
1

Fault Detection Probability
Analysis for Coverage-Based Test Suite Reduction

Scott McMaster and Atif Memon

University of Maryland
College Park, MD 20742, USA
{scottmcm,atif}@cs.umd.edu

Abstract

Test suite reduction seeks to reduce the number of test
cases in a test suite while retaining a high percentage
of the original suite’s fault detection effectiveness.
Most approaches to this problem are based on
eliminating test cases that are redundant relative to
some coverage criterion. The effectiveness of applying
various coverage criteria in test suite reduction is
traditionally based on empirical comparison of two
metrics derived from the full and reduced test suites
and information about a set of known faults: (1)
percentage size reduction and (2) percentage fault
detection reduction, neither of which quantitatively
takes test coverage data into account. Consequently,
no existing measure expresses the likelihood of various
coverage criteria to force coverage-based reduction to
retain test cases that expose specific faults. In this
paper, we develop and empirically evaluate, using a
number of different coverage criteria, a new metric
based on the “average expected probability of finding
a fault” in a reduced test suite. Our results indicate
that the average probability of detecting each fault
shows promise for identifying coverage criteria that
work well for test suite reduction.

Keywords – Test coverage, Test suite management,
reduction, minimization

Index Terms – Testing strategies, Test coverage of
code, Test Management, Testing Tools

1. Introduction

Software developers are increasingly using
development approaches in which new code is
incorporated into the baseline at a rapid pace and built
via a nightly build or continuous integration process
[1]. In such an environment, it is critical to perform
regression testing after each build to ensure that newly
incorporated changes have not introduced defects in
previously functional parts of the system. However,

the time to re-execute the test suite must not be allowed
to excessively limit the speed of the integration cycle.
Thus, in practice, it may be necessary to limit the size
of the regression test suite.

Test suite reduction [4][16][11][19] (also referred to
as test suite minimization in the literature) seeks to
reduce the number of test cases in a test suite while
retaining a high percentage of the original suite’s fault
detection effectiveness. Most approaches to this
problem are based on eliminating test cases that are
redundant relative to some coverage criterion, such as
program-flow graph edges [16], dataflow [19],
dynamic program invariants [3], or call stacks [10][11].
The effectiveness of applying various coverage criteria
in test suite reduction is traditionally based on
empirical comparison of two metrics derived from the
full and reduced test suites and information about a set
of known faults. The two metrics are percentage size
reduction:

(1) 100 * (1 – SizeReduced / SizeFull)

And percentage fault detection reduction:

(2) 100 * (1 – FaultsDetectedReduced /
FaultsDetectedFull)

In typical test suite reduction experiments such as those
found in [16], large numbers of full test suites are
reduced using an algorithm such as [4]. Two test suites
are generally considered to be equally effective at
detecting a specific fault if they each contain at least
one test case that exposes the fault.

Neither the percentage size reduction metric nor the
percentage fault detection reduction metric
quantitatively takes test coverage data into account.
Consequently, no existing measure expresses the
likelihood of various coverage criteria to force
coverage-based reduction to retain test cases that
expose specific faults. This leads us to propose and
evaluate a new metric based on the average expected
probability of finding a fault in a reduced test suite. In
this paper, we present a formal definition of this metric

2

and use it to evaluate test suite reduction based on a
number of different coverage criteria.

The remainder of this paper is structured as follows.
In the next section, we present definitions and propose
the new metric, along with an algorithm for calculating
it in test suite reduction experiments. Section 3 briefly
describes an earlier set of test suite reduction
experiments that serve as the basis for this work. In
Section 5, we apply the new metric to a set of empirical
studies. We present related work in Section 6 and
make concluding remarks in Section 7.

2. Fault Detection Probability Metric

In this section, we define a number of functions on
the coverage and fault data collected from an
application, its test pool, a set of known faults, and a
coverage criterion. These definitions will lead us to a
new metric for coverage-based test suite reduction
utilizing the average probability of detecting each
fault. Intuitively, this metric captures the likelihood
that coverage-adequate reduced test suites will detect
the same faults as their original counterparts, taking
into account the number of coverage requirements
which only appear in fault-detecting test cases. As we
will show, this quantity varies greatly depending on the
selected coverage criterion, thus making it useful in
selecting the best criterion to use in a test suite
reduction technique.

