
Call-Stack Coverage for
GUI Test Suite Reduction

Scott McMaster, Member, IEEE Computer Society, and Atif M. Memon, Member, IEEE

Abstract—Graphical user interfaces (GUIs) are used as front ends to most of today’s software applications. The event-driven nature

of GUIs presents new challenges for testing. One important challenge is test suite reduction. Conventional reduction techniques/tools

based on static analysis are not easily applicable due to the increased use of multilanguage GUI implementations, callbacks for event

handlers, virtual function calls, reflection, and multithreading. Moreover, many existing techniques ignore code in libraries and fail to

consider the context in which event handlers execute. Consequently, they yield GUI test suites with seriously impaired fault-detection

abilities. This paper presents a reduction technique based on the call-stack coverage criterion. Call stacks may be collected for any

executing program with very little overhead. Empirical studies in this paper compare reduction based on call-stack coverage to

reduction based on line, method, and event coverage, including variations that control for the size and optional consideration of library

methods. These studies show that call-stack-based reduction provides unique trade-offs between the reduction in test suite size and

the loss of fault detection effectiveness, which may be valuable in practice. Additionally, an analysis of the relationship between

coverage requirements and fault-revealing test cases is presented.

Index Terms—Testing strategies, test coverage of code, test management, testing tools.

Ç

1 INTRODUCTION

USERS increasingly interact with modern software
through graphical user interfaces (GUIs). Testing GUIs

for functional correctness is extremely important because
1) GUI code makes up an increasingly large percentage of the
overall application code and 2) due to the GUI’s proximity to
the user, GUI defects can drastically affect the user’s
impression of the overall quality of a system. Because of
these factors, automated test-case generation techniques for
GUIs have been developed [19]. A recent test-case generation
technique based on event-flow coverage has been shown to be
effective for defect detection in GUI applications [20].
However, the number of tests generated by using event-flow
coverage can be quite large. An event-flow-adequate test
suite may be too large to fully execute regularly in a rapid
development and integration environment that mandates, for
example, nightly builds and smoke tests.

Test suite reduction [7], [31], [25] seeks to reduce the
number of test cases in a test suite while retaining a high
percentage of the original suite’s fault detection effective-
ness. Most approaches to this problem are based on
eliminating test cases that are redundant relative to some
coverage criterion such as program-flow graph edges [25],
data flow [31], or dynamic program invariants [6]. In such
an approach, each coverage requirement (that is, for method
coverage, each method) covered by the original full test
suite is also covered by the resulting reduced test suite.
Traditionally, these approaches have been developed for
and evaluated against conventional non-GUI software.

We believe that GUI-intensive software poses new
challenges for coverage-based testing that require the
development of new solutions. More specifically, the
execution model for a GUI, based on an event-listener loop,
differs from that of other types of software. During GUI
execution, users perform actions that result in events. In
response, each event’s corresponding event handler is
executed. The order in which event handlers execute
depends largely on the order in which the user initiates
the events. Hence, in a GUI application, a given piece of
code called via an event handler may be executed in many
different contexts due to the increased degree of freedom
that modern GUIs provide to users. The context may be
essential to uncovering defects, yet most existing coverage
criteria are not capable of capturing context. Furthermore,
today’s sophisticated GUI applications increasingly inte-
grate multiple source code languages and object code
formats, along with virtual function calls, reflection, multi-
threading, and event-handler callbacks. These features
severely impair the applicability of techniques that rely on
static analysis or the availability of language-specific and/
or format-specific instrumentation tools.

This paper extends previous work on test suite reduction
based on the call-stack coverage criterion. A call stack is a
sequence of active calls associated with each thread in a
stack-based architecture. Methods are pushed onto the stack
when they are called and are popped when they return or
when an exception is thrown (where supported, as in Java
or C++). An example of a call stack from the simple Java
program in Fig. 1a appears in Fig. 1b. This call stack was
collected by the tools that we developed and will be
discussed in detail in Section 4. In Fig. 1b, each line contains
a method parameter list, return type, and name, including
any package or namespace qualifiers. At the bottom of the
stack appear the program’s entry point, main, and the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008 99

. The authors are with the Department of Computer Science, University of
Maryland, College Park, MD 20742. E-mail: {scottmcm, atif}@cs.umd.edu.

Manuscript received 15 Nov. 2006; revised 5 July 2007; accepted 8 Oct. 2007;
published online 16 Oct. 2007.
Recommended for acceptance by D. Hoffman.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0257-1106.
Digital Object Identifier no. 10.1109/TSE.2007.70756.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

println method call shown in Fig. 1a. Above them are a

number of library methods invoked as a consequence of the

call to println.
The basic intuition behind call stack-based reduction is

that two test cases are “equivalent” if they generate the

same set of call stacks; hence, one of them could be

eliminated to conserve resources. Unlike criteria such as

line or branch coverage, call stack coverage has the benefit

of encapsulating valuable context information. Aside from

having the advantage of taking into account the context in

which a method is called and the relative ease with which

call stacks may be collected, call stack-based reduction has

the following additional advantages for modern GUI

applications:

. Libraries and frameworks. These are essential to
modern software development in general and GUI
applications in particular. Many test coverage
techniques only collect coverage requirement data
based on the instrumentation of first-party applica-
tion source or object code. The reasons for this
include the unavailability of the necessary third-
party source code and the impracticality under most
techniques of instrumenting an entire large frame-
work such as the Java 2 SDK. By making this trade-
off, coverage techniques potentially overlook vast
amounts of interesting behavior induced in the
library code by the application. For example,
consider the program in Fig. 2. If no library code is
instrumented, every execution of this program
against an integral input will satisfy line, branch,
and data-flow coverage. Thus, when used in test
suite reduction, each of those coverage approaches
could potentially drop all tests that exercise the code
with the integral input greater than or less than zero,

thereby missing the array index out of bounds
exception that occurs with such an input. In contrast,
the call stack coverage technique presented in this
paper includes the library calls that appear on
application-generated call stacks. Therefore, it pre-
serves at least one test that displays the abnormal
control flow triggered by the exception.

. Object-oriented language features. Modern GUI appli-
cation frameworks, usually implemented in lan-
guages like C++, Java, and C#, make extensive use of
object-oriented programming (OOP) language fea-
tures such as virtual function calls, reflection, and
callbacks for event handlers. It is not possible, in
general, to statically determine which methods will
be invoked by a program execution. Dynamic
analysis based on call stacks is ideal in such an
environment because, in all cases, the stack contains
the actual methods invoked. Consider the program
shown in Fig. 3, which takes two command-line
arguments to the main method: 1) a method name
presumed to be toUpperCase or toLowerCase

and 2) a string argument to be passed to the
specified method via a dynamic invocation using
Java’s reflection mechanism. Because of the use of
reflection, the call stacks generated by various
executions of this program will differ based on the
method name parameter. Clearly, this is a behavior
that should be captured for the purposes of test suite
reduction. However, static analysis cannot, in gen-
eral, determine that toUpperCase or toLower

Case may be invoked by this program. Modern
GUI and server applications are often built using
frameworks that employ reflection-based compo-
nent models, where the types and methods to be
used are not known until runtime. Call stacks are
ideal for recording test coverage in reflection
scenarios.

