

Call Stack Coverage for Test Suite Reduction
Scott McMaster and Atif M. Memon

Department of Computer Science, University of Maryland, College Park, MD 20742
{scottmcm, atif}@cs.umd.edu

Abstract

Test suite reduction is an important test maintenance
activity that attempts to reduce the size of a test suite with
respect to some criteria. Emerging trends in software
development such as component reuse, multi-language
implementations, and stringent performance requirements
present new challenges for existing reduction techniques
that may limit their applicability. A test suite reduction
technique that is not affected by these challenges is
presented; it is based on dynamically generated
language-independent information that can be collected
with little run-time overhead. Specifically, test cases from
the suite being reduced are executed on the application
under test and the call stacks produced during execution
are recorded. These call stacks are then used as a
coverage requirement in a test suite reduction algorithm.
Results of experiments on test suites for the space
antenna-steering application show significant reduction
in test suite size at the cost of a moderate loss in fault
detection effectiveness.

1. Introduction
Test-suite reduction typically employs sophisticated

tools such as source-code analyzers and instrumentors to
reduce the number of test cases in a given test suite; the
obtained subset yields equivalent coverage with respect to
some criterion [8, 12, 13, 16, 17]. Emerging trends in
software development present new challenges for existing
reduction techniques that may limit their applicability.
First, developers rely heavily on reusable components.
Source code of these components is usually not available,
limiting the application of source-code level instrumentors
and analyzers [11]. Second, developers use a combination
of programming languages to implement systems. Certain
static analyzers and source-code instrumentors may not be
available (or may be too complex/expensive to execute)
for some of these languages. For example, some static
analyses become complex in object-oriented systems due
to the presence of virtual function calls. Even if analysis
techniques are available for each language, combining the
results from different analyses may become complex.
Finally, systems such as servers, network protocol
implementations, and middleware software have strict
quality of service (QoS) requirements. Test cases that
check for performance in these systems may not tolerate
the overhead of instrumentation needed for test suite

reduction. Decreased performance (even during in-house
testing) may cause these test cases to fail, hence producing
incorrect results [10].

In this paper, we describe and evaluate a new test
suite reduction technique based on the set of unique call
stacks dynamically generated by the test suite. A call stack
represents the currently active function calls in a stack-
based execution environment, in the order in which the
calls occurred. Intuitively, test cases whose execution
profiles generate the same call stacks are also repetitive in
the application functionality and structure that they test,
thus making our criterion a good candidate to have a
favorable tradeoff between suite size and fault detection
effectiveness. It is possible to collect the set of unique
call stacks in many computing environments with minimal
or no direct instrumentation of the target program. All
that is strictly required is environmental hooks similar to
those used by profiling and debugging tools (always
available on all development platforms), thus greatly
reducing the complexity of employing the technique.
Additionally, collecting call stacks and analyzing them
does not require access to the source code. Finally, since
the actual resolved function activation records appear on
the runtime stack, our technique is language independent.

In the next section, we present background on test
suite reduction and call stacks. In Section 3, we describe
the use of call stacks for test coverage. Section 4 describes
the call-stack collection and test suite reduction
algorithms. Section 5 contains a detailed description of
our experiments and results. Section 6 surveys related
work, and Section 7 concludes and proposes future
research.

2. Background
Test Suite Reduction: As software is developed, test
engineers create test cases to detect defects in the
software. Engineers may employ several test case
generation techniques to create large numbers of test cases
that are potentially beneficial in terms of their defect
detection ability. As software is modified, test cases are
added to cover its new and modified features. At some
point in the software development lifecycle, the time it
takes to run the entire test suite against a modified version
of the software may become excessive.

Since test cases may be redundant with respect to the
statements, functions, paths, or other program elements

they execute, researchers have investigated the problem of
test suite reduction [8, 12, 13, 16, 17], which focuses on
reducing the test suite to obtain a subset that yields
equivalent coverage with respect to some criterion. The
goal of test suite reduction is to generate a test suite that is
smaller (and therefore cheaper to execute and maintain)
but that still retains much of its original ability to detect
faults.

A variety of static and dynamic program analysis
criteria have been proposed as the basis for test suite
reduction, including edge coverage [13], all-uses dataflow
coverage [18], and dynamic program invariants [7]. The
general approach is to completely instrument a set of
program entities to record information about each entity’s
coverage, execute the test suite, and reduce based on the
collected coverage information. Since different
techniques monitor different program entities or
behaviors, they have different costs and application
environments. Moreover, they generally select different
reduced subsets of test suites and therefore have different
tradeoffs between reduced suite size and fault detection
effectiveness.
Call Stacks: In a stack-based architecture, a thread in a
running program has a call stack as a part of its state.
Informally, the call stack is simply the series of currently
active calls. Function activation records are pushed onto
the call stack when they are called and popped when they
return.

An example call stack in this form is shown in Figure
1. The top of the stack is at the top of the figure as
indicated by the arrow.

Figure 1: A call stack.