2.1. Data Structures

Given a subject application, a set of test cases
TC(1..J), a set of known faults KF(1..K), and a set of
coverage requirements CR(1..I), it is possible to obtain
two artifacts important to the study of test suite
reduction, as well as the closely related topics of test
case prioritization [17] and regression test selection.
The first is the coverage matrix, C, [2] for a test suite.
In a coverage matrix, each row represents a coverage
requirement, such as a line, edge or call stack, and each
column represents a test case. A cell value C(i, j) is 1 if
coverage requirement i is satisfied by test case j and 0
otherwise. Based on the coverage matrix, we define a
function covReqTCs(C, i), which, given a coverage
matrix C and a coverage requirement i, returns the set
of test cases which satisfy the given requirement.

(3) covReqTCs(C,i) = {j ∈ TC | C(i, j) = 1}

Second, we consider the fault matrix, F, where each

row represents a known fault and each column is a test
case. A cell value F(k, j) is 1 if fault k is detected by
test case j and 0 otherwise. This leads to another
function, detectsFaultTCs(F, k), which accepts a fault

matrix F and fault number k and returns the set of test
cases that detect k.

(4) faultDetectingTCs(F,k) = { j ∈ TC | F(k, j) = 1}

For a given test suite, the matrices C and F have the

same column rank which is the number of test cases.

2.2. Metric Definition
Making use of the coverage matrix C and fault

matrix F, we seek to define a metric that captures the
average expected probably of finding a fault after
coverage-based test suite reduction. This metric will
be independent of the selection of a specific coverage-
preserving reduction algorithm. From C and F, we
define the fault correlation for a coverage requirement
i to a fault k as the ratio of test cases in the test suite
that satisfy the coverage requirement and detect the
fault to the number of test cases that merely satisfy the
coverage requirement:

(5) faultCorr(C,F,i,k) =

Card[covReqTCs(C,i) ∩ faultDetectingTCs(F,k)] /
Card[covReqTCs(C,i)]

where Card[] returns the cardinality of a set. If a

coverage requirement i is only satisfied only by test
cases that detect a given fault f, then faultCorr(C,F,i,j)
= 1, the maximum possible fault correlation.
Intuitively, any coverage-preserving test suite reduction
technique must select a fault-detecting test case for that
fault.

The expected probability of finding a given fault
after test suite reduction is defined as the maximum
fault correlation of all coverage requirements with that
fault:

(6) expProbFindFault(C,F,k) =

Max(faultCorr(C,F,i,k) ∀ i ∈ CR)

For example, if a coverage requirement satisfied
by two test cases, one of which detects a given fault
and one of which does not, the fault correlation is 0.5.
If no coverage requirement leads to a higher fault
correlation, then a coverage-preserving test suite
reduction technique (considered independently of other
coverage requirements) would select a fault-detecting
test case with probability of 0.5. Thus, the expected
probability of finding all faults after test suite reduction
is the product of the expected probability of detecting
each fault:

3

(7) expProbFindAll(C,F) =

Π (expProbFindFault(C,F,k) ∀ k ∈ KF)

Because our goal is to compare how various
coverage criteria perform in test suite reduction, we
desire a metric which is normalized across subject
applications and test suites with differing numbers of
coverage requirements and detectable faults. Thus, we
consider the average expected probably of detecting
each fault:

(8) avgExpProbFindEach(C,F) =

Avg(expProbFindFault(C,F,k) ∀ k ∈ KF)

Figure 1 presents an algorithm for calculating (8) for
a given subject application, fault matrix, and coverage
matrix.

Figure 1: CalcFaultDetectionProbability Algorithm

The CalcFaultDetectionProbability

algorithm assumes the coverage matrix and fault matrix
as inputs (Lines 1 and 2). It then declares an array with
length equal to the number of known faults to hold the
calculated probabilities (Line 3). Then, for each
coverage requirement for each fault, counters are
initialized to hold the number of test cases that cover
the requirement, and both cover the requirement and
detect the fault (Lines 4..8). The coverage matrix and
fault matrix are referenced for each test case to
increment the counters (Lines 9..15). We allow for the
case where no test cases hit the coverage requirement,

in which case we move forward to the next one (Line
16). The counters are then used to calculate the fault
correlation number (Line 17), and the maximum
probability of detecting the fault is potentially updated
(Line 18). After all coverage requirements and faults
are evaluated, the average probability of detecting each
fault is calculated (Line 21).