. Multithreading. Modern GUI applications are all
multithreaded. Indeed, all Java applications are
multithreaded, if for no other reason than the
presence of the garbage collector. A reduction
technique should take into account the impact of
multiple threads on software errors. Call stack
coverage can be efficiently collected and processed
in a multithreaded environment.

. Multilanguage implementations. Unlike other tradi-
tional coverage criteria such as data-flow/def-use
pairs [23], call stack coverage is easily captured in a

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 1. (a) A Hello-World example. (b) Associated call stack.

Fig. 2. A simple program demonstrating the impact of library code on

errors.

multilanguage application, with or without the
availability of the source code. In general, writing a
tool for collecting call stacks only requires method
entry and exit hooks, which already exist on most
compilers or runtime platforms to enable the
construction of call profilers. A large GUI applica-
tion implemented in multiple languages is no
different from a single-language implementation
when abstracted via the runtime call stack.

A preliminary model of call stacks has already been

developed and reported [15], [16]. Call stack coverage was

shown to be a practical and effective basis for performing test

suite reduction, advancing the state of the art for coverage-

based test suite reduction. Empirical evaluation indicated

that call stack-coverage-based test suite reduction produces

better results for GUI applications compared to traditional

techniques. The work is now further extended by comparing

additional reduction approaches and proposing novel

analyses for evaluating the performance of test suite reduc-

tion techniques. The new experiments and analyses pre-

sented in this paper further demonstrate the value of call

stack-based test suite reduction and provide some justifica-

tion for its effectiveness.
Contributions. This paper makes the following contri-

butions to the field of test suite reduction and GUI testing:

1. It empirically evaluates call stacks as a coverage
criterion for test suite reduction versus several
traditional coverage criteria when holding reduced
suite size constant.

2. It investigates the importance of including library
and framework coverage information when redu-
cing test suites.

3. It proposes a new single-point metric for the
effectiveness of test suite reduction techniques.

4. It analyzes coverage-based test suite reduction
techniques from the standpoint of how many faults
may theoretically be missed in reduced suites drawn
from a given universe.

Structure of the paper. The remainder of this paper is
structured as follows: Section 2 presents related work.
Section 3 provides a model and definition for working with
call stacks in program analysis. Section 4 describes our
implementation approach for collecting call stacks and
utilizing them in test suite reduction. Section 5 discusses
several test suite reduction experiments in detail and
Section 6 presents the application of new analysis techni-
ques to our experimental results. Section 7 concludes and
proposes directions for future work.

2 RELATED WORK

To the best of our knowledge, call stacks have not been used
before as a criterion for coverage-based test suite reduction.
Several researchers have presented ideas that are relevant to
this research. Related research for the areas of GUI testing,
test suite reduction, and call chains is presented here.

Test reduction. There have been numerous studies of
test suite reduction and its relationship to fault detection
effectiveness. Harder et al. [6] use dynamic invariant
detection techniques to create a reduced test suite. While
running a program, they maintain an “operational abstrac-
tion,” which is a mathematical picture of the program’s
dynamic behavior. The “operational difference” technique
applied to test suite reduction executes each test case in a
suite in turn and, if a test case does not change the current
operational abstraction of the program, it is discarded. Like
call stack reduction (and unlike most other reduction
techniques), this approach makes use of dynamic program
behavior rather than syntax. However, it has significant
performance overhead. Wong et al. [31] reduce relative to the
all-uses coverage criterion and observe little or no fault
detection effectiveness reduction in the reduced suites. They
also find a direct relationship between the ease of finding
faults and the likelihood that they will be detected after
reduction. In contrast, Rothermel et al. [24] reduce with
respect to all-edges coverage and find significant reductions
in fault detection effectiveness. They contrast their results
with those in [31] and suggest possible causes for the
different conclusions. However, collecting all-uses and other

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 101

Fig. 3. A simple example demonstrating the impact of OOP features on errors.

data-flow coverage information generally requires tools that
may be difficult to build and use for certain environments,
particularly against an application built using multiple
programming languages [8]. In contrast, call stack coverage
information is relatively simple to obtain by using tools that
we have developed and made available [10]. Additionally,
call stack coverage can be analyzed on any stack-based
runtime environment, which encompasses most language
and system combinations in practical use today.

Jeffery and Gupta [13] present a test suite reduction
approach that combines two different coverage criteria
(“primary” and “secondary”) to achieve improved reduced
suite fault detection effectiveness with “selective redun-
dancy.” Call stack coverage would be an interesting choice
as a participant in this technique, perhaps as a secondary
participant with one of the simpler but context-insensitive
criteria such as statement or branch coverage. Leon and
Podgurski [14] and Dickinson et al. [2] apply clustering
algorithms to the test suite reduction problem instead of
the traditional coverage maximization approach. Again, we
believe that the context-preserving nature of call stack
coverage would make it an excellent criterion on which to
cluster test cases.

Sampath et al. use concept analysis to generate minimal
test suites from user sessions defined as URLs in a Web
application [28]. Their approach has the interesting prop-
erty that test suites can be incrementally updated as new
user session data becomes available. Although Web
application URLs model program behavior at a very
different level of abstraction from call stacks, it is possible
that methods in a call stack could be arranged in a concept
lattice and a similar reduction technique applied.

The test suite reduction problem is closely related to test
case prioritization [4] because any reduction technique can be
turned into a prioritization technique by repeated applica-
tions of the reduction algorithm to the remainder of the suite.

GUI testing. Our work is particularly concerned with
developing new coverage criteria for GUI applications.
Event-based coverage [20] is specially tailored for use in
GUI applications for which test cases can be modeled as
sequences of events. Events may be menu invocations,
button clicks, key presses, etc. The experiments in Section 5
use two different event coverage criteria, called event (E1)
and event interaction (E2). In E1, each event in isolation is a
coverage requirement, while, in E2, unique pairs of events
are included as coverage requirements. E1 and E2 have
been referred to as “event coverage” and “event-interaction
coverage,” respectively, in [20].

Call chains. Rountev et al. [27] also consider the problem
of “call chain” (call stack) coverage, beginning with a static
analysis of potentially feasible call chains and dynamically
measuring test coverage against it. They use the results of this
analysis to guide the augmentation of a test suite to achieve
higher coverage. Because the static analysis is conservative
and, therefore, imprecise, achieving 100 percent coverage
by these criteria is not, in general, possible. Unlike our
work, the authors do not address the impact of this type
of coverage on test suite reduction.