Formally, we define a call stack c as an ordered
sequence of functions (for the discussion in this paper, we
consider the programming language concepts of
“methods” and “procedures” to be identical to functions.)
f1...fn:

(1) c = <f1, f2, … fn-1, fn>

where function f1 is the entry point of the thread of
execution and function fi calls function fi+1, either directly
or indirectly through an intervening function. We allow
for indirect calls in our definition of a call stack because
in practice, it may not be possible to observe the full call
chain due to limitations in the execution environment or
program instrumentation technique. In such cases,
however, we stipulate that the call stack should consist of

all functions that are, in fact, observable. The last element
in the sequence, fn, is the top of the stack, and n, the size
of the sequence, is the depth of the stack. For the
purposes of call stack-based analyses, the following two
representations of the functions fi are possible:
1. Name: a function may be denoted by just its Name

(class-qualified in an object-oriented system) or
memory address.

2. Full Signature: a function may be denoted by its Name,
parameter types, and return types. This may be useful
for an analysis that can, for example, distinguish
between call stacks using different overloads of a
function in an object-oriented environment.

A call stack containing at least one recursive function
is a recursive call stack. A call stack with no such
function is a non-recursive call stack.

Call Stacks and Program Execution. The current stack
is the call stack obtained by examining the current set of
active functions in an executing program. Each program
execution may be viewed as generating a set of current
stacks over its lifetime. The set of all such unique stacks
shall be denoted as C. In general, encoding more details
into the function representation by using the full signature
rather than just the function name may increase the
number of unique call stacks observed in an execution,
leading to a finer-grained analysis with an associated
increase in analysis costs.

A call stack of depth n implies that at some prior
point in the program execution, the (n-1) substacks of that
stack were themselves the current stack. This is illustrated
in Figure 2.

If c = <f1, f2, … fn> is a call stack of depth n, we
define a substack cs (denoted by a subscript s) and a
superstack cs (denoted by a superscript s) as the following
ordered sequences, which are themselves call stacks:

(2) cs = <f1, f2, … fi>, i < n

(3) cs = <f1, f2, … fn, … fi>, i > n

Figure 2: The stack on the left implies that the

substacks on the right represented the current
sequence of active calls at some earlier point.

For a given call stack c in any program execution,
there is associated with c a set of substacks Cs and a set of
superstacks Cs. We define the set of deepest, or maximum
depth, stacks Cmax in a program execution as follows:

(4) Cmax = {c ∈ C | cs = ∅}

where ∅ is the empty set. Since each maximum depth
stack implies the existence of all of its substacks in C,
Cmax is a more compact representation of the set of all
unique call stacks generated by a program execution.

3. Call Stacks and Test Coverage

We define a test case as input given to a program in
order to test one or more aspects of the program. Running
a test case tc from a test suite TS implies the execution of
the program, which itself implies that a set of maximum
depth call stacks Cmax(tc) generated by the execution can
be associated with tc. We consider two test cases tc1 and
tc2 to be equivalent if they generate identical sets of
maximum depth call stacks.

(5) tc1 ~ tc2 iff Cmax(tc1) = Cmax(tc2)
Since a test suite is a set of test cases, we denote the

union of all Cmax’s for all the test cases in a test suite TS
as:

(6) Cmax(TS) = {∪ Cmax(tc) | tc ∈ TS }
Our technique considers a maximum depth call stack

to be a coverage requirement in the test suite reduction
algorithm ReduceTestSuite [1]. Thus, execution of a
reduced test suite TSreduced will generate the same set of
unique maximum depth call stacks as execution of its
original (full) counterpart TSfull, i.e., Cmax(TSfull) =
Cmax(TSreduced).

From a test coverage point of view, examination of
call stacks is, by definition, a superset of function
coverage since every function covered by an execution
must appear in at least one generated call stack. But call
stacks encode more semantic information than that, as
each function call is not observed in isolation but rather in
the context of other calls leading up to it. Intuitively, this
suggests that striving to cover each function in as many
call stacks as possible would be a more thorough driver of
testing than function coverage alone. We later show in
Section 5 that, compared to function coverage, call stack
coverage does retain more fault detection ability of test
cases.

Applying our technique in practice assumes that call
stack coverage information is available from prior runs of
the test suite, and that such information can be used to
generate good testing partitions in modified versions of
the software with a fair degree of accuracy. These
assumptions are often made in work involving test suite
reduction, prioritization, and regression test selection
(e.g., [14]).

4. Algorithm
We now present an algorithm to collect call stacks

from a series of program executions generated by a test
suite, and then show how to use these call stacks to reduce
the suite.
Collecting Call Stacks: To write a tool to collect the set
of unique call stacks generated by a test case, we need
only know when functions are called and when they
return. Hence, function addresses are adequate to identify
call stacks if we ensure that program and library code
segments are loaded at consistent base addresses in each
execution. A test designer may also obtain this
information in other ways, e.g., by source or binary
instrumentation, by attaching a profiler, or by a
combination of these approaches. The most appropriate
technique for a given application will depend on the
availability of source code and the availability of
appropriate tools for the target language and platform.
Note that symbolic information about program functions
may be helpful but is not strictly necessary.

A preliminary approach to building the set of unique
call stacks would be to record the dynamic execution trace
of the program in the form of calls and returns. Then, the
call stacks obtained by each test case could be
reconstructed and analyzed to determine their uniqueness
in an offline post-processing step. The primary difficulty
with this approach is that the volume of data generated by
each test case increases linearly with the length of the test
case, and this volume of data can easily make the analysis
prohibitively expensive in both time and space.

