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Abstract 

 
Graphical user interfaces (GUIs) are used as front-

ends to most of today’s software applications; testing 
GUIs for functional correctness is needed to ensure the 
overall correctness of these applications. The event-
driven nature of GUIs presents new challenges for 
testing. One important challenge is test suite reduction. 
Conventional reduction techniques/tools based on 
static analysis are not easily applicable due to the 
increased use of multi-language GUI implementations, 
callbacks for event handlers, virtual function calls, 
reflection, and multi-threading. Moreover, many 
existing techniques ignore event handlers from 
libraries, and fail to consider the context in which a 
handler executes. Consequently, they yield GUI test 
suites with seriously impaired fault-detection ability. 
This paper presents a new reduction technique based 
on the call stack coverage criterion. Call stacks may 
be collected for any executing program with very little 
overhead. An empirical study involving three large 
GUI-based applications shows that call stack based 
reduction provides an excellent tradeoff between 
reduction in test suite size and loss of fault-detection 
effectiveness. 
 
 
1. Introduction 
 

Users increasingly interact with modern software 
through graphical user interfaces (GUIs).  Testing 
GUIs for functional correctness is extremely important 
because (1) GUI code makes up an increasingly large 
percentage of overall application code and (2) due 

to the GUI’s proximity to the end user, GUI defects can 
drastically affect the user’s impression of the overall 
quality of a system. 

Because of these factors, automated test case 
generation techniques for GUIs have been developed 
[12].  Event-flow coverage based test-case generation 
has been shown to be effective for defect detection in 
GUI applications [13].  However, the number of tests 
generated by using event flow coverage can be quite 
large.  An event-flow-adequate test suite may be too 
large to fully execute regularly in a rapid development 
and integration environment that mandates, for 
example, nightly builds and smoke tests.   

Test suite reduction [[5][19][16]] (also referred to 
as test suite minimization in the literature) seeks to 
reduce the number of test cases in a test suite while 
retaining a high percentage of the original suite’s fault 
detection effectiveness.  Several techniques are 
available which employ algorithms to reduce the size of 
a test suite while maintaining coverage adequacy 
relative to some criterion. For example, our earlier 
work [9] presented call stack coverage as a practical 
and effective basis for performing test suite reduction, 
advancing the state-of-the-art for coverage-based test 
suite reduction. Traditionally, these techniques, 
including our own, have been evaluated against 
conventional, non-GUI software. 

The event-driven execution model for a GUI differs 
from that of other types of software.  A given piece of 
code in a GUI application may be executed in many 
different contexts due to the increased degrees of 
freedom that modern GUIs provide to users. The 
context may be essential to uncovering defects; yet 
most existing coverage criteria are not capable of 
capturing context.  Furthermore, today’s sophisticated 
GUI applications increasingly integrate multiple 
source-code languages and object code formats, along 
with virtual function calls, reflection, multi-threading, 
and event handler callbacks.  These features severely 
impair the applicability of techniques that rely on static 
analysis or the availability of language- and/or format-
specific instrumentation tools.  Thus, we believe that 
GUI-intensive software poses new challenges for 

 



coverage-based testing that require the development of 
new solutions. 

In previous work [9], we presented the call-stack 
coverage criterion for single-threaded, non-event-
driven applications.  In this work, we extend our 
definition of call stack coverage to address new 
challenges introduced by modern GUI applications.  
Unlike criteria such as line (statement) or branch 
coverage, call stack coverage has the benefit of 
encapsulating valuable context information.  And 
unlike other traditional coverage criteria such as 
dataflow/def-use pairs [15], call stack coverage is 
easily captured in a multi-language application, and 
with or without the availability of source code.  We 
apply our modified technique to three multi-threaded 
GUI applications written in Java.  We present an 
empirical evaluation showing that call stack coverage-
based test suite reduction produces better results for 
GUI applications compared to traditional techniques. 
Contributions: This paper makes the following 
contributions to the field of test-suite reduction: 

1. Extends our previous definition of call stack 
coverage to account for multi-threaded runtime 
environments. 

2. Discusses practical considerations for the 
implementation of call stack collection in the domain 
of modern GUI applications. 

3. Empirically evaluates call stacks versus 
several traditional coverage criteria for use in test 
suite reduction in modern GUI applications. 