3. Experiments

To assess the effectiveness of the average expected
probability of detecting each fault as a metric for test
suite reduction, we applied it to a set of test suite
reduction experiments [10]. A brief summary of these
experiments appears next. For additional details, see
[10]. The experimental and analytical process appears
in Figure 2, where lines indicate inputs into process
steps and calculations.

Figure 2: Experimental and Analytical Process

3.1. Subject Applications

In our study of test suite reduction for GUI
applications, we used three subject applications from
the TerpOffice Suite [15], TerpPaint (TP),
TerpSpreadsheet (TS), and TerpWord (TW). Written

ALGORITHM: CalcFaultDetectionProbability (
1 C(1..I, 1..J), /* coverage matrix, I=number of

coverage requirements, J=number of test cases*/
2 F(1..K, 1..J) /* fault matrix, K=number of known

faults, J=number of test cases */
3 Declare P(1..K) /* expected probabilities of

finding faults 1..K */
4 for k = 1..K { /* for each fault */
5 P(k) = 0
6 for i = 1..I { /* for each coverage

requirement */
7 countCoveringCases <- 0
8 countCoveringDetectingCases <- 0
9 for j = 1..J { /* for each test case */
10 if C(i, j) = 1 then {
11 countCoveringCases <-

countCoveringCases + 1
12 if F(k, j) = 1 then {
13 countCoveringDetectingCases <-

countCoveringDetectingCases + 1
14 }
15 } /* j */
16 if countCoveringCases = 0 then next i
17 faultCorrelation =

countCoveringDetectingCases /
countCoveringCases

18 P(k) = Max(faultCorrelation, P(k))
19 } /* i */
20 } /* k */
21 Return Sum(P(1..K)) / K

4

in Java and making heavy use of the Swing GUI
framework, these applications were developed by
advanced undergraduate software engineering students
over a period of years. Each application comes with a
large test universe generated using the event flow
criterion [13] and a set of versions each containing a
single mutation fault. Characteristics of these
applications appear in Table 1.

Application TerpPaint

(TP)
TerpWord
(TW)

TerpSpreadsheet
(TS)

Test
Universe
Size

1500 1000 1000

Detectable
Faults

43 18 101

Call Stacks
Observed

413166 569933 333882

Methods
Observed

12277 12665 11103

Events 181 219 110
Lines 11803 9917 5381

Table 1: Subject Applications

3.2. Coverage Criteria
We collected five different types of coverage data

for the entire test universe for each subject application;
event (E1), event-interaction (E2), line (L), method
(M), and call-stack (CS).

Event-based coverage [14] has been developed
specifically for applications where test cases can be
defined as sequences of events, and as such it is
particularly suited to GUI applications. Examples of
events in GUI applications include button clicks, menu
selections, and keystrokes. Using a tool called GUI
Ripper [12] a model of a GUI can be automatically
derived, and from this model, test cases with varying
event sequence lengths can be automatically generated.
Another tool, the JavaGUIReplayer [15] can
subsequently be used to execute the test cases. In this
work, we consider two different event sequence lengths
represented in the reduction techniques E1 and E2. In
E1, each event in isolation is a coverage requirement to
be covered by any reduced test suite, and in E2,
coverage requirements are made up of pairs of events.

In line coverage, the coverage of each source code
line induced by test execution against a given subject
application is measured. From this, we define
reduction technique L, in which reduced test suites
must obtain the same line coverage as their full
counterparts. In these experiments, line coverage data
was obtained using the jcoverage tool [7]. For
feasibility, this technique does not include coverage of
the supporting Java libraries, but rather only includes
coverage of the TerpOffice application source.

Call-stack coverage measures the coverage of each
runtime call stack observed during execution of a test
case. A call stack is an ordered sequence of active
method calls in a running application. The call stack
criterion has been shows to be particularly effective as
a test suite reduction criterion against GUI subject
applications [10]. Call stack coverage data was
collected using the JavaCCTAgent tool [6] and used in
the CS test suite reduction technique. The CS
technique does include coverage of methods in the
underlying Java libraries.

Method coverage is used to reduce test suites in
the M technique. In M, each method appearing in the
full test suite must also appear in the corresponding
reduced suite. This information is derivable from call-
stack coverage data and does incorporate coverage of
Java libraries.

