETFA), 2012 IEEE 17th
Conference on, Sept 2012, pp. 1–8.

[17] S. Hess, F. Kiefer, and R. Carbon, “Quality by construction through
mconcappt: Towards using ui-construction as driver for high quality
mobile app engineering,” in Quality of Information and Communications
Technology (QUATIC), 2012 Eighth International Conference on the,
Sept 2012, pp. 313–318.

[18] M. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile
app development,” in Empirical Software Engineering and Measurement,
2013 ACM / IEEE International Symposium on, Oct 2013, pp. 15–24.

[19] T. Pierce and D. Wooldridge, “Keys to the kingdom: The app store
submission process,” in The Business of iOS App Development. Apress,
2014, pp. 333–376.

[20] M. Privat and R. Warner, “Submitting to the mac app store,” in Beginning
OS X Lion Apps Development. Apress, 2011, pp. 323–363.

[21] H. Lee and E. Chuvyrov, “Packaging, publishing, and managing appli-
cations,” in Beginning Windows Phone 7 Development. Apress, 2010,
pp. 121–138.

[22] F. Software, “Taking your app to market,” in Pro Windows Phone App
Development. Apress, 2013, pp. 517–528.

[23] R. Lewis and L. Moroney, “Deploying your app to the app store,” in
iPhone and iPad Apps for Absolute Beginners. Apress, 2013, pp. 273–
303.

[24] F. Di Cerbo, M. Bezzi, S. Kaluvuri, A. Sabetta, S. Trabelsi, and V. Lotz,
“Towards a trustworthy service marketplace for the future internet,” in
The Future Internet, ser. Lecture Notes in Computer Science, F. lvarez,
F. Cleary, P. Daras, J. Domingue, A. Galis, A. Garcia, A. Gavras,
S. Karnourskos, S. Krco, M.-S. Li, V. Lotz, H. Mller, E. Salvadori,
A.-M. Sassen, H. Schaffers, B. Stiller, G. Tselentis, P. Turkama, and
T. Zahariadis, Eds. Springer Berlin Heidelberg, 2012, vol. 7281, pp.
105–116.

[25] R. Vasa, L. Hoon, K. Mouzakis, and A. Noguchi, “A preliminary analysis
of mobile app user reviews,” in Proceedings of the 24th Australian
Computer-Human Interaction Conference, ser. OzCHI ’12, 2012, pp.
241–244.

[26] L. Hoon, R. Vasa, J.-G. Schneider, and K. Mouzakis, “A preliminary
analysis of vocabulary in mobile app user reviews,” in Proceedings of the
24th Australian Computer-Human Interaction Conference, ser. OzCHI
’12, 2012, pp. 245–248.

[27] E. Platzer and O. Petrovic, “Learning mobile app design from user
review analysis,” iJIM, vol. 5, no. 3, pp. 43–50, 2011.

[28] D. Damopoulos, G. Kambourakis, S. Gritzalis, and S. Park, “Exposing
mobile malware from the inside (or what is your mobile app really
doing?),” Peer-to-Peer Networking and Applications, vol. 7, no. 4, pp.
687–697, 2014.

[29] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security,
ser. SOUPS ’12, 2012, pp. 3:1–3:14.

[30] P. POCATILU, “Android Applications Security,” Informatica Econom-
ica, vol. 15, no. 3, pp. 163–171, 2011.

[31] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New York,
NY, USA: ACM, 2011, pp. 627–638.

[32] S. Liebergeld and M. Lange, “Android security, pitfalls and lessons
learned,” in Information Sciences and Systems 2013, ser. Lecture Notes
in Electrical Engineering, E. Gelenbe and R. Lent, Eds. Springer
International Publishing, 2013, vol. 264, pp. 409–417.

[33] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the 36th International Con-
ference on Software Engineering. ACM, 2014, pp. 1036–1046.

[34] G. Dini, F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, and
D. Sgandurra, “A multi-criteria-based evaluation of android applica-
tions,” in Trusted Systems. Springer, 2012, pp. 67–82.

[35] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 1025–1035.