 
The remainder of the paper is structured as follows:  

In the next section, we provide definitions and a brief 
summary of prior work using call stack coverage for 
test suite reduction.  Section 3 discusses our solutions 
to specific problems that arise in modern GUI 
applications.  In Section 4, we provide details about the 
implementation of our tool suite.  Section 5 describes 
our empirical evaluation and presents results.  In 
Section 6, we survey related work.  We discuss our 
conclusions and future directions in Section 7. 
 
2. Background 

In this section, we present some background and 
definitions relating to test suite reduction and call 
stacks.  Additional details may be found in [9]. 
 
2.1. Test Suite Reduction  
Informally, the goal of test suite reduction is to reduce 
the size of a given test suite while preserving as much 
of its fault-detecting ability as possible.  Most 
approaches to this problem are based on eliminating 
test cases that are redundant relative to some coverage 

criterion, such as program-flow graph edges [16], 
dataflow [19], or dynamic program invariants [4].  The 
test suite reduction problem is closely related to test 
case prioritization [2], because any reduction technique 
can be turned into a prioritization technique by 
repeated application of the reduction algorithm to the 
remainder of the suite.  In our previous work, we 
proposed the coverage of call stacks as an effective 
new criterion to apply to test suite reduction. 
 
2.2. Call Stacks 
A call stack is the sequence of active calls associated 
with each thread in a stack-based architecture.  
Methods are pushed onto the stack when they are 
called, and popped when they return or when an 
exception is thrown (where supported, as in Java or 
C++).  An example of a call stack from a simple Java 
program appears in Figure 1. 

 

 
 
 
Each method may be represented using its name, the 

types of its parameters, and return value.  Thus a call 
stack is an ordered sequence of named methods. 

An efficient data structure for recording call stacks 
on a given thread is the calling context tree, or CCT 
[1].  In a CCT, each node represents a method, the root 
is the entry point of the thread, and each edge 
represents a method call.   

 
3. Call Stacks in Modern GUI Applications 

GUI applications present a number of interesting 
challenges for call-stack-coverage-based analysis, 
including multithreading, heavy use of third-party 
libraries and frameworks, object-oriented language 
features, and management of coverage data. 
 
3.1. Multithreading 

Our earlier work focused on a conventional single-
threaded application written in C, which required us to 
monitor and record the state of a single stack.  
However, modern GUI applications are all 

(Ljava/lang/Object;ILjava/lang/Object;II)V 
Ljava/lang/System;arraycopy 
([BII)V Ljava/io/BufferedOutputStream;write 
([BII)V Ljava/io/PrintStream;write 
()V Lsun/nio/cs/StreamEncoder$CharsetSE;writeBytes 
()V Lsun/nio/cs/StreamEncoder$CharsetSE;implFlushBuffer 
()V Lsun/nio/cs/StreamEncoder;flushBuffer 
()V Ljava/io/OutputStreamWriter;flushBuffer 
()V Ljava/io/PrintStream;newLine 
(Ljava/lang/String;)V Ljava/io/PrintStream;println 
([Ljava/lang/String;)V LHelloWorldApp;main 

Figure 1:  Example Call Stack in Java 



multithreaded.  Indeed, all Java applications are 
multithreaded, if for no other reason than the presence 
of the garbage collector.  Here we extend our call stack 
coverage technique from [9] to make it practical and 
useful in GUI applications. 
 Definitions: Each running thread in a multi-threaded 
application has a current stack of active method calls, 
where the most recently called method is at the top of 
the stack.  Each thread generates a set of current stacks 
over its lifetime.  Let the set of all unique stacks 
generated by a thread t be denoted as C(t).  If c = <m1, 
m2, … mn> is a call stack of depth n, we define a 
substack cs (denoted by a subscript s) and a superstack 
cs (denoted by a superscript s) as the following ordered 
sequences, which are themselves call stacks: 

(1)  cs = <m1, m2, … mi>, i < n 

(2)  cs = <m1,m2, … mn, … mi>, i > n 

For a given call stack c in any thread t, there is 
associated with c a set of substacks C(t)s and a set of 
superstacks C(t)s.  We define the set of deepest, or 
maximum depth, stacks C(t)max in a thread t as follows: 

 (3)  C(t)max = {c ∈ C(t) | Cs = ∅} 

where ∅ is the empty set. Since each maximum depth 
stack implies the existence of all of its substacks in C, 
Cmax is a more compact representation of the set of all 
unique call stacks generated by a thread. 