3.3. Reduction Technique

A large number of test suites of varying sizes were
randomly generated for each subject application out of
their respective test universes. Using the coverage
data, each test suite was reduced using the
ReduceTestSuite algorithm of Harrold et al. [4]. In
these experiments, each randomly generated test suite
was reduced based on each of the five coverage criteria
E1, E2, M, L, and CS.

3.4. Prior Metrics and Results

In [10], the reduced test suites were evaluated
based on their percentage size reduction and
percentage fault detection reduction as defined
formulas (1) and (2) from Section 1. We summarize
those results in the following sections.

3.4.1. Size Reduction. Size reduction behavior was
found to be similar across all three subject applications.
For the largest original test suite sizes, coverage-
preserving reduction using E1, L, and M resulted in
size reduction in the 75-91% range. At the other end,
reduction with E2 as the criterion yielded very little
size reduction at all – at most 11%. Call-stack-based
reduction struck a middle ground, providing size
reduction in the 38-50% range.

3.4.2. Fault Detection Reduction. With fault
detection reduction, very similar behavior was
observed for the L and M coverage criteria, with fault
detection loss of effectiveness in the 19-28% range for
larger suites. E1 fared somewhat worse, losing from
37-41% of the faults for the largest suite size. CS-
based reduction only lost 0-5% of the detectable faults
across all suite sizes, which was comparable to the

5

performance of E2-based reduction even though the E2
technique yielded very little size reduction. Further
investigation of the reasons behind these results is one
of the primary motivations of the present work,
discussed in the next section.

4. Results

4.1. Average Probability of Detecting Each
Fault by Coverage Criterion

We now extend the analysis from our prior work
[10] to include the newly proposed average probability
of detecting each fault. To do this, we applied the
CalcFaultDetectionProbability algorithm to the
previously obtained fault and coverage matrices. Table
2 shows the average expected probability of detecting
each fault after test suite reduction for each application
and coverage technique. The box plots in Figure 3
show the other key statistics from individual fault
probabilities.

Table 2: Average Expected Probability of Detecting Each

Fault After Test Suite Reduction

 TP TS TW
E1 0.51 0.52 0.47
E2 0.92 0.88 0.96
L 0.84 0.69 0.77
M 0.80 0.69 0.72
CS 1.00 0.97 0.97

All of the five coverage techniques perform
relatively consistently across applications. Event
coverage, E1, fares the worst, while line and method
coverage are comparable between 69-84% average
probabilities. Event interaction coverage, E2, results in
a very high average probability, but E2’s usefulness in
test suite reduction for these applications is limited for
these subject applications and test universe as it results
in very large reduced suite sizes [10]. The highest
average probability is achieved with the call-stack
coverage criterion, CS, with a 97-100% average
probability of detecting each fault. This result shows
quantitatively that many call stacks are highly
correlated with fault-revealing test cases and therefore
explains the extremely low percentage fault detection
reduction observed when using the CS technique on
test suites generated randomly from this pool [10].

Figure 3: Fault Probability Statistics

4.2. Faults Always Detected After Reduction

In the case of TP, each known fault has at least one
call stack coverage requirement that only appears in
fault-detecting test cases. This situation is ideal for test
suite reduction: Any reduced test suite derived from a
full test suite while preserving coverage must then be
able to detect the same set of faults. This observation
led us to examine how many such faults with unique
coverage requirements exist for the various coverage
techniques. For each application, Figure 4 shows the
number of faults that, if detected by an original test
suite, must be detectable by any subsequent suite
reduced using the given coverage technique. The
relative performance of the different coverage
techniques mirrors the results of for the average

6

probability of detecting each fault as well as the
percentage fault detection reduction.

Figure 4: Faults Always Detected After Reduction

4.3. Faults Which May Be Missed After
Reduction

We performed an analysis of the faults that can be
missed by each technique as indicated by the average
probability of detecting each fault. We chose to
characterize each fault by its difficulty. Wong et al.
define four quartiles of faults, Quartile-I, II, III, and IV,
which can be detected by [0-25)%, [25-50)%, [50-
75)%, and [75-100]%, respectively, of the test cases in
the test pool [19]. However, by these standards, all of
the known TerpOffice faults are “difficult” because
they all fall solidly into the low end of Quartile-I, with
the median percentage of detecting cases ranging from

0.13% for TerpPaint to 0.3% for TerpSpreadsheet.
Thus, we instead characterize our faults into three
buckets based on how many test cases detect them:
Hard (1-2 detecting cases), Medium (3-5 detecting
cases), and Easy (6 or more detecting cases). Table 3
shows the distribution of these faults by subject
application.

