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Abstract 
 
Test suite reduction seeks to reduce the number of test 
cases in a test suite while retaining a high percentage 
of the original suite’s fault detection effectiveness. 
Most approaches to this problem are based on 
eliminating test cases that are redundant relative to 
some coverage criterion. The effectiveness of applying 
various coverage criteria in test suite reduction is 
traditionally based on empirical comparison of two 
metrics derived from the full and reduced test suites 
and information about a set of known faults: (1) 
percentage size reduction and (2) percentage fault 
detection reduction, neither of which quantitatively 
takes test coverage data into account. Consequently, 
no existing measure expresses the likelihood of various 
coverage criteria to force coverage-based reduction to 
retain test cases that expose specific faults. In this 
paper, we develop and empirically evaluate, using a 
number of different coverage criteria, a new metric 
based on the “average expected probability of finding 
a fault” in a reduced test suite.  Our results indicate 
that the average probability of detecting each fault 
shows promise for identifying coverage criteria that 
work well for test suite reduction. 
 
Keywords – Test coverage, Test suite management, 
reduction, minimization 
 
Index Terms – Testing strategies, Test coverage of 
code, Test Management, Testing Tools 
 
1. Introduction 
 

Software developers are increasingly using 
development approaches in which new code is 
incorporated into the baseline at a rapid pace and built 
via a nightly build or continuous integration process 
[1].  In such an environment, it is critical to perform 
regression testing after each build to ensure that newly 
incorporated changes have not introduced defects in 
previously functional parts of the system.  However, 

the time to re-execute the test suite must not be allowed 
to excessively limit the speed of the integration cycle.  
Thus, in practice, it may be necessary to limit the size 
of the regression test suite. 

Test suite reduction [4][16][11][19] (also referred to 
as test suite minimization in the literature) seeks to 
reduce the number of test cases in a test suite while 
retaining a high percentage of the original suite’s fault 
detection effectiveness. Most approaches to this 
problem are based on eliminating test cases that are 
redundant relative to some coverage criterion, such as 
program-flow graph edges [16], dataflow [19], 
dynamic program invariants [3], or call stacks [10][11].  
The effectiveness of applying various coverage criteria 
in test suite reduction is traditionally based on 
empirical comparison of two metrics derived from the 
full and reduced test suites and information about a set 
of known faults.  The two metrics are percentage size 
reduction: 

 
(1)  100 * (1 – SizeReduced / SizeFull) 

 
And percentage fault detection reduction: 

(2)  100 * (1 – FaultsDetectedReduced / 
FaultsDetectedFull) 

In typical test suite reduction experiments such as those 
found in [16], large numbers of full test suites are 
reduced using an algorithm such as [4].  Two test suites 
are generally considered to be equally effective at 
detecting a specific fault if they each contain at least 
one test case that exposes the fault. 

Neither the percentage size reduction metric nor the 
percentage fault detection reduction metric 
quantitatively takes test coverage data into account.  
Consequently, no existing measure expresses the 
likelihood of various coverage criteria to force 
coverage-based reduction to retain test cases that 
expose specific faults.  This leads us to propose and 
evaluate a new metric based on the average expected 
probability of finding a fault in a reduced test suite.  In 
this paper, we present a formal definition of this metric 
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and use it to evaluate test suite reduction based on a 
number of different coverage criteria. 

The remainder of this paper is structured as follows.  
In the next section, we present definitions and propose 
the new metric, along with an algorithm for calculating 
it in test suite reduction experiments.  Section 3 briefly 
describes an earlier set of test suite reduction 
experiments that serve as the basis for this work.  In 
Section 5, we apply the new metric to a set of empirical 
studies.  We present related work in Section 6 and 
make concluding remarks in Section 7. 
 