To characterize the behavior of an entire multi-
threaded program, we combine call stack observations 
made on each thread that took part in a given program 
execution.  We define the set of threads that existed 
during execution: 

(4)  T = <t1, t2, … tn> 

The set of unique call stacks for a given program 
execution χ is: 

(5) χ =  ∪ { C(t)max |  t ∈ T } 
 χ is the set of maximum-depth stacks observed on 
each thread, and each element of χ is a coverage 
requirement in our reduction technique.  Note that the 
definition of χ allows for the possibility that a 
maximum-depth stack on one thread is a substack of a 
maximum-depth stack on another, and both stacks 
would appear in χ.  Therefore, χ is not necessarily a 
set of unique maximum-depth stacks.  Although this 
may cause our technique to produce less size reduction 
than it might otherwise, we allow this for practical 
reasons, as checking for substack relationships across 
all stacks in every C(t)max is very computationally 
expensive and of marginal benefit.  
Implementation: Our implementation approach to 
collecting unique call stacks is to create a separate CCT 

for each thread as it is created, and then maintain that 
CCT over the thread’s lifetime as methods are entered 
and exited.  Ignoring recursion for the time being, 
traversing each path to a leaf in the CCT gives us 
precisely the set of unique maximum-depth call stacks 
needed for our analysis. When a thread exits, its CCT 
is traversed to calculate the set of unique call stacks 
seen on that stack, and the unique stacks are 
synchronously merged into a master list of unique 
stacks seen on all threads.  This approach allows for 
greater application concurrency than the alternative, 
which is a single CCT shared and maintained by all 
threads.  A potential drawback is that an application 
with many short-lived threads may stall frequently for 
processing of the CCTs, but this was not an issue in our 
studies. 
 
3.2. Libraries and Frameworks 

Another important factor not fully addressed in our 
original work is the use of third-party libraries and 
frameworks.  Libraries and frameworks are essential to 
modern software development in general and GUI 
applications in particular.  Many test coverage 
techniques only collect coverage element data based on 
instrumentation of first-party application source or 
object code.  The reasons for this include the 
unavailability of necessary third-party source code and 
the impracticality under most techniques of 
instrumenting an entire large framework such as the 
Java 2 SDK.  By making this tradeoff, coverage 
techniques potentially overlook vast amounts of 
interesting behavior induced in library code by the 
application. 

For example, consider the program in Figure 2a.  If 
no library code is instrumented, every execution of this 
program against integral input will satisfy statement, 
branch, and dataflow coverage.  Thus, when used in 
test suite reduction, each of those coverage approaches 
would potentially drop all tests that exercise the code 
with integral input greater than or less than zero, 
thereby missing the array-index-out-of-bounds 
exception that occurs with such input. 
In contrast, our call stack coverage technique includes 
the library calls that appear on application-generated 
call stacks.  Therefore, it preserves at least one test that 
displays the abnormal control flow triggered by the 
exception.  In this work, we aim to further show 
empirically that this information is both valuable and 
practically obtained.  In general, writing a tool to 
collect call stack coverage information only requires 
method entry and exit hooks, which already exist on 
most compilers or runtime platforms to enable the 
construction of call profilers. 



 
 

3.3. Object-Oriented Language Features 
Our prior work focused on a procedural program 

written in C.  Modern GUI application frameworks – 
usually implemented in languages like C++, Java, and 
C# -- make extensive use of object-oriented language 
features such as virtual function calls, reflection, and 
callbacks for event handlers.  It is not possible in 
general to statically determine which methods will be 
invoked by a program execution.  Dynamic analysis 
based on call stacks is ideal in such an environment 
because the stack contains the actual methods invoked 
in all cases. 