An alternative approach, and the one we have used in
our work, is to construct the application’s calling context
tree, or CCT [2], as a test case is running. The CCT is a
tree data structure where the root represents the function
that is the entry point of a thread, and each child node
represents a call to a specific function made by its parent.
It is possible to construct a CCT efficiently at runtime by
using the following process, which is discussed in more
detail in [2]:

1. Create a node representing the entry point of the
thread and make it the current node.
2. When a function is called:

a. If the current node has a child node
representing the called function, make that the
current node.
b. If a node representing the called function is an
ancestor of the current node, the call is recursive.
Create a backedge to that ancestor node and
make it the current node. (Note that in the
presence of backedges, a dag needs to be used
instead of a CCT.)
c. If the current node does not have a child node
representing the called function, create such a
node and make it the current node.

3. When a function returns, set the current node to its
parent.
This process can be accomplished at roughly the

runtime cost of attaching a simple function-level profiler.
More importantly, while generally large for non-trivial
applications, the size of the CCT data structure depends
only on the size of the set of unique call stacks and not on
the run-time data generated by each test case, thus making
the resulting data volume manageable.

At the end of test case execution, we traverse each
path to a leaf in the CCT, not following any backedges
caused by recursion. The resulting set of paths gives us
the set of unique non-recursive maximum depth call stacks
obtained by the test case. To collect the set of unique
recursive maximum depth stacks, we can modify the CCT
data structure to associate a counter with each backedge
that is incremented when a recursive call is made. During
traversal, we follow the backedge as many times as the
counter indicates. Consideration of recursive maximum
depth call stacks in the context of test suite reduction is a
subject for future work. Henceforth, when we say
“maximum depth stacks”, we will be referring to non-
recursive maximum depth stacks.
Reducing Test Suites: After executing the test suite and
collecting the call stacks covered by each test case
(encoded as a CCT), we are ready to reduce the suite
using a two-step process.

Step 1: Merge Stacks from Different Test Cases.
Our goal is to obtain a reduced test suite that covers each
unique maximum-depth call stack generated by the full
test suite. Thus, we must build a set of all such call stacks
before reducing the suite. We can do this by merging the
sets of maximum-depth stacks generated by the individual
test cases in the original suite.

However, we must consider the situation where a
maximum-depth stack of one test case is a substack of a
maximum-depth stack of another test case. Consider the
example where Test Case 1 (tc1) has a maximum-depth
stack c1 = <f1, f2, f3> and Test Case 2 (tc2) has a
maximum-depth stack c2 = <f1, f2>, i.e., a call from f1 to f2
where f2 never calls f3. One approach in this case would
be to treat c2 as though it were a unique maximum-depth
stack across the entire suite and include it in the merged
set. This approach has the advantage of not requiring that
we determine the substack relationship when inserting
each stack into the merged set. Moreover, the second
stack may represent an execution profile where there is a
program failure that causes f2 to not call f3; removing the
test case might potentially remove such fault-detection
capability – we will study this effect in the future. The
disadvantage to this approach is that it introduces a
redundant coverage requirement and therefore may lead to
a worse reduction than we might otherwise obtain.
Another approach is to check each stack before inserting it
into the merged set to ensure that it is not a substack of

any previously inserted stack. Obviously this approach is
more computationally intensive, but it should yield the
best possible reduction. Because one of our goals in this
work is to examine the size reduction achieved by the call
stack reduction technique (we later show in Section 5 that
the time to compute the reduced set, even with this
overhead, is very small), we choose the latter approach.

Step 2: Reduce the Test Suite. Finally, we use our
call stack coverage information to reduce the size of the
test suite to only those test cases necessary to generate the
full set of unique maximum depth call stacks. Given a test
suite and test case coverage information, the problem of
generating a minimum number of test cases that meet the
coverage criteria is NP-complete [8]. Thus, existing
techniques for coverage-based reduction generate
approximations using greedy or heuristic approaches.

In this work, we apply the ReduceTestSuite heuristic
from [8]. Briefly, the heuristic begins by including all
test cases that cover a single requirement. Then it picks a
test case that covers the most requirements from the
subsets of cases with the next lowest cardinality, marking
all of the subsets that contain this case. This process
occurs repeatedly for higher cardinality subsets until all
subsets are marked and, therefore, all requirements are
covered. For a more formal treatment of this algorithm,
including an analysis of its running time and an
application to data flow testing, see [8]. To utilize
ReduceTestSuite, we define each unique call stack as a
coverage requirement. Then we associate each
requirement with the subset of test cases that covered it
and run the algorithm as specified in [8].