Table 3: Fault Difficulties

Fault Class TP TS TW
Easy 7 37 5
Medium 3 28 3
Hard 33 36 10

For each subject application and coverage

criterion, we categorized the faults which may be lost
after coverage-preserving test suite reduction. The
results of this analysis appear in Table 4.

Table 4: Faults with No Coverage Requirements Unique

to Detecting Test Cases by Criterion and Difficulty

 TP TS TW
E1 Easy 7

Med 3
Hard 20

Easy 26
Med 17
Hard 34

Easy 2
Med 2
Hard 7

E2 Easy 0
Med 0
Hard 6

Easy 0
Med 0
Hard 23

Easy 0
Med 0
Hard 1

L Easy 6
Med 1
Hard 3

Easy 13
Med 13
Hard 34

Easy 3
Med 3
Hard 5

M Easy 7
Med 3
Hard 8

Easy 12
Med 13
Hard 34

Easy 0
Med 0
Hard 7

CS Easy 0
Med 0
Hard 0

Easy 0
Med 1
Hard 5

Easy 0
Med 0
Hard 1

The CS and E2 techniques, which only have a

handful of faults overall that are not necessarily
detected after reduction, show a distinct tendency for
those faults to fall into the “Medium” and “Hard”
difficulty buckets. For the other techniques, we only
see such a trend for one of the three applications
(specifically, TS). This analysis suggests that fault
detection reduction in coverage-adequate reduced test
suites may be related to fault difficulty only for certain
coverage criteria.

7

4.4. Combining Coverage Criteria

Looking at the probability data for each fault, we
observed that certain faults correlated more highly with
different coverage criteria. This led us to examine the
average probability of detecting each fault for pairs of
criteria. Identifying effective pairs of coverage criteria
is important to guide the choice of criteria to utilize in a
multi-criteria test suite reduction approach such as the
one proposed by Jeffrey and Gupta [8].

We assume a test suite reduction approach that
maintains coverage relative to two distinct coverage
criteria. For such a coverage criteria pair, the average
probability of detecting a fault is then the maximum of
the individual probabilities for each criterion in
isolation. Data for this analysis appears in Table 5.
The pair E1+E2 is not included because E2 subsumes
E1 – that is, an E2-adequate suite is by definition E1-
adequate. The technique M+CS is omitted for the
same reason, namely that CS subsumes M. Note that
because M includes library coverage data and L does
not, L does not subsume M in these experiments.

Table 5: Average Probabilities for Coverage Criteria

Pairs

 TP TS TW
E1+L 0.88 0.71 0.91
E1+M 0.80 0.71 0.82
E1+CS 1.00 0.97 0.97
E2+M 0.97 0.91 0.96
E2+L 0.96 0.91 0.96
E2+CS 1.00 1.00 1.00
L+M 0.90 0.70 0.83
L+CS 1.00 0.97 0.97

In Table 5, data points are highlighted in bold and

italic where the combination of coverage criteria results
in a better average probability of detecting each fault
than either criterion in isolation. We see such an
improvement in over half (14 of 24) of the
combinations. This result suggests certain faults may
be more highly correlated to different criteria, and thus
combining multiple coverage criteria can dramatically
reduce fault detection reduction. However,
maintaining coverage adequacy with respect to
additional criteria in test suite reduction will lead to
larger reduced test suites. Indeed, many of the
improvements in average probabilities in Table 5
involve the addition of the event-interaction criterion,
E2, and E2 coverage adequacy in test suite reduction is
known to lead to very little size reduction for these
applications and test suites [10]. In test suite reduction,
the tradeoff between fault detection and size reduction

must be made based on situational engineering
judgments.

4.5. Threats to Validity

Threats to external validity are factors that may
affect generalizing the results to other situations. In
this case, we have only applied the average probability
of detecting each fault to a limited number of subject
applications. These subject applications, as well as
their test cases and known faults, are similar in size and
origin and therefore may not be fully representative of
the wider population of software applications. Other
applications and types of faults may display different
behavior under test suite reduction which could affect
the utility of the metric. Additionally, we have
evaluated the metric with respect to only five coverage
criteria. The metric may appear more or less effective
at evaluating other coverage criteria.