Consider the program in Figure 2b, which takes two 
parameters:  A method name presumed to be 
toUpperCase or toLowerCase, and a string argument to 
pass to the method via reflection.  The call stacks 
generated by various executions of this program will 
differ based on the method name parameter, which is 
clearly behavior that should be captured for the 
purposes of test suite reduction.  But the use of 
reflection makes determining this statically impossible.  
Modern GUI and server applications are often built 
using frameworks that employ reflection-based 
component models where the types and methods to be 

used are not known until runtime.  Call stacks are ideal 
for recording test coverage in reflection scenarios. 
 
3.4. Coverage Data Size 

In our earlier work with the space application [17], 
we observed 453 unique maximum-depth call stacks 
which became our test coverage requirements.  Due to 
heavy use of libraries and the runtime environment 
itself, even an extremely simple Java application may 
generate thousands of call stacks.  Indeed, in the 
version of Java used in this work, the simple program 
in Figure 2c generated 803 call stacks; a GUI 
application built with Java Swing such as one of our 
subject applications can easily generate hundreds of 
thousands.  We will show in this paper that call stack 
data collection and test suite reduction remains feasible 
in that realistic environment. 
 
4. Tools for Call Stack Coverage and Test 
Suite Reduction 
 
4.1. Collecting Call Stacks 

To illustrate our technique’s ability to work without 
source-level instrumentation, we built a Java Virtual 
Machine Tool Interface (JVMTI) agent to collect the 
CCT data necessary for a call stack coverage analysis.  

a) 
public class ArrayTest { 

 public static void main(String args[]) { 

  String[] strings = {"first"}; 

  int index = Integer.parseInt( args[0] ); 

  System.out.println( strings[ index ] ); 

 } 

} 

c) 
public class HelloWorldApp { 

    public static void main(String[] args) { 

        System.out.println("Hello World!"); 

    } 

} 

b) 
import java.lang.reflect.*; 

public class ReflectionTest { 

 public static void main(String args[])  

  throws ClassNotFoundException, 

  NoSuchMethodException,   

  SecurityException, 

  IllegalAccessException,  

  InvocationTargetException 

 { 

  if( args.length != 2 || 

     !(args[0].equals("toUpperCase") || 

       args[0].equals("toLowerCase")) ) { 

           throw new IllegalArgumentException(); 

  } 

  String command = args[0]; 

  Class str = Class.forName( "java.lang.String" ); 

  Method m = str.getMethod( command, null ); 

  Object result = m.invoke( args[1], null ); 

  System.out.println( result.toString() ); 

 } 

} 

Figure 2: Sample Programs for Call Stack Analysis 



We made use of the JVMTI hooks for method entry 
and method exit to maintain a CCT for each thread.   
Recursive invocations are permitted in our tool but are 
only captured to a depth of one.  As threads die and at 
the end of an execution, the coverage information from 
each CCT is merged and processed into a set of unique 
call stacks which are finally written to the file system.  
Qualitatively, the applications we use as our 
experimental subjects remain quite responsive in the 
presence of this instrumentation.  This suggests that 
call stack coverage may be practical to capture in 
certain fielded GUI applications, which may be a 
subject of future work. 

Since we collect coverage for each thread, we are by 
definition collecting data on system threads where the 
subject program is not even on the stack.  Since activity 
on system threads (such as the one on which the 
garbage collector runs, or the one that pumps GUI 
events in the Java Swing libraries) is somewhat 
environmentally dependent and may vary from run to 
run, this introduces a potential element of non-
determinism into our data collection and, by 
consequence, which tests we select in the reduction 
process.  However, this could be considered a positive 
result, as certain test cases may be more likely than 
others to induce fault-indicating activity on the 
aforementioned system threads. 

The output of our JVMTI agent consists of two 
files:  The first file represents the observed call stacks 
as a list of tab-delimited method identifiers.  We store 
Java Native Interface (JNI) method identifiers instead 
of full method signatures in order to save space.  
However, method identifiers are assigned by the JVM 
and are not necessarily consistent across different 
executions of the same program.  So our second output 
file contains a map of JNI method identifiers to the full 
method signatures.  When calculating the set of unique 
call stacks across two or more test cases, we use the 
maps to create a canonical form based on the method 
signatures.  
 