5. Experiments
We implemented the call-stack collection and

reduction algorithms and ran two experiments to evaluate
our test suite reduction technique.
Research Questions: We sought to evaluate the call stack
reduction technique in terms of the size and fault detection
effectiveness of the resulting test suites. Specifically, we
wanted to directly compare the call-stack based technique
to reduction based on two different types of coverage:
edge and function. We also wanted to investigate whether
test suites created by call stack reduction preserved more
fault-detecting ability than randomly reduced suites of the
same size. Finally, we wanted to determine the cost of
applying our technique in terms of execution time. To that
end, we designed two experiments that we present next:
(1) Experiment 1, in which we compared call stack based
reduction with edge-coverage and random reduction, and
(2) Experiment 2, in which we compared call stack
reduction to function-coverage based reduction.
Subject Application: The application we used in our
experiments is space [14]. Space is an antenna-
steering system developed by the European Space Agency
written in C and comprised of about 6200 non-

commentary lines of code. It is well studied in the area of
regression test selection because of the availability of a
test pool of 13,585 existing test cases as well as 38
program versions containing naturally occurring faults.
Of these 38 faulty versions, we identified and used the 34
that were not semantically equivalent to the base version.
Instrumentation: To illustrate the practicality of using
binary instrumentation to capture call stacks at runtime,
we used the Detours package [9] to instrument the space
executable. Detours is a library that allows dynamic
interception of binary function calls on the Win32
platform without modifying the on-disk program. We
used Detours’ “dynamic trampoline” functionality to
insert hooks at each function entry and exit in space to
build the CCT. This approach required specific
instrumentation code for each function in space and the
use of a version containing debugging symbols. This
instrumentation code was generated by a tool whose input
was a list of function prototypes. The generated code was
built into a separate code module attached to the space
process at runtime using functionality in Detours. Thus,
neither the source code nor the on-disk program for
space was modified. Because space does not overload
function names, our call stack representation may use
function names rather than full function signatures with no
change in outcome. Also, because space is not a
recursive program, considering non-recursive maximum
depth stacks as discussed in Section 4 yields identical
results to a hypothetical approach that considered
recursive stacks as well.

Since space uses the Standard C Library, we needed
to address instrumenting that code as well. Instead of
instrumenting all public and internal functions in the
library (which would require examination of the full
library source code in our Detours-based approach), we
chose to only instrument those functions defined in the
public C library headers and called by space or a macro
used by space. Thus, internal library functions do not
appear on the call stacks we collected, making them in
fact an approximation. There is a tradeoff between the
level of detail included in the call stacks (and thus the
effectiveness of the technique) on one hand and the
practicality of instrumentation and analysis time on the
other. In future work, we plan to investigate this tradeoff
by repeating the experiments with a fully instrumented
Standard Library (possibly using a more amenable
instrumentation technique such as the finstrument-
functions flag in gcc [1] or similar functionality in other
compilers), as well as repeating the experiments without
considering library function calls in call stacks at all.
Measured Variables: We measured fault detection
effectiveness on a per-test-suite basis, i.e., two test suites
were considered to be equally effective at detecting a
specific fault if they each contain at least one case that

exposes the fault. This is the approach adopted in [12]
and [17]. For each reduction experiment, we captured the
percentage size reduction:

(1)

−×

Full

Reduced

Size
Size1100

and percentage fault detection reduction:

(2)

−×

Full

Reduced

ctedFaultsDete
ctedFaultsDete1100

Since we dealt with a fairly small number of discrete
faults in our experiments, we took averages of these
quantities over large numbers of suites. The precise
number of suites is noted in each experiment.
Threats to Validity: Threats to external validity are
factors that may impact our ability to generalize our
results to other situations. Our main threat to external
validity in this study is the small sample size. Thus far,
we have only run our data collection and test suite
reduction process on one program, which we chose for its
availability. This program may not be representative of
the broader population of programs. An experiment that
would be more readily generalized would include multiple
programs of different sizes and from different domains.
Additionally, we would expect the effectiveness of the call
stack minimization process to vary depending on aspects
of the programming style used in the target application. In
particular, when the application is composed of many
small functions, call stacks provide finer-grained dynamic
state information. This should increase the effectiveness
of our minimization technique relative to what it could do
against an application that implemented the same behavior
using relatively fewer functions. (Consider the
pathological case where a program is composed of a
single large function, which would have but a single call
stack for all executions.) Finally, characteristics of
original test suites (such as their fault detecting ability and
how they were constructed) play a role in the size and
fault detection reduction results. This threat can be
addressed in future work by choosing original test suites
satisfying a variety of coverage criteria.

Threats to construct validity are factors in the
experiment design that may cause us to inadequately
measure concepts of interest. In our experiments, we
made several simplifying assumptions in the area of costs.
In test suite reduction, we are primarily interested in two
different effects on costs. First, there is the cost savings
obtained by running fewer test cases. In this study, we
assume that each test case has a uniform cost of running
(processor time) and monitoring (human time). These
assumptions may not hold in practice. The second cost of
interest is the cost of failing to find faults during testing as
a result of running fewer test cases. Here we assume that

each fault contributes uniformly to the overall cost, which
again may not hold in practice. We note that our
assumptions are the same as those made in other studies of
test suite reduction, including [13] and [16], and thus have
precedent as a basis for conclusions about reduction
techniques.
Information-Gathering Preprocessing Step &
Feasibility Study: We executed each test case in the test
pool against the fault-free version of the space program,
collecting the unique call stacks from each test case.
During this process, we did not notice any performance
degradation in test case execution. We encountered 143
unique functions comprising 453 unique maximum depth
call stacks. Then we executed each test case against each
of the 34 faulty versions and recorded the set of faults
detected by each case.