The Rostra framework [32] collects method sequences on
a given object in an object-oriented system. The sequences

are then used as coverage criteria for test suite reduction
(among other applications). Unlike Rostra, our call stack
technique operates on an entire program rather than
individual objects. Our technique also makes no assump-
tions about the threading behavior of test case executions or
the usage of shared variables.

3 MODELING AND COLLECTING CALL STACKS

There are multiple ways of modeling and representing call
stacks for use in a test suite reduction process. In Fig. 1b, a
call stack is represented by the full method signature of
each active method. Other possible approaches include
capturing each active method by its method name only or
by a full signature plus parameter values. Additionally,
each representation may be augmented by a maximum
allowable depth of recursion. In practice, the chosen call
stack representation will have an impact on the feasibility of
the reduction technique. Some models may generate so
many different call stacks that collection and analysis is
infeasible from a resource perspective. Other methods may
generate so few different call stacks that differences
between test cases are lost and fault detection effectiveness
is compromised as a result. Due to the heavy use of libraries
and the runtime environment itself, even an extremely
simple Java application may generate thousands of call
stacks. Indeed, in the version of Java used in this work,
when using full method signatures, the simple program in
Fig. 1a generated 803 call stacks. Our subject applications
built with Java Swing generated hundreds of thousands.

Definitions. Each running thread in a multithreaded
application has a current stack of active method calls where
the most recently called method is at the top of the stack.
Each thread generates a set of current stacks over its
lifetime. If c ¼ < m1;m2; . . .mn > is a call stack of depth n,
we define a substack cs (denoted by a subscript s) and a
superstack cs (denoted by a superscript s) as the following
ordered sequences, which are themselves call stacks:

cs ¼ < m1;m2; . . . mi >; i < n; ð1Þ

cs ¼ < m1;m2; . . . mn; . . .mi >; i > n: ð2Þ

Let the set of all unique stacks generated by a thread t be
denoted as CðtÞ. For a given call stack c in any thread t,
there is, associated with c, a set of substacks CðtÞs and a set
of superstacks CðtÞs. We define the set of the deepest, or
maximum depth, stacks CðtÞmax in a thread t as follows:

CðtÞmax ¼ fC 2 CðtÞjCðtÞ
s ¼ ;g; ð3Þ

where ; is the empty set. That is, CðtÞmax is the set of all call
stacks that do not have any superstacks. Since each
maximum depth stack implies the existence of all of its
substacks in CðtÞ, CðtÞmax is a more compact representation
of the set of all unique call stacks generated by thread t.

To characterize the behavior of an entire multithreaded
program, we combine call stack observations made on each
thread that took part in a given program execution. We
define the set of threads that existed during execution:

T ¼ < t1; t2; . . . tn > : ð4Þ

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

The set of unique call stacks for a program input I is

CmaxðIÞ ¼ [fCðtÞmaxjt 2 Tg: ð5Þ

CmaxðIÞ is the union of the sets of maximum-depth stacks
observed on any thread and each element of CmaxðIÞ is a
coverage requirement in our reduction technique. Note that
the definition of CmaxðIÞ allows for the possibility that a
maximum-depth stack on one thread is a substack of a
maximum-depth stack on another and both stacks would
appear in CmaxðIÞ. Therefore, CmaxðIÞ is not necessarily a set
of unique maximum-depth stacks. Although this may cause
our technique to produce less size reduction than it might
otherwise, we allow this for practical reasons, as checking
for substack relationships across all stacks in every CðtÞmax
for each thread t is computationally very expensive and of
marginal benefit.

We define a test case as input given to a program in order to
test one or more aspects of the program. Running a test case tc
from a test suite TS implies the execution of the program,
which itself implies that a set of maximum depth call stacks
CmaxðtcÞ generated by the execution can be associated with tc.
We consider two test cases, tc1 and tc2, to be equivalent if they
generate identical sets of maximum depth call stacks:

tc1 � tc2 iff Cmaxðtc1Þ ¼ Cmaxðtc2Þ: ð6Þ

Since a test suite is a set of test cases, we denote the union
of all Cmaxs for all of the test cases in a test suite TS as

StacksðTSÞ ¼ [fCmaxðtcÞ j tc 2 TSg: ð7Þ

We define a test suite reduction technique to be an end-
to-end approach for reducing the size of a test suite. For
coverage-based test suite reduction, a technique consists
of a coverage criterion and an algorithm for reducing the
suite while holding the coverage of that criterion
constant. Our proposed technique considers a max-
imum-depth call stack to be a coverage requirement in the
test suite reduction algorithm ReduceTestSuite [7]. Thus,
the execution of a reduced test suite TSreduced will
generate the same set of unique call stacks as the
execution of its original (full) counterpart TSfull, that is,
StacksðTSfullÞ ¼ StacksðTSreducedÞ.

An efficient data structure for recording call stacks on a
given thread of execution is the calling context tree (CCT) [1].
The CCT is a tree data structure where the root represents
the method that is the entry point of a thread and each child
node represents a call to a specific method made by its
parent. It is possible to construct a CCT efficiently at
runtime by using the following process, which is discussed
in more detail in Ammons et al. [1]:

1. Create a node representing the entry point of the
thread and make it the current node.

2. When a method is called, do the following:

a. If the current node has a child node representing
the called method, make that the current node.

b. If a node representing the called method is an
ancestor of the current node, the call is recur-
sive. Create a backedge to that ancestor node and
make it the current node.

c. If the current node does not have a child node
representing the called method, create such a
node and make it the current node.

3. When a method returns, set the current node to its
parent.

While generally large for nontrivial applications, the size

of the CCT data structure does not grow unbounded (as a
full method trace would) over the runtime of a test case,
thus making the resulting data volume constant and

manageable. Once a CCT is constructed, the set of unique
maximum-depth call stacks recorded in that CCT may be
calculated by traversing each path to a leaf in the tree.

4 IMPLEMENTATION

Our implementation approach to collecting unique call
stacks is to create a separate CCT for each thread as it is
created and then maintain that CCT over the thread’s

lifetime as methods are entered and exited. When a thread
exits, its CCT is traversed to calculate the set of unique call
stacks seen on that thread and the unique stacks are

synchronously merged into a master list of unique stacks
seen on all threads. This approach allows for greater

application concurrency than the alternative, which is a
single CCT shared and maintained by all threads. A
potential drawback is that an application with many

short-lived threads may stall frequently for processing of
the CCTs, but this was not an issue in our studies.