2. Fault Detection Probability Metric 

In this section, we define a number of functions on 
the coverage and fault data collected from an 
application, its test pool, a set of known faults, and a 
coverage criterion.  These definitions will lead us to a 
new metric for coverage-based test suite reduction 
utilizing the average probability of detecting each 
fault.  Intuitively, this metric captures the likelihood 
that coverage-adequate reduced test suites will detect 
the same faults as their original counterparts, taking 
into account the number of coverage requirements 
which only appear in fault-detecting test cases.  As we 
will show, this quantity varies greatly depending on the 
selected coverage criterion, thus making it useful in 
selecting the best criterion to use in a test suite 
reduction technique. 

 
2.1. Data Structures 

Given a subject application, a set of test cases 
TC(1..J), a set of known faults KF(1..K), and a set of 
coverage requirements CR(1..I), it is possible to obtain 
two artifacts important to the study of test suite 
reduction, as well as the closely related topics of test 
case prioritization [17] and regression test selection.  
The first is the coverage matrix, C, [2] for a test suite.  
In a coverage matrix, each row represents a coverage 
requirement, such as a line, edge or call stack, and each 
column represents a test case.  A cell value C(i, j) is 1 if 
coverage requirement i is satisfied by test case j and 0 
otherwise.  Based on the coverage matrix, we define a 
function covReqTCs(C, i), which, given a coverage 
matrix C and a coverage requirement i, returns the set 
of test cases which satisfy the given requirement. 

 
(3)  covReqTCs(C,i) = {j ∈ TC | C(i, j) = 1} 

 
Second, we consider the fault matrix, F, where each 

row represents a known fault and each column is a test 
case.  A cell value F(k, j) is 1 if fault k is detected by 
test case j and 0 otherwise.  This leads to another 
function, detectsFaultTCs(F, k), which accepts a fault 

matrix F and fault number k and returns the set of test 
cases that detect k. 

 
(4) faultDetectingTCs(F,k) = { j ∈ TC | F(k, j) = 1} 

 
For a given test suite, the matrices C and F have the 

same column rank which is the number of test cases. 
 

2.2. Metric Definition 
Making use of the coverage matrix C and fault 

matrix F, we seek to define a metric that captures the 
average expected probably of finding a fault after 
coverage-based test suite reduction.  This metric will 
be independent of the selection of a specific coverage-
preserving reduction algorithm.  From C and F, we 
define the fault correlation for a coverage requirement 
i to a fault k as the ratio of test cases in the test suite 
that satisfy the coverage requirement and detect the 
fault to the number of test cases that merely satisfy the 
coverage requirement: 
 
(5)  faultCorr(C,F,i,k) =  

Card[ covReqTCs(C,i) ∩ faultDetectingTCs(F,k) ] / 
Card[ covReqTCs(C,i) ] 

 
where Card[] returns the cardinality of a set. If a 

coverage requirement i is only satisfied only by test 
cases that detect a given fault f, then faultCorr(C,F,i,j) 
= 1, the maximum possible fault correlation.  
Intuitively, any coverage-preserving test suite reduction 
technique must select a fault-detecting test case for that 
fault. 

The expected probability of finding a given fault 
after test suite reduction is defined as the maximum 
fault correlation of all coverage requirements with that 
fault: 

 
(6)  expProbFindFault(C,F,k) =  

Max( faultCorr(C,F,i,k) ∀ i ∈ CR )  
  

For example, if a coverage requirement satisfied 
by two test cases, one of which detects a given fault 
and one of which does not, the fault correlation is 0.5.  
If no coverage requirement leads to a higher fault 
correlation, then a coverage-preserving test suite 
reduction technique (considered independently of other 
coverage requirements) would select a fault-detecting 
test case with probability of 0.5.  Thus, the expected 
probability of finding all faults after test suite reduction 
is the product of the expected probability of detecting 
each fault: 
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(7)  expProbFindAll(C,F) =  

Π (expProbFindFault(C,F,k) ∀ k ∈ KF) 
 

Because our goal is to compare how various 
coverage criteria perform in test suite reduction, we 
desire a metric which is normalized across subject 
applications and test suites with differing numbers of 
coverage requirements and detectable faults.  Thus, we 
consider the average expected probably of detecting 
each fault: 

 
(8)  avgExpProbFindEach(C,F) =  

Avg( expProbFindFault(C,F,k) ∀ k ∈ KF ) 
 

Figure 1 presents an algorithm for calculating (8) for 
a given subject application, fault matrix, and coverage 
matrix. 