Threats to construct validity are factors that may
cause our experiments to inadequately measure
concepts of interest. Our primary threat to construct
validity is the simple model of cost which treats all
faults as equally severe. In practice, certain faults may
be more or less critical to identify during regression
testing. A more complex and realistic approach to
creating the average probably of detecting each fault
metric would account for this.

5. Related Work

There have been many prior studies of test suite
reduction while holding coverage constant relative to
some criterion. Wong et al. [19] use the all-uses
coverage criterion and observe little or no fault
detection effectiveness reduction in the reduced suites.
They also consider fault difficulty and find a direct
relationship between the ease of finding faults and the
likelihood that they will be detected after reduction. In
contrast, Rothermel et al. [16] reduce while holding all-
edges coverage constant and find significant reductions
in fault detection effectiveness. They contrast their
results with an earlier study by Wong et al. [19] and
suggest possible causes for the different conclusions.
The fact that prior studies do not necessarily agree on
the costs and benefits of test suite reduction suggests a
need for new metrics beyond size reduction and fault
detection effectiveness reduction. Our work provides
an alternative analysis in the form of the average
probability of detecting each fault.

Jeffery and Gupta [8] introduce a test suite
reduction approach that combines “primary” and
“secondary” coverage criteria in the reduction
algorithm. The “selective redundancy” technique is so

8

named because certain test cases are known to add no
additional coverage of the primary criterion, but by
selecting such tests based on the second criterion, they
are able to generate reduced test suites with fault
detection effectiveness better than using either criterion
alone. Our results discussed in Section 4.4 for the
average probability of detecting each fault when using
pairs of coverage criteria provide some additional
evidence that combining criteria can be particularly
effective in test suite reduction.

In their study of test suite reduction for model-
based tests, Heimdahl and George raise the notion of
an “ideal coverage criterion” which “would detect all
faults in the system under test and any test-suite, large
or small, providing this coverage would reveal the
same faults [5]. Along the same line, Rothermel et al.
point out that assuming an equal likelihood of selecting
one of k test cases that hit a coverage requirement, and
only one test case detects a given fault, the probability
of omitting the fault-detecting test case under coverage-
based test suite reduction is (k-1)/k [16]. To our
knowledge, our work is the first to attempt to
formalize, fully quantify, and evaluate these notions.

There are alternative approaches to test suite
reduction that do not explicitly maximize test coverage
relative to a traditional criterion. One such alternative
is the “operational difference” technique of Harder et
al. [3]. This approach builds up a reduced suite by
pulling test cases from the test pool and adds them to
the suite if they change the “operational abstraction” of
the program’s dynamic behavior. This process
terminates when a certain number of consecutive cases
produce no abstraction changes. Another approach that
does not explicitly attempt to maximize test coverage is
the cluster sampling of Leon and Podgurski [9]. The
average probability of detecting each fault could be
used to identify the best coverage criteria to be used as
inputs for cluster formation.

6. Conclusions and Future Work

In this work, we defined a new metric for
coverage-based test suite reduction based on the
average probability of detecting each fault. We applied
this metric to an existing set of test suite reduction
experiments on GUI-intensive subject applications and
contrasted the results using several different coverage
criteria as well as combinations of criteria. We
extended the analysis to count faults detected by a full
test suite which must necessarily be detected by any
coverage-adequate reduced test suite for the different
criteria, and we considered the impact of fault
difficulty.

 Based on the analysis enabled by the average
probability of detecting each fault metric, we are able
to draw some conclusions about the relative utility of
each coverage criterion in test suite reduction. For the
subject applications in these experiments, test suite
reduction based on call stacks provides the highest
probability of detecting each fault in reduced test
suites. Method (including libraries) and line coverage
perform comparably, and length-1 event sequences are
the least effective. This relative ranking is consistent
with empirical performance of the various criteria
against the traditional percentage fault detection
reduction metric as observed in [10]. Thus, we
conclude that the average probability of detecting each
fault shows promise for identifying coverage criteria
that work well for test suite reduction.

The “best” test suite reduction coverage criterion
as measured by the metric presented in this paper may
differ among other classes and styles of application.
Thus, future work shall include non-GUI subject
applications as well as GUI applications which were
constructed using other approaches. Other cost
functions may also affect the relative desirability of the
different techniques. For example, an extended model
may incorporate the notion of fault severity. In the
future, we intend to extend test suite reduction metrics
to incorporate such factors.