The data gathered during this preprocessing step
allowed us to create any number of test suites composed
of the previously executed test cases and know the set of
unique call stacks and faults detected by the suite with no
further execution of the program. Hence, it was not
necessary to run each test suite under study against each
version of the subject program. This simulation approach
is similar to one used by Frankl [5, 6] to evaluate
adequacy criteria and test effectiveness.

As an initial informal demonstration of the
practicality of our algorithm, we evaluated the time taken
to reduce randomly generated test suites ranging in size
from 50 to 1000 test cases in increments of 50. (We
formally evaluate the fault detection effectiveness of
suites created in this manner in Section 5). We created
five suites of each size and, using the information
obtained in the preprocessing step, applied the three-step
reduction process described in Section 4. We averaged
amount of wall time taken to reduce the five suites and
plotted against original suite size. The test platform was a
2.4 GHz Pentium 4 running Windows XP Professional,
and our test suite reduction process was implemented as a
set of scripts in the interpreted Ruby language [15] with
the ReduceTestSuite algorithm itself implemented in C#.

0

50

100

150

200

250

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

Original Suite Size

Ti
m

e
to

 R
ed

uc
e

(s
ec

)

Figure 3: Time to Reduce Suites

The results of this experiment appear in Figure 3. The

x-axis shows the original suite size and the y-axis shows
the time in seconds. We observe that the amount of time
to execute the reduction process scales roughly linearly
with the size of the original test suite, and even the largest
suites we considered took less than four minutes of wall
time on average to reduce on the test platform in the test
environment.
Experiment 1: Reducing Edge-Coverage-Adequate
Suites: The goal of our first experiment was to apply call
stack reduction to a set of edge-coverage-adequate test
suites and compare the results to those achieved by edge-
coverage-based reduction. We used the 1000 test suites
for space used by Rothermel et al.[13]. Each of these
suites consists of a random number of test cases drawn
from the pool, augmented with additional test cases to
ensure edge-coverage adequacy. They had an average
size of 2400 test cases and detected on average 33.5 of the
34 detectable faults.1 The largest and smallest of these test
suites had 4712 and 159 test cases respectively.

For our experiment, these suites have two positive
attributes. First, their edge-coverage adequacy arguably
makes them representative of well-designed test suites.
Second, these suites were made available to us along with
a corresponding set of reduced suites that were generated
using edge coverage as the criterion in the
ReduceTestSuite algorithm. Thus, we are able to make a
direct comparison between test suite reduction based on
edge coverage versus reduction based on maximum depth
call stacks.
Experimental Process: We repeated the following steps
for each of the 1000 edge-coverage-adequate test suites.
The large number of suites helps to control for any effects
(such as random fluctuations in effectiveness) caused by
the nature of the test suites themselves.

Step 1. Select a test suite.
Step 2. Form the set of faults detected by the full

suite. To form the set of faults detected by the full test
suite, we merged the sets of faults detected by the
individual test cases in the suite.

Step 3. Form the set of unique call stacks for the
full suite. The set of unique call stacks that would be
generated by a run of the full test suite was created by
merging those generated by the individual test cases,
eliminating any maximum depth stacks of one test case

1 Our fault detection reduction numbers for the Rothermel suites

will differ from what is presented in [13] because the work in
[13] is based on 35 detectable faults. We used a different
compiler in which one of those 35 faults was eliminated or
masked. Because we evaluated the Rothermel suites against
our own fault detection information based on the newer
compiler, this does not affect the validity of any of our
comparisons.

that are substacks of maximum depth stacks of another
test case.

Step 4. Reduce the test suite using the heuristic.
Here we applied the heuristic from [8] to reduce the test
suite to just those cases necessary to cover each
maximum depth call stack.

Step 5. Form the set of faults detected by the
reduced suite. Forming the set of faults detected by the
reduced suite was carried out by merging the sets of
faults detected by the individual test cases selected to be
part of the reduced suite.

Step 6. Calculate results. Using the sets of
detected faults built in steps 2 and 5, we calculated the
percentage size reduction and percentage fault detection
reduction when going from the full to the reduced test
suite. These quantities were described in Section 5.

Evaluation and Results: Figure 4 shows the absolute
sizes of test suites reduced based on both edge (dark data
points on the plot) and call stack (light data points)
coverage versus original suite size. The plot shows that
call stack reduction was able to obtain suites that were
roughly half the size of the ones obtained by edge
coverage. Both techniques, however, lost some fault-
detection ability in their reduced test suites. Figure 5
shows box-plots of the number of faults detected by the
full, edge reduced, call stack, and random (we describe
“random” later in a subsequent paragraph in this section)
reduced test suites. Each box (with tails) represents a data
distribution; the box itself contains the central 50% of the
data-points in the distribution and each tail represents
25%; the dot inside the box shows the median. Hence,
looking at the box for “Full-suite faults”, we note that the
original (unreduced) test suites were able to detect
between 30 and 35 faults; most of them detected 33-34
faults. As noted earlier, the “edge-coverage reduced
faults” box shows a reduction in fault-detection ability; on
the average 30 faults were detected. The call stack based
reduction resulted in test suites that detected a comparable
(although slightly smaller) number of faults than their
edge-coverage reduced counterparts. Note, however, that
the edge-coverage reduced suites were much larger
(double) than the call-stack reduced ones.