 

 
Figure 1:  CalcFaultDetectionProbability Algorithm 
 
The CalcFaultDetectionProbability 

algorithm assumes the coverage matrix and fault matrix 
as inputs (Lines 1 and 2).  It then declares an array with 
length equal to the number of known faults to hold the 
calculated probabilities (Line 3).  Then, for each 
coverage requirement for each fault, counters are 
initialized to hold the number of test cases that cover 
the requirement, and both cover the requirement and 
detect the fault (Lines 4..8).  The coverage matrix and 
fault matrix are referenced for each test case to 
increment the counters (Lines 9..15).  We allow for the 
case where no test cases hit the coverage requirement, 

in which case we move forward to the next one (Line 
16).  The counters are then used to calculate the fault 
correlation number (Line 17), and the maximum 
probability of detecting the fault is potentially updated 
(Line 18).  After all coverage requirements and faults 
are evaluated, the average probability of detecting each 
fault is calculated (Line 21). 

 
3. Experiments 
 

To assess the effectiveness of the average expected 
probability of detecting each fault as a metric for test 
suite reduction, we applied it to a set of test suite 
reduction experiments [10].  A brief summary of these 
experiments appears next.  For additional details, see 
[10].  The experimental and analytical process appears 
in Figure 2, where lines indicate inputs into process 
steps and calculations. 

 

 
Figure 2:  Experimental and Analytical Process 

 
3.1. Subject Applications 

In our study of test suite reduction for GUI 
applications, we used three subject applications from 
the TerpOffice Suite [15], TerpPaint (TP), 
TerpSpreadsheet (TS), and TerpWord (TW).  Written 

ALGORITHM: CalcFaultDetectionProbability (
1 C(1..I, 1..J), /* coverage matrix, I=number of

coverage requirements, J=number of test cases*/
2 F(1..K, 1..J) /* fault matrix, K=number of known

faults, J=number of test cases */
3 Declare P(1..K) /* expected probabilities of

finding faults 1..K */
4 for k = 1..K { /* for each fault */
5 P(k) = 0
6 for i = 1..I { /* for each coverage

requirement */
7 countCoveringCases <- 0
8 countCoveringDetectingCases <- 0
9 for j = 1..J { /* for each test case */
10 if C(i, j) = 1 then {
11 countCoveringCases <-

countCoveringCases + 1
12 if F(k, j) = 1 then {
13 countCoveringDetectingCases <-

countCoveringDetectingCases + 1
14 }
15 } /* j */
16 if countCoveringCases = 0 then next i
17 faultCorrelation =

countCoveringDetectingCases /
countCoveringCases

18 P(k) = Max(faultCorrelation, P(k))
19 } /* i */
20 } /* k */
21 Return Sum(P(1..K)) / K
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in Java and making heavy use of the Swing GUI 
framework, these applications were developed by 
advanced undergraduate software engineering students 
over a period of years.  Each application comes with a 
large test universe generated using the event flow 
criterion [13] and a set of versions each containing a 
single mutation fault.  Characteristics of these 
applications appear in Table 1. 

 
Application TerpPaint 

(TP) 
TerpWord 
(TW) 

TerpSpreadsheet 
(TS) 

Test 
Universe 
Size 

1500 1000 1000 

# Detectable 
Faults 

43 18 101 

# Call Stacks 
Observed 

413166 569933 333882 

# Methods 
Observed 

12277 12665 11103 

# Events 181 219 110 
# Lines 11803 9917 5381 

Table 1:  Subject Applications 

3.2. Coverage Criteria  
We collected five different types of coverage data 

for the entire test universe for each subject application; 
event (E1), event-interaction (E2), line (L), method 
(M), and call-stack (CS). 