4.2. Reducing Test Suites 

As in our previous work, we use a C# 
implementation of the ReduceTestSuite heuristic 
presented in [5].  In our implementation, 
ReduceTestSuite begins by including all test cases that 
cover a single call stack.  Then it picks a test case that 
covers the most call stacks from the subsets of cases 
with the next lowest cardinality, marking all of the 
subsets that contain this case. This process occurs 
repeatedly for higher cardinality subsets until all 
subsets are marked and, therefore, all call stacks are 

covered.  For an analysis of the runtime of this 
algorithm, see [5]. 
 
5. Experiments 

We implemented the call stack collection and 
reduction algorithms and ran two experiments to 
evaluate our test suite reduction technique. 
 
5.1. Research Questions 

We sought to evaluate the call stack reduction 
technique in terms of the size and fault detection 
effectiveness of the resulting test suites.  Specifically, 
we wanted to directly compare the call-stack based 
technique to reduction based on four different types of 
coverage: event (E1), event-pairs (E2), line (statement) 
(L), and method (M).  Line coverage has probably the 
widest support of any coverage technique among 
commercial and open source tools due to its balance 
between precision and practicality.  Event coverage 
[13] is specially tailored for use in GUI applications, 
which can be modeled as sequences of events.  In E1, 
each event in isolation is a coverage requirement, while 
in E2, unique pairs of events are included as coverage 
requirements.  We also wanted to investigate whether 
test suites created by call stack reduction preserved 
more fault-detecting ability than randomly reduced 
suites of the same size.  To that end, we designed two 
experiments that we present next: (1) Experiment 1, in 
which we compared call stack based reduction with 
event, event-pair, line, and method-based reduction, 
and (2) Experiment 2, in which we compared call stack 
reduction to randomly selected suites of the same size.  
5.2 Subject Applications 

We used three applications from the TerpOffice 
Suite [14] as our experimental subjects.  TerpOffice is 
a business productivity suite written in Java by senior 
software engineering students over a period of years.  
The three applications we study are TerpPaint (TP), 
TerpWord (TW), and TerpSpreadsheet (TS).  Table 1 
shows key metrics for these applications’ test suites.  
Each application is associated with a large universe of 
test cases generated from the event flow criterion [10], 
a set of single-fault versions, and a set of faults known 
to be detected by each test case. 
Application TerpPaint 

(TP) 
TerpWord 
(TW) 

TerpSpreadsheet 
(TS) 

Test Universe 
Size 

1500 1000 1000 

# Detectable 
Faults 
(Versions) 

43 18 101 

Table 1: TerpOffice Applications 



 
5.3. Measured Variables 

As in [9], we measured fault detection effectiveness 
on a per-test-suite basis, i.e., two test suites were 
considered to be equally effective at detecting a 
specific fault if they each contain at least one case that 
exposes the fault.  This is the approach adopted in [19].  
For each reduction experiment, we captured the 
percentage size reduction: 

(1)  100 * (1 – SizeReduced / SizeFull) 

And percentage fault detection reduction: 
(2)  100 * (1 – FaultsDetectedReduced / FaultsDetectedFull) 

Since we dealt with a fairly small number of discrete 
faults in our experiments, we took averages of these 
quantities over large numbers of suites. 
 
5.4. Threats to Validity 

Threats to external validity are factors that may 
impact our ability to generalize our results to other 
situations.  Our main threat to external validity in this 
study is the small sample size.  In this study, we only 
run our data collection and test suite reduction process 
on three programs, which we chose for their 
availability.  These programs were constructed in a 
similar manner and may not be representative of the 
broader population of programs.  An experiment that 
would be more readily generalized would include 
multiple programs of different sizes and from different 
domains.  Additionally, we would expect the 
effectiveness of the call stack minimization process to 
vary depending on aspects of the programming style 
used in the target application.  In particular, when the 
application is composed of many small functions, call 
stacks provide finer-grained dynamic state information.  
Our subject applications are GUI-event-driven and thus 
contain many small event-handling methods.  This 
should increase the effectiveness of our minimization 
technique relative to what it could do against an 
application that implemented the same behavior using 
relatively fewer or more monolithic functions.  
(Consider the pathological case where a program is 
composed of a single large function, which would have 
but a single call stack for all executions.)  Finally, 
characteristics of original test suites (such as their fault 
detecting ability and how they were constructed) play a 
role in the size and fault detection reduction results.  
This threat can be addressed in future work by 
choosing original test suites adequate for a variety of 
coverage criteria. 