To illustrate our technique’s ability to work without
source-level instrumentation, we built a Java Virtual Machine

Tool Interface (JVMTI) agent, that is, JavaCCTAgent, to
collect the CCT data necessary for a call stack coverage
analysis for Java programs [10]. We chose to represent call

stacks as an ordered set of full method signatures of the active
methods, with at most one recursive invocation represented.
For the Java-targeted implementation, we made use of the

JVMTI hooks for method entry and method exit to maintain a
CCT for each thread. Direct recursive invocations are
permitted in our tool but are only captured to a depth of

one. As threads die and at the end of an execution, the
coverage information from each CCT is merged and
processed into a set of unique call stacks, which are ultimately

written to the file system. We have built a similar tool for C/
C++-based Windows applications using Detours [9] to
instrument function entry and exit points. For the rest of this

discussion, we focus on the JVMTI agent since it is the more
advanced between the two implementations and is the
implementation used in our primary experiments.

Since coverage is collected for each thread, we are, by
definition, collecting data on system threads where the
subject program is not even on the stack. Since activity on

system threads (such as the one on which the garbage
collector runs or the one that pumps GUI events in the Java
Swing libraries) is somewhat environmentally dependent

and may vary from run to run, this introduces a potential
element of nondeterminism into our data collection and, as
a consequence, has an impact on the specific tests selected

in the reduction process. However, this could be considered
a positive result as certain test cases may be more likely

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 103

than others to induce fault-indicating activity on the
aforementioned system threads.

The output of the JVMTI agent consists of two files. The
first file represents the observed call stacks as a list of tab-
delimited method identifiers. The agent stores Java Native
Interface (JNI) [11] method identifiers, instead of full
method signatures, in order to save space. However,
method identifiers are assigned by the JVM and are not
necessarily consistent across different executions of the
same program. Thus, the second output file contains a map
of JNI method identifiers to the full method signatures.
When calculating the set of unique call stacks across two or
more test cases, maps are used to create a canonical form
based on the method signatures.

4.1 Reducing Test Suites

We use a C# implementation of the ReduceTestSuite
algorithm presented in [7]. Because finding a minimal test
suite that satisfies each coverage requirement is an NP-
complete problem [7], ReduceTestSuite takes a heuristic
approach. The algorithm includes in the reduced suite all
test cases that cover a single coverage requirement. Then, it
picks a test case that covers the most coverage requirements
from the subsets of cases with the next lowest cardinality,
marking all of the subsets that contain this case. This
process occurs repeatedly for higher cardinality subsets
until all subsets are marked and, therefore, all requirements
are covered. If n is the number of coverage requirements
and m is the number of test cases, then the runtime of this
algorithm is Oðn�Maxðm;nÞÞ.

A different approach to coverage-based test suite
reduction, known as the “ping-pong” heuristics, is given
by Offutt et al. [22]. Using the “ping-pong” heuristics in call
stack-based reduction is a possible avenue of future work.

5 EXPERIMENTS

We implemented the call stack collection and reduction
algorithms and performed five experiments to evaluate call
stack-based test suite reduction.

5.1 Research Questions

This paper addresses the following research questions:
Q1. How do the size and fault detection effectiveness of call

stack-based reduced test suites compare to those of suites reduced
on the basis of existing coverage criteria?

Specifically, we wanted to directly compare the call
stack-based technique (CS) to reduction based on four
different types of coverage: event (E1), event-interaction
(E2), line (L), and method (M) while using event-driven
GUI applications.

Q2. How does the fault detection effectiveness of call stack-
based reduced test suites compare to suites of the same size created
using other approaches?

In the investigation of Q1, it is possible that reduced
suites created using a given technique have better fault
detection effectiveness due solely to the fact that the
technique selects more test cases on the average than
another technique. Q2 therefore removes size as an
independent variable. Here, we wanted to investigate
whether test suites created by call stack reduction preserved

more fault-detecting ability than randomly reduced suites
of the same size, as well as line, event, and method-reduced
suites augmented with additional random test cases to
make them the same size.

Q3. How does including coverage information from third-
party libraries affect the size and fault detection effectiveness of
reduced test suites?

Additionally, we wanted to evaluate the impact of
including library routines in the method and call stack
reduction on the size reduction and fault detection reduction.

Q4. Does call stack-based test suite reduction perform
differently in conventional and event-driven applications?

Next, to see if call stack-based test suite reduction is
sensitive to the type of application, we wanted to compare
its behavior on a non-event-driven non-GUI application to
what was observed for event-driven GUI applications.

Q5. Are certain types of coverage requirements more likely to
be associated with faults?

If a specific coverage requirement is covered only by
fault-revealing test cases, this intuitively provides strong
evidence that the coverage requirement in question is
related to a fault. Moreover, no coverage-preserving test
suite reduction technique can possibly lose any such faults,
which is very valuable to know. Thus, in practice, we might
want to identify and select a coverage technique that
maximizes the number of such coverage requirements.
Therefore, we wanted to determine if coverage criteria
differ in how strongly their coverage requirements are
associated with faults.

To answer these research questions, we designed five
experiments that we present next. In Experiment 1, we
compared call stack-based reduction with event, event-
interaction, line, and method-based reduction. Experiment 2
compared call stack reduction to randomly selected and
augmented line, event, and method-reduced suites of the
same size. In Experiment 3, we considered method and
call stack coverage, excluding information about library
methods. In Experiment 4, we compared call stack-based
reduction with edge and method (function)-based reduc-
tion for a conventional application and Experiment 5
relates coverage requirements to fault-revealing test cases
for various types of coverage.

5.2 Subject Applications

We used three applications from the TerpOffice Suite [21] as
experimental subjects for Experiments 1-3.1 TerpOffice is a
business productivity suite written in Java by senior
software engineering students over a period of years. The
three applications under study are TerpPaint (TP), Terp-
Word (TW), and TerpSpreadsheet (TS). For Experiment 4,
we used the well-studied space application [26], an antenna-
steering system developed by the European Space Agency
written in C and composed of about 6,200 noncommentary
lines of code. Table 1 shows the key metrics for these
applications’ test suites. Each TerpOffice application is
associated with a large universe of test cases generated
using the event flow criterion [17]. Each application comes

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

1. Subject applications and other data are located at http://
www.cs.umd.edu/~atif/Benchmarks/UMD2007a.html or contact the
authors for more information.

with a set of single-fault versions, a set of known faults, and
fault detection information for each test case.

5.3 Measured Variables

In this paper, fault detection effectiveness is measured on a
per-test-suite basis, that is, two test suites were considered
to be equally effective at detecting a specific fault if they
each contain at least one case that exposes the fault. This is
the approach adopted in [24], [31]. For each reduction
experiment, the captured metrics are the percent size
reduction

100 � ð1� SizeReduced=SizeFullÞ ð8Þ

and the percent fault detection reduction

100 � ð1� FaultsDetectedReduced=FaultsDetectedFullÞ: ð9Þ

Since these experiments deal with a fairly small number
of discrete faults, averages of these quantities were taken
over a large number of suites.