Event-based coverage [14] has been developed 
specifically for applications where test cases can be 
defined as sequences of events, and as such it is 
particularly suited to GUI applications.  Examples of 
events in GUI applications include button clicks, menu 
selections, and keystrokes.  Using a tool called GUI 
Ripper [12] a model of a GUI can be automatically 
derived, and from this model, test cases with varying 
event sequence lengths can be automatically generated.  
Another tool, the JavaGUIReplayer [15] can 
subsequently be used to execute the test cases.  In this 
work, we consider two different event sequence lengths 
represented in the reduction techniques E1 and E2.  In 
E1, each event in isolation is a coverage requirement to 
be covered by any reduced test suite, and in E2, 
coverage requirements are made up of pairs of events. 

In line coverage, the coverage of each source code 
line induced by test execution against a given subject 
application is measured.  From this, we define 
reduction technique L, in which reduced test suites 
must obtain the same line coverage as their full 
counterparts.  In these experiments, line coverage data 
was obtained using the jcoverage tool [7].  For 
feasibility, this technique does not include coverage of 
the supporting Java libraries, but rather only includes 
coverage of the TerpOffice application source. 

Call-stack coverage measures the coverage of each 
runtime call stack observed during execution of a test 
case.  A call stack is an ordered sequence of active 
method calls in a running application.  The call stack 
criterion has been shows to be particularly effective as 
a test suite reduction criterion against GUI subject 
applications [10].  Call stack coverage data was 
collected using the JavaCCTAgent tool [6] and used in 
the CS test suite reduction technique.  The CS 
technique does include coverage of methods in the 
underlying Java libraries. 

Method coverage is used to reduce test suites in 
the M technique.  In M, each method appearing in the 
full test suite must also appear in the corresponding 
reduced suite.  This information is derivable from call-
stack coverage data and does incorporate coverage of 
Java libraries. 

 
3.3. Reduction Technique 

A large number of test suites of varying sizes were 
randomly generated for each subject application out of 
their respective test universes.  Using the coverage 
data, each test suite was reduced using the 
ReduceTestSuite algorithm of Harrold et al. [4].  In 
these experiments, each randomly generated test suite 
was reduced based on each of the five coverage criteria 
E1, E2, M, L, and CS. 

 
3.4. Prior Metrics and Results 

In [10], the reduced test suites were evaluated 
based on their percentage size reduction and 
percentage fault detection reduction as defined 
formulas (1) and (2) from Section 1.  We summarize 
those results in the following sections. 
 
3.4.1. Size Reduction.  Size reduction behavior was 
found to be similar across all three subject applications.  
For the largest original test suite sizes, coverage-
preserving reduction using E1, L, and M resulted in 
size reduction in the 75-91% range.  At the other end, 
reduction with E2 as the criterion yielded very little 
size reduction at all – at most 11%.  Call-stack-based 
reduction struck a middle ground, providing size 
reduction in the 38-50% range. 
 
3.4.2. Fault Detection Reduction.  With fault 
detection reduction, very similar behavior was 
observed for the L and M coverage criteria, with fault 
detection loss of effectiveness in the 19-28% range for 
larger suites.  E1 fared somewhat worse, losing from 
37-41% of the faults for the largest suite size.  CS-
based reduction only lost 0-5% of the detectable faults 
across all suite sizes, which was comparable to the 
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performance of E2-based reduction even though the E2 
technique yielded very little size reduction.  Further 
investigation of the reasons behind these results is one 
of the primary motivations of the present work, 
discussed in the next section. 
 
4. Results 
 
4.1. Average Probability of Detecting Each 
Fault by Coverage Criterion 

We now extend the analysis from our prior work 
[10] to include the newly proposed average probability 
of detecting each fault.  To do this, we applied the 
CalcFaultDetectionProbability algorithm to the 
previously obtained fault and coverage matrices.  Table 
2 shows the average expected probability of detecting 
each fault after test suite reduction for each application 
and coverage technique.  The box plots in Figure 3 
show the other key statistics from individual fault 
probabilities. 