Threats to construct validity are factors in the 
experiment design that may cause us to inadequately 
measure concepts of interest.  In our experiments, we 

made several simplifying assumptions in the area of 
costs.  In test suite reduction, we are primarily 
interested in two different effects on costs.  First, there 
is the cost savings obtained by running fewer test cases.  
In this study, we assume that each test case has a 
uniform cost of running (processor time) and 
monitoring (human time).  These assumptions may not 
hold in practice.  The second cost of interest is the cost 
of failing to find faults during testing as a result of 
running fewer test cases.  Here we assume that each 
fault contributes uniformly to the overall cost, which 
again may not hold in practice.  These assumptions are 
commonly made in other studies of test suite reduction 
[[16][19]]. 
 
5.5. Data Collection Step 

Using the JavaGUIReplayer application [14], we 
executed each test case in each test pool against the 
fault-free versions of the subject programs, collecting 
the unique call stacks generated by each test case. We 
repeated this process for line (statement) coverage 
using jcoverage [6] as our instrumentation tool.  
Method coverage was derived from the call stack 
coverage data.  Because our tests were event-based, we 
knew their event coverage a priori.  Our coverage 
statistics aggregated over the entire test pool for each 
application appear in Table 2. 

 
 

Application Includes 
Library 
Data? 

Terp 

Paint  

(TP) 

Terp 

Word  

(TW) 

Terp 

Spreadsheet  

(TS) 

# Call 
Stacks 
Observed 

Yes 413166 569933 333882 

# Methods 
Observed 

Yes 12277 12665 11103 

# Events N/A 181 219 110 

# Lines1 No 11803 9917 5381 

# Classes1 No 330 197 135 

# Methods1 No 1253 1380 746 

Table 2: TerpOffice Static and Dynamic Program 
Elements 

As noted earlier, our instrumentation process for 
call stack coverage incorporates the induced coverage 
of the supporting Java libraries.  Because we used our 
raw call stack coverage data as the basis for method 
coverage, our method coverage approach also includes 
Java framework methods.  However, it was not feasible 

                                                           
1 Of TerpOffice source, as determined by jcoverage 
instrumentation. 



to instrument the entire Java SDK for line coverage, so 
our line coverage data is based solely on the 
TerpOffice source.  Because of this, between the two 
approaches M and L, it is possible (and in fact the case) 
that we may cover more methods than lines. 

The data gathered during this step allowed us to 
create any number of test suites composed of the 
previously executed test cases and know the set of 
unique coverage elements and faults detected by the 
suite with no further execution of the program.  Hence, 
it was not necessary to run each test suite under study 
against each version of the subject program. This 
simulation approach is similar to one used in [3] to 
evaluate adequacy criteria and test effectiveness. 
 
5.6. Reduction Approach 

Before reducing a test suite, we use the individual 
test case coverage information from step 5.2 to 
calculate the full set of unique call stacks that an 
execution of the full suite can be expected to generate.  
The full set is computed by merging the unique 
maximum-depth call stacks observed by each test case 
in the suite. 

Here we must consider the situation where a 
maximum-depth call stack from one test case is not 
maximum-depth in another.  For example, Test Case 1 
(tc1) may generate the call stack c1 = <f1, f2, f3>, and 
Test Case 2 (tc2) may generate c2 = <f1, f2>.  The call 
stack c2 is not maximum-depth in a test suite 
containing both tc1 and tc2.  In our prior work [9], we 
addressed this issue by computing substack 
relationships between each pair of unique maximum-
depth call stacks across the suite.  In the example, this 
would lead to a selection of just tc1, because it covers 
both stacks c1 and c2.  However, computing the 
substack relationships across an entire test suite with 
hundreds of thousands of unique (and deep) call stacks 
is very computationally expensive.  Therefore, in this 
paper, we adopt a different approach, which is to forgo 
the computation of substack relationships and consider 
uniqueness of maximum-depth call stacks on a per-test-
case basis.  This approach is analogous to how we treat 
maximum-depth stacks across threads as discussed in 
Section 3.1.  So in the example, this would lead to the 
inclusion of both tc1 and tc2.  The consequence of this 
decision is that we forgo some potential size reduction 
in exchange for better runtime performance of the 
reduction process.  Future work may quantify the delta 
in size reduction in practice. 
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Figure 3:  Percentage Size Reduction 

 
After merging the unique maximum-depth call 

stacks from each test case in a given test suite, we 
apply the ReduceTestSuite heuristic [5] to compute the 
reduced test suite.  Finally, we evaluate the size and 
fault detection capability of the reduced suite. 
 