5.4 Experimentation Procedure

The experimentation procedure appears in Fig. 4. Ovals
represent tools/processes; boxes represent experimentation
artifacts/results. For each subject application, we begin
with a pool of test cases, a set of known faults, and a fault

matrix, that is, which test cases detect which faults. We then
perform the following steps:

1. Randomly generate a set of test suites composed of
test cases from the pool (not coverage-adequate for
any particular criterion).

2. For each full (nonreduced) test suite, calculate the set
of faults that it detects.

3. Select a coverage criterion.
4. Reduce each test suite while maintaining coverage

relative to the selected criterion.
5. For each reduced test suite, calculate the set of faults

that it detects.
6. Compute the percentage size reduction and percen-

tage fault detection reduction.

We discuss this approach in more detail in the following
sections.

5.5 Threats to Validity

Threats to external validity are factors that may impact our
ability to generalize our results to other situations. The main
threat to external validity in this study is the small sample
size. This study collects test suite reduction data for only
four programs, which were chosen for their availability.
Three of these programs were constructed in a similar
manner and may not be representative of the broader

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 105

TABLE 1
Test Cases and Faults

Fig. 4. Experimentation procedure.

population of programs. An experiment that would be more
readily generalized would include multiple programs of
different sizes and from different domains. Additionally,
one would expect the effectiveness of the call stack
reduction process to vary depending on the aspects of the
programming style used in the target application. In
particular, when the application is composed of many
small functions, call stacks provide finer grained dynamic
state information. Three of the subject applications used in
this paper are GUI-event-driven and thus contain many
small event-handling methods. This should increase the
effectiveness of the call stack-based reduction technique
relative to what it could do against an application that
implemented the same behavior using relatively fewer or
more monolithic functions as we see in space. (Consider the
pathological case where a program is composed of a single
large function, which would have but a single call stack for
all executions.) Finally, the characteristics of the original test
suites (such as their fault-detecting ability and how they
were constructed) play a role in the size and fault detection
reduction results. This threat can be addressed in future
work by choosing the original test suites adequate for a
variety of coverage criteria.

Threats to construct validity are factors in the experiment
design that may cause us to inadequately measure concepts
of interest. In these experiments, several simplifying
assumptions were made in the area of costs. In test suite
reduction, researchers are primarily interested in two
different effects on costs. First, there is the cost savings
obtained by running fewer test cases. In this study, we
assume that each test case has a uniform cost of running
(processor time) and monitoring (human time). These
assumptions may not hold in practice. The second cost of
interest is the cost of failing to find faults during testing as a
result of running fewer test cases. Here, it is assumed that
each fault contributes uniformly to the overall cost, which,
again, may not hold in practice. These assumptions are
commonly made in other studies of test suite reduction [25],
[31]. Because test suite reduction seeks to permanently
reduce the size of a test suite by discarding redundant or
less effective test cases, the cost of applying a given
reduction technique is amortized across all future execu-
tions of the test suite and is therefore not factored into these
experiments.

Finally, for feasibility reasons, line coverage data for
TerpOffice did not include coverage of the underlying

library code, in contrast to the approach taken for the
method coverage. Including the line coverage of libraries
may alter the performance of line-based test suite reduction
relative to the other coverage criteria.

Threats to internal validity include the possibility of
defects in the tools used in the experiments and errors in the
execution of the experimental procedure, any of which may
impact the accuracy of our results and the conclusions that
we draw from them. These threats have been controlled for
through testing the tools and the data quality.

5.6 Data Collection Step

In Experiments 1-3, using the JavaGUIReplayer application
[21], shown as “Replayer” in Fig. 4, each test case in each
test pool was executed against the fault-free versions of the
subject programs, collecting the unique call stacks gener-
ated by each test case. This process was repeated for the
line coverage by using jcoverage [12] as the instrumentation
tool. The method coverage was derived from the call stack
coverage data. Because the tests in Experiments 1-3 were
event-based, their event coverage was known a priori.
Coverage statistics aggregated over the entire test pool for
each application appear in Table 2. For each subject
application, the first two rows of Table 2 list the total
number of unique call stacks and methods (including
library methods, not limited to the TerpOffice source code)
observed in a test run of the entire test universe. The next
row shows the number of GUI events utilized in each
application. Finally, the last three rows are static counts of
lines, classes, and methods that comprise each application.

As noted in Section 4, our instrumentation process for
call stack coverage incorporates the coverage of the
supporting Java libraries induced by test case execution.
Because we used the raw call stack coverage data as the
basis for the method coverage, our method coverage
approach also includes Java framework methods. However,
because it was not feasible to instrument the entire Java
SDK for the line coverage, our line coverage data is based
solely on the TerpOffice source. Because of this, between the
two approaches M and L, it is possible (and is, in fact, the
case) that our tests may cover more methods than lines.

The data gathered during this step allowed us to create
any number of test suites composed of the previously
executed test cases and to know the set of unique coverage
requirements and faults detected by the suite, with no
further execution of the program. Hence, it was not

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

TABLE 2
TerpOffice Static and Dynamic Program Elements

2 Of TerpOffice source, as determined by jcoverage instrumentation.

necessary to run each test suite under study against each
version of the subject program. This simulation approach is
similar to the one used by Frankl and Iakounenko [5] to
evaluate adequacy criteria and test effectiveness.

5.7 Reduction Approach

Before reducing a test suite, the individual test case coverage
information from Section 5.6 is used to calculate the full set of
unique call stacks that an execution of the full suite can be
expected to generate. The full set is computed by merging the
unique call stacks observed by each test case in the suite.

Here, we must consider the situation where a maximum-
depth call stack from one test case is not a maximum depth
in another. For example, test case 1 ðtc1Þ may generate the
call stack c1 ¼ < m1;m2;m3 > and test case 2 ðtc2Þ may
generate c2 ¼ < m1;m2 > . The call stack c2 is not a
maximum depth stack in a test suite containing both tc1
and tc2. In prior work [16] and in Experiment 4, this issue
was addressed by computing substack relationships be-
tween each pair of unique maximum-depth call stacks
across the suite. In the example, this would lead to a
selection of just tc1 because it covers both stacks c1 and c2.
However, computing the substack relationships across an
entire test suite with hundreds of thousands of unique (and
deep) call stacks, as we observe in the TerpOffice applica-
tions, is very computationally expensive. Therefore, the
experiments in this paper take a different approach, which
is to forgo the computation of substack relationships and
consider the uniqueness of maximum-depth call stacks on a
per-test-case basis. This approach is analogous to how
maximum-depth stacks are treated across threads, as dis-
cussed in Section 3.1. Thus, in the example, the reduction of a
full test suite composed of both tc1 and tc2 would lead to the
inclusion of both test cases in the reduced suite. The
consequence of this decision is that this approach forgoes
some potential size reduction in exchange for a better runtime
performance of the reduction process. Future work may
quantify the delta in size reduction in practice.