 
Table 2:  Average Expected Probability of Detecting Each 

Fault After Test Suite Reduction 

 TP TS TW 
E1 0.51 0.52 0.47 
E2 0.92 0.88 0.96 
L 0.84 0.69 0.77 
M 0.80 0.69 0.72 
CS 1.00 0.97 0.97 
 

All of the five coverage techniques perform 
relatively consistently across applications.  Event 
coverage, E1, fares the worst, while line and method 
coverage are comparable between 69-84% average 
probabilities.  Event interaction coverage, E2, results in 
a very high average probability, but E2’s usefulness in 
test suite reduction for these applications is limited for 
these subject applications and test universe as it results 
in very large reduced suite sizes [10].  The highest 
average probability is achieved with the call-stack 
coverage criterion, CS, with a 97-100% average 
probability of detecting each fault.  This result shows 
quantitatively that many call stacks are highly 
correlated with fault-revealing test cases and therefore 
explains the extremely low percentage fault detection 
reduction observed when using the CS technique on 
test suites generated randomly from this pool [10]. 
 

 
 

 

 
Figure 3:  Fault Probability Statistics 

 
 
4.2. Faults Always Detected After Reduction 

In the case of TP, each known fault has at least one 
call stack coverage requirement that only appears in 
fault-detecting test cases.  This situation is ideal for test 
suite reduction:  Any reduced test suite derived from a 
full test suite while preserving coverage must then be 
able to detect the same set of faults.  This observation 
led us to examine how many such faults with unique 
coverage requirements exist for the various coverage 
techniques.  For each application, Figure 4 shows the 
number of faults that, if detected by an original test 
suite, must be detectable by any subsequent suite 
reduced using the given coverage technique.  The 
relative performance of the different coverage 
techniques mirrors the results of for the average 
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probability of detecting each fault as well as the 
percentage fault detection reduction. 

 

 

 
 

 
Figure 4:  Faults Always Detected After Reduction 

 
4.3. Faults Which May Be Missed After 
Reduction 

We performed an analysis of the faults that can be 
missed by each technique as indicated by the average 
probability of detecting each fault.  We chose to 
characterize each fault by its difficulty.  Wong et al. 
define four quartiles of faults, Quartile-I, II, III, and IV, 
which can be detected by [0-25)%, [25-50)%, [50-
75)%, and [75-100]%, respectively, of the test cases in 
the test pool [19].  However, by these standards, all of 
the known TerpOffice faults are “difficult” because 
they all fall solidly into the low end of Quartile-I, with 
the median percentage of detecting cases ranging from 

0.13% for TerpPaint to 0.3% for TerpSpreadsheet.  
Thus, we instead characterize our faults into three 
buckets based on how many test cases detect them:  
Hard (1-2 detecting cases), Medium (3-5 detecting 
cases), and Easy (6 or more detecting cases).  Table 3 
shows the distribution of these faults by subject 
application. 

 
Table 3:  Fault Difficulties 

Fault Class TP TS TW 
Easy 7 37 5 
Medium 3 28 3 
Hard 33 36 10 

 
For each subject application and coverage 

criterion, we categorized the faults which may be lost 
after coverage-preserving test suite reduction.  The 
results of this analysis appear in Table 4. 

 
Table 4:  Faults with No Coverage Requirements Unique 

to Detecting Test Cases by Criterion and Difficulty 

 TP TS TW 
E1 Easy 7 

Med 3 
Hard 20  

Easy 26 
Med 17 
Hard 34  

Easy 2 
Med 2 
Hard 7  

E2 Easy 0 
Med 0 
Hard 6  

Easy 0 
Med 0 
Hard 23  

Easy 0 
Med 0 
Hard 1  

L Easy 6 
Med 1 
Hard 3  

Easy 13 
Med 13 
Hard 34  

Easy 3 
Med 3 
Hard 5  

M Easy 7 
Med 3 
Hard 8  

Easy 12 
Med 13 
Hard 34  

Easy 0 
Med 0 
Hard 7  

CS Easy 0 
Med 0 
Hard 0  

Easy 0 
Med 1 
Hard 5  

Easy 0 
Med 0 
Hard 1  

 
The CS and E2 techniques, which only have a 

handful of faults overall that are not necessarily 
detected after reduction, show a distinct tendency for 
those faults to fall into the “Medium” and “Hard” 
difficulty buckets.  For the other techniques, we only 
see such a trend for one of the three applications 
(specifically, TS).  This analysis suggests that fault 
detection reduction in coverage-adequate reduced test 
suites may be related to fault difficulty only for certain 
coverage criteria. 
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4.4. Combining Coverage Criteria 