7. Acknowledgements

The authors would like to thank Xun Yuan for
preparing the TerpOffice subject applications.

8. References

[1] Beck, K. (2000): Extreme Programming Explained:
Embrace Change. Addison Wesley, 2000.

[2] Elbaum, S.; Gable, D. & Rothermel, G. (2001),The
impact of software evolution on code coverage information,
in 'Software Maintenance, 2001. Proceedings. IEEE
International Conference on', pp. 170--179.

[3] Harder, M., Mellen, J., and Ernst, M. D. (2003),
Improving test suites via operational abstraction. Proceedings
of the 25th International Conference on Software
Engineering, pp. 60-71, 2003, Porland, Oregon, United
States.

[4] Harrold, M.; Gupta, R. & Soffa, M. (1990),A
methodology for controlling the size of a test suite, in
'Software Maintenance, 1990., Proceedings., Conference on',
pp. 302--310.

[5] Heimdahl, M. & George, D. (2004),Test-suite reduction
for model based tests: effects on test quality and implications
for testing, in 'Automated Software Engineering, 2004.

9

Proceedings. 19th International Conference on', pp. 176--
185.

[6] JavaCCTAgent information on the web at
http://sourceforge.net/projects/javacctagent/, April, 2007.

[7] jcoverage information on the web at
http://www.jcoverage.com/, April, 2006.

[8] Jeffrey, D. and Gupta, N. (2005), Test suite reduction
with selective redundancy. IEEE International Conference
on Software Maintenance (ICSM) 2005, pages 549-558,
Budapest, Hungary, 2005.

[9] Leon, D. and Podgurski, A. (2003), A comparison of
coverage-based and distribution-based techniques for
filtering and prioritizing test cases. Proceedings of the 14th
IEEE International Symposium on Software Reliability
Engineering (ISSRE 2003), November 2003, Denver,
Colorado, United States.

[10] McMaster, S, and Memon, A. (2006), Call Stack
Coverage for GUI Test-Suite Reduction, Proceedings of the
17th IEEE International Symposium on Software Reliability
Engineering (ISSRE 2006), Raleigh, NC, USA, Nov. 6-10
2006.

[11] McMaster, S. and Memon, A. (2005). Call stack
coverage for test suite reduction. IEEE International
Conference on Software Maintenance (ICSM) 2005, pages
539-548, Budapest, Hungary, 2005.

[12] Memon,A., Banerjee, I., & Nagarajan, A. (2003), GUI
Ripping: Reverse Engineering of Graphical User Interfaces
for Testing, Proceedings of The 10th Working Conference on
Reverse Engineering, Nov. 2003.

[13] Memon, A., Nagarajan, A., and Xie, Q. (2005),
Automating regression testing for evolving GUI software.
Journal of Software Maintenance and Evolution: Research
and Practice, 17(1):27.64, 2005.

[14] Memon, A., Soffa, M. L., and Pollack, M. (2001),
Coverage criteria for GUI testing. ESEC / SIGSOFT FSE
2001, pages 256-267, Vienna, Austria, 2001.

[15] Memon, A. and Xie, Q (2005). Studying the fault-
detection effectiveness of GUI test cases for rapidly evolving
software. IEEE Transactions on Software Engineering, vol.
31, no. 10, pp. 884-896, October, 2005.

[16] Rothermel, G.; Harrold, M.; Ronne, J. & Hong, C.
(2002), 'Empirical studies of test suite reduction', Journal of
Software Testing, Verification, and Reliability 4(2).

[17] Rothermel, G., Untch, R., Chu, C., and Harrold, M.J.
(2001). Test case prioritization. IEEE Transactions on
Software Engineering, vol. 27, no. 10, pp. 929-948, October,
2001.

[18] Rothermel, G., Harrold, M.J., Ostrin, J., and Hong, C.
(1998), An empirical study of the effects of minimization on
the fault detection capabilities of test suites. Proceedings of
the International Conference on Software Maintenance,
pages 34-43, November 1998.

[19] Wong, W., Horgan, J., London, S., & Mathur, A.
(1995), Effect of Test Set Minimization on Fault Detection
Effectiveness, Proceedings of the International Conference
on Software Engineering, Seattle, WA, 1995.