5.7. Experiment 1:  Comparing Coverage-
Based Reduction 

The goal of our first experiment was to reduce 
randomly generated test suites of various sizes based 
on call stack coverage (CS) and four other coverage 



criteria:  event (E1), event-pairs (E2), line (L), and 
method (M).  From the test universe, we evaluated 
suites ranging in size from 50 to 400, with 25 suites of 
each size.  We reduced based on each of the five 
criteria and compared the percentage size reduction 
and percentage fault detection reduction metrics. 

 
Size Reduction 

Percentage size reduction results for the three 
applications TP, TS, and TW appear in Figure 3.  We 
see similar behavior in suite size reduction for all three 
applications.  E2 displays very little size reduction in 
all cases, which is expected because the original test 
cases were generated using an algorithm based on 
event flow.  E1, M, and L are very close except in TW, 
where E1 results in less size reduction than M and L 
(but still notably more than CS).  The CS technique 
strikes a middle ground between E2 (and no reduction) 
and the other three techniques, yielding 38-50% 
reduction for the largest suite size.   

 
Fault Detection Reduction 

Percentage fault detection reduction results for TP, 
TS, and TW appear in Figure 4.  (The RAND 
technique will be discussed with Experiment 2 below.)  
The graphs are jagged due to the relatively small-
magnitude and discrete nature of the fault data and the 
high sensitivity to the selection of specific test cases 
that may detect multiple faults.  Nonetheless, some 
trends are clearly visible.  As with percentage size 
reduction, there is no clear difference between M and L 
(recalling again that M includes methods from libraries 
and L does not).  But call stack-based reduction is 
clearly favored over M, L, and E1, losing fault 
detection effectiveness in the 0-5% range for all 
applications and original suite sizes.  Indeed, CS 
performs comparably to E2 even though E2-based 
reduction yields almost no size reduction in our 
empirical scenario.  By comparison, using the 
traditional (non-GUI) space application as our test 
subject in [9], we observed percent fault detection 
reduction in the 12-16% range using both edge-
coverage-adequate and randomly generated original 
suites.  Clearly more subject applications need to be 
studied in future work, but this result suggests that call 
stack coverage analysis may be particularly applicable 
to GUI applications. 

 

TP - %  Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200 250 300 350 400

Original Suite Size

Av
g 

%
 R

ed
uc

tio
n 

O
ve

r 
25

 S
ui

te
s

CS
RAND
M
L
E1
E2

 
TS - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

Original Suite Size

Av
g 

%
 R

ed
uc

tio
n 

O
ve

r 
25

 S
ui

te
s

CS
RAND
M
L
E1
E2

 
TW - %  Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

Original Suite Size

Av
g 

%
 R

ed
uc

tio
n 

O
ve

r 
25

 S
ui

te
s

CS
RAND
M
L
E1
E2

 
Figure 4:  Percentage Fault Detection Reduction 
 

5.8. Experiment 2:  Controlling for Size of 
Reduced Suites 

Our first experiment showed that call stack coverage 
excelled at preserving the fault detection effectiveness 
of reduced test suites.  However, call stack-reduced 
suites were substantially larger than suites reduced by 
other criteria except for length-2 event sequences.  
Thus, it seemed possible that call stack coverage may 
have been preserving more fault detection solely on the 
basis of including more test cases.  The goal of our 
second experiment was to evaluate this hypothesis.  



Keeping the call stack-reduced suites from Experiment 
1, we paired them with random suites of the same size 
(the RAND technique in Figure 4) and compared their 
fault detection effectiveness. 

Referring back to Figure 4, RAND loses fault 
detection effectiveness comparable to L and M, thus 
performing considerably worse than CS.  Considering 
that the RAND suite sizes are equal to those of CS, we 
conclude that call stack coverage contains valuable 
information that preserves fault detecting ability of test 
suites under reduction. 
 