Looking at the probability data for each fault, we 
observed that certain faults correlated more highly with 
different coverage criteria.  This led us to examine the 
average probability of detecting each fault for pairs of 
criteria.  Identifying effective pairs of coverage criteria 
is important to guide the choice of criteria to utilize in a 
multi-criteria test suite reduction approach such as the 
one proposed by Jeffrey and Gupta [8]. 

We assume a test suite reduction approach that 
maintains coverage relative to two distinct coverage 
criteria.  For such a coverage criteria pair, the average 
probability of detecting a fault is then the maximum of 
the individual probabilities for each criterion in 
isolation.  Data for this analysis appears in Table 5.  
The pair E1+E2 is not included because E2 subsumes 
E1 – that is, an E2-adequate suite is by definition E1-
adequate.  The technique M+CS is omitted for the 
same reason, namely that CS subsumes M.  Note that 
because M includes library coverage data and L does 
not, L does not subsume M in these experiments. 

 
Table 5:  Average Probabilities for Coverage Criteria 

Pairs 

 TP TS TW 
E1+L 0.88 0.71 0.91 
E1+M 0.80 0.71 0.82 
E1+CS 1.00 0.97 0.97 
E2+M 0.97 0.91 0.96 
E2+L 0.96 0.91 0.96 
E2+CS 1.00 1.00 1.00 
L+M 0.90 0.70 0.83 
L+CS 1.00 0.97 0.97 

 
In Table 5, data points are highlighted in bold and 

italic where the combination of coverage criteria results 
in a better average probability of detecting each fault 
than either criterion in isolation.  We see such an 
improvement in over half (14 of 24) of the 
combinations.  This result suggests certain faults may 
be more highly correlated to different criteria, and thus 
combining multiple coverage criteria can dramatically 
reduce fault detection reduction.  However, 
maintaining coverage adequacy with respect to 
additional criteria in test suite reduction will lead to 
larger reduced test suites.  Indeed, many of the 
improvements in average probabilities in Table 5 
involve the addition of the event-interaction criterion, 
E2, and E2 coverage adequacy in test suite reduction is 
known to lead to very little size reduction for these 
applications and test suites [10].  In test suite reduction, 
the tradeoff between fault detection and size reduction 

must be made based on situational engineering 
judgments. 

 
4.5. Threats to Validity 

Threats to external validity are factors that may 
affect generalizing the results to other situations.  In 
this case, we have only applied the average probability 
of detecting each fault to a limited number of subject 
applications.  These subject applications, as well as 
their test cases and known faults, are similar in size and 
origin and therefore may not be fully representative of 
the wider population of software applications.  Other 
applications and types of faults may display different 
behavior under test suite reduction which could affect 
the utility of the metric.  Additionally, we have 
evaluated the metric with respect to only five coverage 
criteria.  The metric may appear more or less effective 
at evaluating other coverage criteria. 

Threats to construct validity are factors that may 
cause our experiments to inadequately measure 
concepts of interest.  Our primary threat to construct 
validity is the simple model of cost which treats all 
faults as equally severe.  In practice, certain faults may 
be more or less critical to identify during regression 
testing.  A more complex and realistic approach to 
creating the average probably of detecting each fault 
metric would account for this. 
 