After merging the unique maximum-depth call stacks
from each test case in a given test suite, we apply the
ReduceTestSuite heuristic [7] to compute the reduced test
suite. Finally, we evaluate the size and fault detection
capability of the reduced suite.

5.8 Experiment 1: Comparing Coverage-Based
Reduction

The goal of Experiment 1 was to reduce randomly
generated test suites of various sizes based on the call-
stack coverage and the four other coverage criteria: E1, E2,
L, and M. From the test universe, suites ranging in size from
50 to 400, with 25 suites of each size, were evaluated. Test
suites were reduced based on each of the five criteria and
were compared in terms of the percent size reduction and
the percent fault detection reduction metrics.

5.8.1 Size Reduction

Percentage size reduction results for the three applications
TP, TS, and TW for each reduction approach appear in
Fig. 5. (The SM and SCS approaches will be discussed in
Section 5.10.) Similar behavior in suite size reduction is
observed for all three applications. E2 displays very little
size reduction in all cases, which is expected, because the
original test cases were generated using an algorithm based

on event flow. E1, M, and L are very close, except in TW,
where E1-reduced suites are smaller than M and L but are
still notably larger than CS. The CS technique strikes a
middle ground between E2 (and no reduction) and the
other three techniques, yielding 38 percent to 50 percent of
reduction for the largest suite size.

To evaluate the statistical significance of differences
between CS and the other techniques, paired-t testing was
performed at the 0.05 level, with the null hypothesis that
there is no statistically significant difference between the
means of “CS percent size reduction” and the means of each
of the other techniques. The results appear in the left half of
Table 3. (Reduction techniques LA, MA, and E1A will be
defined in Experiment 2, Section 5.9.) Since all of the
p-values for the percentage of size reduction are below 0.05,
the null hypothesis is rejected and the alternative hypoth-
esis, which is that there is a statistically significant
difference between the means of CS and the other
techniques, is accepted.

5.8.2 Fault Detection Reduction

The percentage of fault detection reduction results for TP,
TS, and TW appear in Fig. 6. (The RAND, E1A, LA, MA,
SCS, and SM techniques will be discussed in subsequent
experiments.) The graphs are jagged due to the relatively
small magnitude and discrete nature of the fault data and
the high sensitivity to the selection of specific test cases that
may detect multiple faults. Nonetheless, some trends are
clearly visible. As with the percentage of size reduction,
there is no clear difference between M and L (recalling
again that M includes methods from libraries and L does
not). However, call stack-based reduction is clearly favored
over M, L, and E1, losing fault detection effectiveness in the
0 percent to 5 percent range for all applications and original
suite sizes. Indeed, CS performs comparably to E2, even
though E2-based reduction yields almost no size reduction
in our experiments. By comparison, using the traditional
(non-GUI) space application as the test subject in our
previous work [16], we observed percent fault detection
reduction in the 12 percent to 16 percent range, using both
edge-coverage-adequate and randomly generated original
suites. Clearly, more subject applications need to be studied
in future work, but this result suggests that call stack
coverage analysis may be particularly applicable to GUI
applications.

To evaluate the statistical significance of the difference of
means between CS and M, L, E1, and E2, respectively,
paired-t testing was performed at the 0.05 level, with the
null hypothesis that there is no statistically significant
difference between “CS fault detection reduction” to each of
the other techniques. The results appear in the right half of
Table 3. Since all p-values of M, L, E1, and E2 for the
percentage of fault detection reduction are below 0.05, the
null hypothesis is rejected and the alternative hypothesis,
which is that there is a statistically significant difference
between the means of CS and other techniques for all
subject applications, is accepted.

In summary, we find that CS-based reduction on test
suites for event-driven applications results in measurable
size reduction and extremely low fault detection reduction
compared to other techniques. This result answers Q1.

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 107

5.9 Experiment 2: Controlling for Size of Reduced
Suites

Experiment 1 showed that call stack coverage excelled at

preserving the fault detection effectiveness of reduced test

suites. However, call stack-reduced suites were substan-

tially larger than suites reduced by other criteria, except for

E2. Thus, it seemed possible that the call stack coverage

may have been preserving more fault detection solely on

the basis of including more test cases. The goal of

Experiment 2 was to evaluate this hypothesis. The call

stack-reduced suites from Experiment 1 were paired with

random suites of the same size (the RAND technique in

Fig. 6) and compared with respect to their fault detection

effectiveness. We also took the reduced suites resulting

from L, M, and E1 and randomly augmented them with

additional test cases drawn from the full test suites so that

the augmented suite sizes were equal to the CS suite sizes

derived from each full test suite. These “additional”

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

TABLE 3
Paired-t Testing of CS versus Other Techniques (Bold Values Not Statistically Significant at the 0.05 Level)

Fig. 5. Percentage size reduction.

techniques are the LA, MA, and E1A techniques, respec-

tively, in Fig. 6.
Referring back to Fig. 6, RAND loses fault detection

effectiveness comparable to the unaugmented L and

M techniques, thus performing considerably worse than

CS. The “additional” techniques perform better than

RAND. According to Table 3, for two of the three subject

applications, CS shows a significantly better percentage of

fault detection reduction. For TW, the LA and MA

techniques are not clearly better than CS. Considering that

the suite sizes from RAND, E1A, LA, and MA are equal to

those of CS, we conclude that, in most cases, call stack

coverage contains valuable information that preserves the

fault-detecting ability of test suites under reduction. This

result addresses Q2.

5.10 Experiment 3: Omitting Library Methods

Most coverage techniques are evaluated only on those
coverage requirements that can be derived from first-party
source code. We have hypothesized that the ease with
which the call stack coverage technique can incorporate
context-sensitive coverage of library routines may be one of
its major advantages.

To further explore this notion, we generated coverage
information for both methods and call stacks, excluding
methods from the Java platform libraries. These techniques
are called SCS and SM in Figs. 5 and 6. The numbers of
coverage requirements for the applications under study
appear in Table 4. Because the TerpOffice applications
highly leverage the Java platform libraries for their GUI and
I/O support, omitting library methods from coverage
results in far fewer coverage requirements.

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 109

Fig. 6. Percentage fault detection reduction.

TABLE 4
Non-Library Coverage Statistics

When we perform test suite reduction based on the SCS
and SM coverage data, size reduction is comparable to L, M,
and E1 in all of the subject applications. Fault detection
reduction displays quite a bit of variance between the
applications. For TP, SCS and SM perform comparably to
the least successful reduction technique E1. In TW, SM
tracks again with E1, but SCS fares better and is comparable
to the L-based technique. In TS, SM is similar to L, losing
around 20 percent of its fault detection effectiveness for
larger original suite sizes. However, SCS for TS does very
well, losing not more than 10 percent of fault detection,
which is significantly better than M, L, E1, E2, and SM, as
shown in Table 5.