[36] K. Alharbi, S. Blackshear, E. Kowalczyk, A. M. Memon, B.-Y. E. Chang,
and T. Yeh, “Android apps consistency scrutinized,” in CHI ’14 Extended
Abstracts on Human Factors in Computing Systems, ser. CHI EA ’14.
New York, NY, USA: ACM, 2014, pp. 2347–2352.

[37] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege
separation for applications and advertisers in android,” in Proceedings
of the 7th ACM Symposium on Information, Computer and Communica-
tions Security, ser. ASIACCS ’12. New York, NY, USA: ACM, 2012,
pp. 71–72.

[38] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, ser. WISEC ’12. New York, NY, USA: ACM, 2012, pp.
101–112.

[39] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications.” in USENIX Security,
vol. 13, 2013.

[40] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Au-
tocog: Measuring the description-to-permission fidelity in android ap-
plications,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 1354–1365.

[41] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications,” Manuscript, Univ. of
Maryland, http://www. cs. umd. edu/avik/projects/scandroidascaa, vol. 2,
no. 3, 2009.

[42] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “Api change and fault proneness: a
threat to the success of android apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. ACM, 2013,
pp. 477–487.

[43] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th ACM
conference on Computer and communications security. ACM, 2010,
pp. 73–84.

[44] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks

of android apps,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 241–252.

[45] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments:
an approach for software requirements evolution,” in Proceedings of
the 2013 International Conference on Software Engineering, 2013, pp.
582–591.

[46] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1276–1284.

[47] E. Malmi, “Quality matters: Usage-based app popularity prediction,” in
Proceedings of the 2014 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing: Adjunct Publication, ser. UbiComp
’14 Adjunct. New York, NY, USA: ACM, 2014, pp. 391–396.

[48] E. Chikofsky and I. Cross, J.H., “Reverse engineering and design
recovery: a taxonomy,” Software, IEEE, vol. 7, no. 1, pp. 13–17, Jan
1990.

[49] H. A. Müller, S. R. Tilley, and K. Wong, “Understanding software
systems using reverse engineering technology perspectives from the
rigi project,” in Proceedings of the 1993 Conference of the Centre for
Advanced Studies on Collaborative Research: Software Engineering -
Volume 1, ser. CASCON ’93, 1993, pp. 217–226.

[50] D. Amalfitano, A. Fasolino, and P. Tramontana, “Using dynamic analysis
for generating end user documentation for web 2.0 applications,” in Web
Systems Evolution (WSE), 2011 13th IEEE International Symposium on,
Sept 2011, pp. 11–20.

[51] N. Gold, A. Mohan, C. Knight, and M. Munro, “Understanding service-
oriented software,” Software, IEEE, vol. 21, no. 2, pp. 71–77, March
2004.

[52] A. von Mayrhauser and A. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–
55, Aug 1995.

[53] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’04, 2004, pp. 168–
177.

[54] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258–261.

[55] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta, and A. Memon,
“Mobiguitar – a tool for automated model-based testing of mobile apps,”
Software, IEEE, vol. PP, no. 99, pp. 1–1, 2014.

[56] M. B. Cohen, S. Huang, and A. M. Memon, “Autoinspec: Using missing
test coverage to improve specifications in guis,” in Proceedings of
the 2012 IEEE 23rd International Symposium on Software Reliability
Engineering, ser. ISSRE ’12, 2012, pp. 251–260.

[57] “Apktool.” [Online]. Available: http://ibotpeaches.github.io/Apktool/
[58] “dex2jar,” a tool for converting Android’s .dex format to Java’s .class

format. [Online]. Available: http://code.google.com/p/dex2jar/
[59] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing

the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12,
2012, pp. 217–228.

[60] “Google: Android documentation.” [Online]. Available: http://developer.
android.com

[61] “symantec: Android.umeng.” [Online]. Available: http://www.symantec.
com/security response/writeup.jsp?docid=2014-040307-5749-99

[62] “Google play store listings start showing the new content ratings
and interactive elements on the web.” [Online]. Available: https:

//lockerdome.com/androidpolice/7718397613978644