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000

Original Suite Size

R
ed

uc
ed

 S
ui

te
 S

iz
e

Edge Coverage Reduction Call Stack Coverage Reduction

Figure 4: Reduced Suite Sizes

0

5

10

15

20

25

30

35

40

Full Suite
Faults

Edge Coverage
Reduced

Faults

Call Stack
Coverage
Reduced
Faults

Random
Reduced

Faults

Fa
ul

ts
 D

et
ec

te
d

Figure 5: Fault Detection Reduction

Means Over 1000 Test Suites

Original Edge-Reduced Call Stack-Reduced Random-Reduced

Size Faults
Detected

Size Faults
Detected

Size Faults
Detected

Size Faults
Detected

2399.5 33.5 121.7 30.4 60.0 28.0 60.0 24.2

% Reduction From
Original

90.1 9.2 95.2 16.3 95.2 27.6

Table 1: Reduction results for edge coverage
adequate suites

The results of this experiment are summarized in

Table 1. The table shows a large average test suite size
reduction (95.2%) and a fault detection reduction of
approximately 16% when using call stack reduction. In
contrast, using edge coverage as the reduction criterion
led to a smaller percentage reduction (90.1%) and a
smaller loss in fault detection effectiveness (9.2%). In
absolute terms, suites resulting from call-stack-based
reduction were less than half the size (60.0 versus 121.7
test cases on average) of suites resulting from edge-based
reduction while detecting an average of about 2 fewer
faults. The practical trade-off between suite size and fault
detection capability may favour the use of call stacks as
opposed to edges as a coverage criteria for reduction in
certain scenarios, such as when edge coverage results in
suites too large to run inside time constraints.
Additionally, we maintain that the tools to collect call
stack coverage information are significantly simpler to
develop and use than those necessitated by edge coverage.

To further validate the effectiveness of the call stack
reduction technique, we used the approach taken in [13] to
permit us to compare call stack reduction to random
reduction. Specifically, we compared each call stack
reduced suite to a suite of the same size generated by
randomly selecting test cases from the original suite. (The
random-reduced suites are compared with the edge and
call stack reduced suites in Figure 5 and Table 1.) We
then performed a paired-T test across all 1000 samples.
The paired-T test is a statistical test used to determine
whether the means of two sets of samples differ in a

statistically significant way, i.e., any differences are not
the result of random fluctuations. The null hypothesis
(H0) is that there is no difference between the percentage
reductions in fault detection effectiveness between call
stack reduced test suites and randomly reduced suites of
the same size. The key output of a paired-T test is the p-
value, where p < 0.05 indicates statistical significance.
Thus, the null hypothesis would be rejected only if p <
0.05, and the alternate hypothesis (H1), i.e., there is a
statistically significant difference between the two sets,
would be accepted.

Where the call stack reduced suites lost just over 16%
of their fault detection ability, the paired random suites of
the same size lost nearly 28%, a difference of over 11%.
Because the p-value of the paired-T test is of the order of
10e-221 (t999, 0.975 = 24.11), which is much less than 0.05,
we can safely reject the null hypothesis, accept the
alternate hypothesis and conclude that call stack reduction
retains fault detection effectiveness better than random
reduction to the same suite size.
Experiment 2: Reducing Various Sizes of Test Suites:
The goal of this experiment was to evaluate call stack
coverage reduction versus function coverage reduction on
sets of randomly generated test suites of different fixed
sizes. We randomly generated test suites in 20 sizes
ranging from 50 to 1000 test cases in increments of 50.
Experimental Process: The approach and evaluation are
similar to Experiment 1. The primary differences are that
we control the original suite size, and we compare to
suites reduced based on function coverage. We repeated
the same six steps of Experiment 1 on each test suite
created by random selection without replacement from the
test pool. In order to minimize the statistical effects of
both the relatively small number of faults and the differing
difficulty of detecting them with cases from the test pool
we took averages over 50 suites of each size. Hence, in
all, we report results for 50x20=1000 test suites.

0

20

40

60

80

100

120

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

Original Suite Size

%
 S

iz
e

Re
du

ct
io

n

Call Stack
Function

Figure 6: Size of Reduced Suites

Evaluation and Results: Figure 6 and Figure 7 show the
reduced test suites size and percentage fault detection

reduction, respectively, versus the original test suite size.
Note that the relatively small number of available faults
makes the analysis highly sensitive to the detection of
individual faults, thereby leading to some jaggedness in
the graphs.

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Original Suite Size

%
 F

au
lt

D
et

ec
tio

n
R

ed
uc

tio
n

Call Stack Function Random - Same Size as Call Stack
Figure 7: Percent Fault Detection Reduction

Consistent with the findings in [16], fault detection

effectiveness generally decreases as the percentage
reduction in suite size increases. At the same time, the
number of faults detected by the reduced suite increases as
the original suite size increases, tapering off as it
approaches the maximum number of detectable faults,
which is also expected.

We see that reducing based on function coverage
yields smaller suites than reducing based on call stack
coverage. This is to be expected, since function coverage
is a subset of call stack coverage. However, the greater
percentage size reduction comes at the high price of more
than twice as much percentage fault detection reduction
from the original suites. This tradeoff may or may not be
acceptable in practice; however, revisiting the edge
coverage results in Experiment 1, we suggest that call
stack reduction provides a balance between the technical
and procedural simplicity and small reduced suite size
afforded by the function coverage technique and the
greater fault detection effectiveness of the edge coverage
technique.