Looking back at Table 4, the success of the SCS technique
seems to correlate with how many call stacks can be
generated by an application’s test suite, which itself can be
highly influenced by the programming style. Specifically,
an application written using many smaller methods (gen-
erally considered to be good OOP style) will generate more
unique call stacks than an application written using larger
more monolithic methods. Future work may explore this
intuition in more detail.

Regardless, neither the SM nor the SCS technique
approaches the CS technique at providing very small loss
of fault detection. Results in Tables 3, 5, and 6 indicate

statistically significant differences between both SM and M,
and SCS and CS. Thus, we conclude that it is helpful to
consider the coverage of library elements in a test suite
reduction technique when the goal is to minimize the loss of
fault detection effectiveness, answering Q3.

5.11 Experiment 4: Conventional Application

Experiment 4 seeks to determine how well the call stack
coverage performs for non-event-driven (conventional)
software and whether call stacks give us any insights into
understanding the differences between conventional and
event-driven software. To that end, the subject for Experi-
ment 4 is the procedural C-language space application. Space
is comprised of approximately 6,200 lines of code in
143 functions. The test suite for space generated 453 unique
call stacks.

This experiment was made up of two parts. First, using
1,000 test suites for space used by Rothermel et al. [26], we
reduced each test suite by using the call stack coverage (and
compared our results to the results of Rothermel et al. for
edge coverage [25]). As in Experiment 2, we also paired call
stack-reduced suites with like-sized randomly reduced
suites. The results appear in Table 7.

Second, randomly generated test suites of various sizes, 50
of each size between 50 and 1,000 for a total of 1,000 suites,

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

TABLE 5
Paired-t Testing of SCS versus Other Techniques (Bold Values Not Statistically Significant at the 0.05 Level)

TABLE 6
Paired-t Testing of SM versus Other Techniques (Bold Values Not Statistically Significant at the 0.05 Level)

TABLE 7
Test-Suite Reduction for space

were evaluated. These suites were reduced using call
stack coverage, function coverage, and random selection
equal to the call stack reduced size. Over the randomly
generated suites, the average fault detection reduction was
31.89 percent for function coverage, 24.54 percent for
random reduction, and only 13.19 percent for call stack
coverage.

Experiment 4 shows that call stack-based test suite

reduction can provide a good trade-off between size reduc-

tion and fault detection reduction in a conventional applica-

tion. However, compared to the findings in Experiments 1-3,

call stack coverage seems to be a more effective criterion for

test suite reduction against event-driven GUI applications

than for conventional software. Although further research

using a wider variety of GUI and conventional subject

applications is needed, one possible explanation relates to

the ability of call stacks to capture the context in which a given

method is invoked. GUIs tend to have more degrees of

freedom than conventional software. For example, the event-

handling code for a particular event may execute differently,

depending on the nature of the specific event invocation (that

is, mouse versus keyboard) and the sequence of preceding

events. Because each such scenario potentially results in a

unique call stack, call stack-based test suite reduction will

select such test cases and, as a consequence, their potentially

unique fault-detecting capability. This result addresses Q4.

5.12 Experiment 5: Coverage Requirements and
Fault-Revealing Test Cases

When using a test suite reduction technique that preserves
the coverage of a given program element, a necessary
condition for a fault to be missed by a reduced suite is that
no coverage requirement is only covered by fault-revealing
test cases. If one or more such coverage requirements exist,
we intuitively expect an above-average probability that it is
related in some way to the source of the fault. In this case,
the reduction algorithm must select a fault-revealing test
case; otherwise, coverage will be lost.

This observation led us to analyze our coverage and fault
data to determine how many faults must be detected by any
coverage-adequate reduced test suite on the entire test pool
by using the various techniques CS, SCS, M, SM, L, E1, and
E2. The results of this analysis appear in Fig. 7, where the
x-axis shows the number of faults that will always be
detected by any reduced suite, which is adequate for a
given criterion on the y-axis.

The two method-based techniques, SM and M, and L
perform similarly across applications. The context-sensitive
SCS technique performs comparably in TP and TW and
relatively better in TS. Looking at the call stack technique,
in all but a small handful of cases, fault-revealing test cases
generate call stacks that are never observed by non-fault-
revealing test cases. This phenomenon provides an

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 111

Fig. 7. Faults always found after reduction, by technique.

explanation for the extremely low percentage of fault
detection reduction observed for CS in Experiment 1,
lending support to the hypothesis that context information
enhances coverage-based test suite reduction and thus
answering Q5. Further research is needed to characterize
the non-CS techniques. Looking at the unique coverage
requirement counts for individual faults, we see a number
of cases where fault A is guaranteed to be detected by
technique X but not by technique Y, but fault B for the
same application is guaranteed to be detected by
technique Y and not by technique X. This supports the
idea that reduction approaches such as the one proposed
by Jeffrey and Gupta [13], which incorporate two or more
types of coverage data, may be more effective than using a
single coverage criterion in isolation.

6 ANALYSIS: TEST SUITE REDUCTION METRIC

The feasibility of collecting call stack coverage in large
multithreaded and multilanguage applications is a great
benefit of the approach. However, where fault detection
effectiveness is concerned, we believe that call stacks derive
most of their power from their context sensitivity, capturing
valuable information that most other coverage criteria miss.
Future work will include a missed-faults analysis across the
techniques to quantify this conjecture.

In experiments using GUI applications as test subjects,
call stack coverage-based reduction resulted in considerably
larger reduced suite sizes than approaches based on
method, line, or simple event-flow coverage. In exchange
for the larger reduced suite size, the call stack approach
performed substantially better at retaining the fault detec-
tion capabilities of the original test suite. In practice, this
may or may not be advantageous. For example, in a time-
sensitive regression testing scenario, if there is sufficient
time to run a CS-reduced test suite in its entirety, our work
suggests that it would be advisable to do so in order to
obtain greater fault detection effectiveness. If time is more
critical, a subset of the call stack reduced suite may be
executed instead or call stack reduction may be combined
with another reduction criterion using an approach similar
to the one proposed by Jeffrey and Gupta [13].

Prior work on test suite reduction provides very little
guidance for practitioners who must make decisions about
which reduction technique or techniques to use. If anything,
the prior work emphasizes minimal fault detection reduc-
tion over size reduction. However, given trends in modern
software development such as the increased use of test case
generators and build-and-integration cycles often lasting a
single day or less, this may not be the appropriate trade-off
in practice. Because of this, there is a need for quantitative
metrics and cost-benefit models that capture the size-
versus-fault-detection trade-off to help guide practitioners
make a more holistic choice when applying test suite
reduction techniques.

In their work on test suite reduction in Web applications,
Sampath et al. [29] propose a “figure of merit” (fom) for test
suite reduction as

fom ¼ redux � cvg � fd: ð10Þ

Here, redux is the percentage of size reduction, fd is the
percentage of faults still detected after reduction, and cvg is
the percentage of coverage remaining for some specific
criterion other than the one used in the reduction algorithm.
This metric combines the desirability of high size reduction
and the undesirability of high fault detection reduction into
a single number.