5. Related Work 
 

There have been many prior studies of test suite 
reduction while holding coverage constant relative to 
some criterion.  Wong et al. [19] use the all-uses 
coverage criterion and observe little or no fault 
detection effectiveness reduction in the reduced suites. 
They also consider fault difficulty and find a direct 
relationship between the ease of finding faults and the 
likelihood that they will be detected after reduction.  In 
contrast, Rothermel et al. [16] reduce while holding all-
edges coverage constant and find significant reductions 
in fault detection effectiveness.  They contrast their 
results with an earlier study by Wong et al. [19] and 
suggest possible causes for the different conclusions.  
The fact that prior studies do not necessarily agree on 
the costs and benefits of test suite reduction suggests a 
need for new metrics beyond size reduction and fault 
detection effectiveness reduction.  Our work provides 
an alternative analysis in the form of the average 
probability of detecting each fault. 

Jeffery and Gupta [8] introduce a test suite 
reduction approach that combines “primary” and 
“secondary” coverage criteria in the reduction 
algorithm.  The “selective redundancy” technique is so 
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named because certain test cases are known to add no 
additional coverage of the primary criterion, but by 
selecting such tests based on the second criterion, they 
are able to generate reduced test suites with fault 
detection effectiveness better than using either criterion 
alone.  Our results discussed in Section 4.4 for the 
average probability of detecting each fault when using 
pairs of coverage criteria provide some additional 
evidence that combining criteria can be particularly 
effective in test suite reduction. 

In their study of test suite reduction for model-
based tests, Heimdahl and George raise the notion of 
an “ideal coverage criterion” which “would detect all 
faults in the system under test and any test-suite, large 
or small, providing this coverage would reveal the 
same faults [5].  Along the same line, Rothermel et al. 
point out that assuming an equal likelihood of selecting 
one of k test cases that hit a coverage requirement, and 
only one test case detects a given fault, the probability 
of omitting the fault-detecting test case under coverage-
based test suite reduction is (k-1)/k [16].  To our 
knowledge, our work is the first to attempt to 
formalize, fully quantify, and evaluate these notions. 

There are alternative approaches to test suite 
reduction that do not explicitly maximize test coverage 
relative to a traditional criterion.  One such alternative 
is the “operational difference” technique of Harder et 
al. [3].  This approach builds up a reduced suite by 
pulling test cases from the test pool and adds them to 
the suite if they change the “operational abstraction” of 
the program’s dynamic behavior.  This process 
terminates when a certain number of consecutive cases 
produce no abstraction changes.  Another approach that 
does not explicitly attempt to maximize test coverage is 
the cluster sampling of Leon and Podgurski [9].  The 
average probability of detecting each fault could be 
used to identify the best coverage criteria to be used as 
inputs for cluster formation. 

 
6. Conclusions and Future Work 
 

In this work, we defined a new metric for 
coverage-based test suite reduction based on the 
average probability of detecting each fault.  We applied 
this metric to an existing set of test suite reduction 
experiments on GUI-intensive subject applications and 
contrasted the results using several different coverage 
criteria as well as combinations of criteria.  We 
extended the analysis to count faults detected by a full 
test suite which must necessarily be detected by any 
coverage-adequate reduced test suite for the different 
criteria, and we considered the impact of fault 
difficulty. 

 Based on the analysis enabled by the average 
probability of detecting each fault metric, we are able 
to draw some conclusions about the relative utility of 
each coverage criterion in test suite reduction.  For the 
subject applications in these experiments, test suite 
reduction based on call stacks provides the highest 
probability of detecting each fault in reduced test 
suites.  Method (including libraries) and line coverage 
perform comparably, and length-1 event sequences are 
the least effective.  This relative ranking is consistent 
with empirical performance of the various criteria 
against the traditional percentage fault detection 
reduction metric as observed in [10].  Thus, we 
conclude that the average probability of detecting each 
fault shows promise for identifying coverage criteria 
that work well for test suite reduction.  

The “best” test suite reduction coverage criterion 
as measured by the metric presented in this paper may 
differ among other classes and styles of application.  
Thus, future work shall include non-GUI subject 
applications as well as GUI applications which were 
constructed using other approaches.  Other cost 
functions may also affect the relative desirability of the 
different techniques.  For example, an extended model 
may incorporate the notion of fault severity.  In the 
future, we intend to extend test suite reduction metrics 
to incorporate such factors. 
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