As in Experiment 1, we paired each call stack
reduced suite to a randomly reduced suite of the same size
and evaluated the significance of our results using a
paired-T test with the null hypothesis that call stack
reduced and randomly reduced suites perform equally well
in terms of percentage reduction in fault detection
effectiveness. The results are shown in Table 2. The
columns show the original test suite sizes with reduced
sizes and loss of fault-detection effectiveness obtained by
function, call stack and random reduction. Here again we
see a statistically significant difference in performance
relative to the fault detection effectiveness metric in favor
of the call stack reduced test suites.

 Means and Paired-T Results Over 50 Paired Samples

Size
(Test
Cases)

Function
Reduced Size
(Test Cases)

Function
Reduced %
Fault Detection
Reduction

Call Stack
Reduced Size
(Test Cases)

Call Stack
Reduced %
Fault Detection
Reduction

Random
Reduced %
Fault Detection
Reduction

P-
Value
Order

(t49,

0.975 =
2.01)

50 18.8 18.9 21.1 6.9 21.4 10e-13

100 19.9 23.6 30.0 9.0 20.7 10e-10

150 20.2 26.4 36.4 9.7 21.9 10e-14

200 20.6 28.3 40.0 12.2 23.1 10e-9

250 20.1 31.6 42.8 13.1 25.0 10e-12

300 20.2 32.4 46.6 12.6 23.7 10-11

350 20.5 31.6 47.7 12.8 24.5 10e-11

400 20.8 31.6 49.8 13.1 23.5 10e-9

450 21.0 32.5 51.8 14.4 25.1 10e-10

500 20.5 33.0 51.3 13.2 23.6 10e-12

550 20.9 33.2 53.5 14.6 24.1 10e-10

600 21.1 33.5 54.1 14.0 24.9 10e-12

650 21.2 32.9 55.4 14.2 24.6 10e-10

700 20.3 36.5 55.8 14.9 25.4 10e-11

750 20.9 35.3 56.7 15.9 28.1 10e-13

800 21.4 33.3 57.4 12.8 27.3 10e-19

850 20.8 35.4 57.5 15.4 25.5 10e-12

900 21.0 35.6 57.8 14.9 27.9 10e-15

950 20.8 35.6 58.1 14.3 26.2 10e-12

1000 20.7 36.5 58.7 15.9 24.1 10e-10

Table 2: Size and fault detection reduction for
different sized suites

Discussion: Clearly, high percentage size reduction and
low percentage fault detection reduction are desired when
using any test suite reduction technique. However,
evaluation of the actual values obtained for percentage
size reduction and percentage fault detection reduction is
subject to the environment in which reduction is to be
employed. For example, in a development or maintenance
scenario where faults are less critical, high percentage size
reduction may be desired and a higher percentage fault
detection reduction may be acceptable. On the other
hand, if time is available to run relatively more test cases
and/or fault detection is critical, one may want lower
percentage size reduction in exchange for lower
percentage fault detection reduction. These tradeoffs
affect the applicability and effectiveness of different test
suite reduction techniques in practice. Furthermore, we
see indications in Figures 4 and 7 that beyond a certain
point, coverage-based test suite reduction tends to yield
similarly sized suites, and the “natural” reduced suite size
varies by coverage criterion. Using this concept, it may
be possible to empirically derive a taxonomy of coverage
techniques in test suite reduction that would guide

practitioners in making size and fault detection tradeoffs.
Future work may explore this idea in more detail.

6. Related Work
Harder, Mellon, and Ernst [7] use dynamic invariant

detection techniques [4] to minimize a test suite. While
running a program, they maintain an “operational
abstraction”, which is a mathematical picture of the
program’s dynamic behavior. The “operational
difference” technique applied to test suite reduction
executes each test case in a suite in turn, and if a test case
does not change the current operational abstraction of the
program, it is discarded. Like call stack reduction (and
unlike most other reduction techniques), this approach
makes use of dynamic program behavior rather than
syntax. However, it has significant performance overhead.

There have been a number of prior studies of the
effects of test suite minimization on fault detection
effectiveness. Wong et al. [16] minimize relative to the
all-uses coverage criterion and observe little or no fault
detection effectiveness reduction in the reduced suites.
They also find a direct relationship between the ease of
finding faults and the likelihood that they will be detected
after minimization. In contrast, Rothermel et al. [12]
minimize with respect to all-edges coverage and find
significant reductions in fault detection effectiveness.
They contrast their results with [16] and suggest possible
causes for the different conclusions. However, collecting
all-uses and all-edges coverage information generally
requires invasive source code instrumentation, and the
necessary tools may be difficult to obtain, set up and use
for many programming languages. In constrast, call stack
coverage information is relatively simple to obtain using
tools that we will make available. Additionally, call stack
coverage can be analyzed on any stack-based runtime
environment, which encompasses most language and
system combinations in practical use today.