5.9. Discussion 

In our experiments, call stack coverage-based 
reduction resulted in considerably larger reduced suite 
sizes than approaches based on method, line, or simple 
event flow coverage.  In exchange for the larger 
reduced suite size, the call stack approach performed 
substantially better at retaining the fault detection 
capabilities of the original test suite.  In practice, this 
may or may not be advantageous.  For example, in a 
time-sensitive regression testing scenario, if there is 
sufficient time to run a call stack-reduced test suite in 
its entirety, our work suggests that it would be 
advisable to do so in order to obtain greater fault 
detection effectiveness.  If time is more critical, a 
subset of the call stack reduced suite may be executed 
instead. 

The feasibility of collecting call stack coverage in 
large multi-threaded and multi-language applications is 
a great benefit of the approach.  However, where fault 
detection effectiveness is concerned, we believe that 
call stacks derive most of their power from their 
context sensitivity, capturing valuable information that 
most other coverage criteria miss.  In future work, we 
will perform a missed-faults analysis across the 
techniques to quantify this conjecture. 
 
6. Related Work 

Rountev et al. [18] also consider the problem of 
“call chain” (call stack) coverage, beginning with a 
static analysis of potentially feasible call chains and 
dynamically measuring test coverage against it.  They 
use the results of this analysis to guide the 
augmentation of a test suite to achieve higher coverage.  
Because the static analysis is conservative and 
therefore imprecise, achieving 100% coverage by these 
criteria is not in general possible.  Unlike our work, 
they do not address the impact of this type of coverage 
on test suite reduction. 

There have been numerous studies of test suite 
reduction and its relationship to fault detection 
effectiveness, including [[4], [16], [19]].  Jeffery and 

Gupta [7] present a test suite reduction approach that 
combines two different coverage criteria (“primary” 
and “secondary”) to achieve improved reduced suite 
fault detection effectiveness with “selective 
redundancy”.  Call stack coverage would be an 
interesting choice as a participant in this technique, 
perhaps as a secondary participant with one of the 
simpler but context-insensitive criteria such as 
statement or branch coverage.  Leon and Podgurski [8] 
apply clustering algorithms to the test suite reduction 
problem instead of the traditional coverage 
maximization approach.  Again we feel that the 
context-preserving nature of call stack coverage would 
make it an excellent criterion on which to cluster test 
cases. 

The Rostra framework [20] collects method 
sequences on a given object in an object-oriented 
system.  The sequences are then used as coverage 
criteria for test suite reduction (among other 
applications).  Unlike Rostra, our call stack technique 
is global and makes no assumptions about the threading 
behavior of test case executions. 

 
7. Conclusions and Future Work 

In this paper, we presented tools and techniques that 
allow us to dynamically collect call stacks in 
multithreaded GUI applications, including entries from 
the libraries that they use.  And we empirically 
demonstrated the feasibility and effectiveness of using 
dynamically collected call stacks as a coverage 
criterion for GUI applications. 

We have shown that event-driven GUI applications 
are sufficiently different from traditional applications 
to require new coverage criteria [12].  In future work, 
we plan to further generalize our results for coverage 
criteria that are effective for GUI testing scenarios. 

Although we were able to successfully analyze 
complete call stack coverage data for the TerpOffice 
applications, the data volume for even larger 
applications may become unwieldy.  Thus, we intend to 
look for techniques that reduce the number of coverage 
requirements generated by a complete call stack data 
collection while still retaining call stack coverage’s 
desirable qualities.  One idea is to limit the depth of 
calls into library routines.  Another strategy is to define 
a “similarity metric” for call stacks such that different 
stacks with a certain similarity value may be considered 
redundant and therefore be discarded. 

To further explore the notion that the context 
provided by call stacks is valuable in test suite 
reduction, we will perform a missed-faults analysis.  By 
inspecting code related to faults found by call stack 
reduced suites but missed by other reduced suites, it 



may be possible to qualify the importance of calling 
context. 

Finally, we believe there is a need to better quantify 
the tradeoffs between fault detection effectiveness 
reduction and size reduction.  We will develop, apply, 
and evaluate new metrics to assist practitioners when 
considering test suite reduction approaches. 
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