Ball [3] introduces concept analysis as applied to the
problem of test coverage. In this application domain,
concept analysis relates tests to program entities such as
procedures (i.e. functions), edges, or statements that the
tests cover. Concepts of this type may be used to
compute “dynamic control flow invariants” and dynamic
analogies to the static analysis ideas of domination,
postdomination, and regions. It would be straightforward
to apply concept analysis to the test case minimization
problem using a process similar to the one in this paper.
Concept analysis of procedures covered by tests is similar
to our call stack analysis in that they both consider
procedures in the context of other procedures rather than
in isolation. Call stack analysis is finer-grained in this
sense because it takes into account the actual call chain
whereas the concept analysis technique presented by Ball
only tracks procedures covered by a test without
considering their order.

7. Summary and Future Directions
In this paper, we described a new coverage criterion

for use in test suite reduction based on the set of unique
call stacks dynamically generated by the test suite. Call-
stack based reduction provides a practical alternative to
existing reduction techniques that require the use of
sophisticated and expensive analyses and data-collection
mechanisms. We gave formal definitions of relevant call
stack concepts and applied them to create a call stack
collection and reduction process. Finally, we empirically
evaluated the call stack reduction process on edge
coverage adequate suites and on randomly generated
suites of different sizes, comparing our reduced suites to
those generated by edge-coverage-based reduction and
function-coverage-based reduction, respectively. We
found that the call stack coverage criterion can produce
favorable tradeoffs between the reduction in test suite size
and reduction in fault detection effectiveness.

High-priority future work would be to apply the call
stack minimization technique to a number of different
applications, preferably of different sizes, from different
domains, and written by different people. Future work
should also evaluate the feasibility of call stack reduction
in the presence of certain programming language features.
In particular, we consider how the technique may be
applied in multithreaded programs. Although we do not
consider a multithreaded application in our experiment,
multithreading can be handled by keeping separate sets of
unique stacks for each thread and merging them either
after threads exit or during a post-processing step.

Acknowledgements
Gregg Rothermel provided the space program and

test artifacts. Portions of the space package were
previously developed by Alberto Pasquini, Phyllis Frankl,
and Filip Vokolos. This research was partially funded by a
grant from the National Science Foundation
(CCF0447864).

References
[1] GNU Compiler Collection (gcc) information on the web at

http://gcc.gnu.org.
[2] G. Ammons, T. Ball, and J.R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. SIGPLAN ’97 Conf. on Programming Language
Design and Implementation, 1997.

[3] T. Ball. The concept of dynamic analysis. Proceedings of
the Joint Seventh European Software Engineering
Conference (ESEC) and Seventh ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering, September 1999.

[4] M. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on
Software Engineering, 27(2):1-25, February 2001.

[5] P. G. Frankl and O. Iakounenko. Further empirical studies
of test effectiveness. ACM SIGSOFT Sixth International
Symposium on the Foundations of Software Engineering,
Nov. 1998.

[6] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses versus
mutation testing: An experimental comparison of
effectiveness. Technical report PUCS-100-94, Department
of Computer Science, Polytechnic University, Brooklyn,
NY, February 1994.

[7] M. Harder, J. Mellen, and M. D. Ernst. Improving test
suites via operational abstraction. Proceedings of the 25th
International Conference on Software Engineering, pp. 60-
71, 2003, Porland, Oregon, United States.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Transactions
on Software Engineering and Methodology (TOSEM) July
1993 Volume 2 Issue 3.

[9] G. Hunt and D. Brubacher. Detours: binary interception of
Win32 functions. Proceedings of the 3rd USENIX
Windows NT Symposium, pp. 135-143. Seattle, WA, July
1999.

[10] A. Memon, A. Porter. C. Yilmaz. A. Nagarajan. D.Schmidt
and B. Natarajan. Skoll: Distributed Continuous Quality
Assurance. Proceedings of the 26th International
Conference on Software Engineering, pages 459—468,
2004.

[11] M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S. E.
Kraft and S. E. Condon. Investigating and improving a
COTS-based software development. Proceedings of the
22nd international conference on Software engineering,
pages 32-41, Limerick, Ireland, 2000.

[12] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault-
detection capabilities of test suites. Proceedings of the
International Conference on Software Maintenance, pages
34-43, November 1998.

[13] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong.
Empirical studies of test-suite reduction. Journal of
Software Testing, Verification, and Reliability, V. 12, no.
4, December, 2002.

[14] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test
case prioritization. IEEE Transactions on Software
Engineering V. 27, no. 10, October, 2001, pages 929-948.

[15] D. Thomas and A. Hunt. Programming Ruby: The
Pragmatic Programmer’s Guide. Addison-Wesley, 2001.

[16] W. Eric Wong, Joseph R. Horgan, Saul London, Aditya P.
Mathur. Effect of test set minimization on fault detection
effectiveness. Proceedings of the 17th International
Conference on Software Engineering, p.41-50, 1995,
Seattle, Washington, United States.

[17] W. E. Wong, J.R. Horgan, A. P. Mathur, and A. Pasquini.
Test set size minimization and fault detection effectiveness:
A case study in a space application. Proceedings of the 21st
Annual International Computer Software and Applications
Conference, pages 522-528, August 1997.

[18] W. E. Wong, J. R. Horgan, and A. P. Mathur. Effect of test
set size and block coverage on the fault detection
effectiveness. Proceedings of the Fifth International
Symposium on Software Reliability Engineering, pages
230-238, Monterey, CA, November 1994.