A weakness of (10) is that the approach of using a simple
product of terms does not allow practitioners to factor in the
relative importance of size reduction and fault detection
reduction when evaluating a technique. To solve this, we
propose evaluating test suite reduction relative to the
following single-point metric:

ReductionMetric ¼ ðWSR � Percent Size ReductionÞ
þWFDR � ð100� Percent Fault Detection ReductionÞ:

ð11Þ

We define WSR to be a weight representing the relative
importance of size reduction in a given scenario. Similarly,
WFDR is a weight for the relative importance of fault
detection reduction. We expect that practitioners will
manipulate the weights to capture the relative importance
of fault detection and size reduction in a specific scenario.

We consider three sets of weights defined in Table 8. In
Scenario 1, a small reduced test suite size is deemed more
important than low fault detection reduction. Scenario 2,
conversely, considers low fault detection reduction the
stronger factor. In Scenario 3, both measures are weighted
equally. The selection of weights was made to keep the
results from each scenario close in absolute magnitude.
Conclusions should only be drawn based on relative values
within a given scenario.

Applying the metric from (11) to the data collected in our
experiments from Section 5 for the different reduction
techniques, subject applications, and weighting scenarios
yields the results in Fig. 8.

When a small suite size is the primary focus of the test
suite reduction process (Scenario 1), the metric indicates
that the favored techniques for GUI applications are based
on the line coverage, method coverage including library
methods, method coverage not including library methods
(SM), and call stack coverage not including library methods
(SCS). When low fault detection reduction is deemed more
important (Scenario 2), the CS technique is preferred,
followed closely by several other techniques with similar
performance. With equal weighting applied to size reduc-
tion and fault detection reduction (Scenario 3), the relative
metric values by technique again favor L, M, SM, and SCS,
along with the improved performance of the “additional”

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

TABLE 8
Metric Weighting Scenarios

techniques MA, LA, and E1A. For space, it is interesting to
note that, based on the metric, there is very little difference
between edges and call stacks when used as reduction
criteria in all three weighting scenarios.

Absolute metric values for all three scenarios indicate
that test suite reduction, in general, is more effective when
applied to TS and TW than in TP. Future work may use this
metric in an attempt to identify application construction
factors influencing test suite reduction.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented tools and techniques that allow
us to dynamically collect call stacks in multithreaded GUI
applications, including entries from the libraries that they

use. In addition, we empirically demonstrated the feasi-
bility and effectiveness of using dynamically collected call
stacks as a coverage criterion for GUI applications.

We have shown that event-driven GUI applications are

sufficiently different from traditional applications to require

new coverage criteria [19]. In our future work, we plan to

further generalize our results for coverage criteria that are

effective for GUI testing scenarios.
Although we were able to successfully analyze complete

call stack coverage data for the TerpOffice applications, the
data volume for even larger applications may become
unwieldy. Thus, we intend to look for techniques that
reduce the number of coverage requirements generated by a
complete call stack data collection while still retaining call
stack coverage’s desirable qualities. One idea is to limit the

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 113

Fig. 8. Average test suite reduction metric over all suite sizes.

depth of calls into library routines. Another strategy is to
define a “similarity metric” for call stacks such that
different stacks with a certain similarity value may be
considered redundant and therefore be discarded.

To further explore the notion that the context provided
by call stacks is valuable in test suite reduction, we will
perform a missed-faults analysis. By inspecting code related
to faults found by call stack reduced suites but missed by
other reduced suites, it may be possible to qualify the
importance of calling context.

Finally, we believe that there is a need to better quantify
the trade-offs between fault detection effectiveness reduc-
tion and size reduction. A cost-benefit model for defect
detection activities has been proposed by Wagner [30] and
another model specifically focused on regression testing has
been developed by Do and Rothermel [3]. Because of the
close relationship between regression testing and test suite
reduction, Do and Rothermel’s model (which explicitly
factors in the cost of missing faults and the cost of test
execution) may be a good candidate to be applied to the test
suite reduction problem. In our future work, we will
develop, apply, and evaluate new metrics and cost models
to assist practitioners when considering test suite reduction
approaches.

ACKNOWLEDGMENTS

Gregg Rothermel provided the space program and test
artifacts. Portions of the space package were previously
developed by Alberto Pasquini, Phyllis Frankl, and Filip
Vokolos. The authors would like to thank Xun Yuan for
providing the TerpOffice applications and fault matrices.
This work was partially supported by the US National
Science Foundation under Grant CCF-0447864 and by the
US Office of Naval Research under Grant N00014-05-1-0421.

REFERENCES

[1] G. Ammons, T. Ball, and J.R. Larus, “Exploiting Hardware
Performance Counters with Flow and Context Sensitive Profil-
ing,” Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation, 1997.

[2] W. Dickinson, D. Leon, and A. Podgurski, “Finding Failures by
Cluster Analysis of Execution Profiles,” Proc. 23rd Int’l Conf.
Software Eng., pp. 339-348, 2001.

[3] H. Do and G. Rothermel, “An Empirical Study of Regression
Testing Techniques Incorporating Context and Life Cycle Factors
and Improved Cost-Benefit Models,” Proc. 14th ACM SIGSOFT
Symp. Foundations of Software Eng., Nov. 2006.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies,” IEEE Trans.
Software Eng., vol. 28, no. 2, pp. 159-182, Feb. 2002.

[5] P.G. Frankl and O. Iakounenko, “Further Empirical Studies of Test
Effectiveness,” Proc. Sixth ACM SIGSOFT Symp. Foundations of
Software Eng., Nov. 1998.

[6] M. Harder, J. Mellen, and M.D. Ernst, “Improving Test Suites via
Operational Abstraction,” Proc. 25th Int’l Conf. Software Eng.,
pp. 60-71, 2003.

[7] M.J. Harrold, R. Gupta, and M.L. Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Trans. Software Eng. and
Methodology, vol. 2, no. 3, July 1993.

[8] J.R. Horgan and S. London, “Data Flow Coverage and the C
Language,” Proc. Fourth ACM Symp. Testing, Analysis, and
Verification, 1991.

[9] G. Hunt and D. Brubacher, “Detours: Binary Interception of
Win32 Functions,” Proc. Third Usenix Windows NT Symp., pp. 135-
143, July 1999.

[10] JavaCCTAgent information on the Web, http://sourceforge.net/
projects/javacctagent/, Apr. 2007.

[11] Java Native Interface specification, http://java.sun.com/j2se/
1.4.2/docs/guide/jni/, Sept. 2006.

[12] jcoverage information on the Web, http://www.jcoverage.com/,
Apr. 2006.

[13] D. Jeffrey and N. Gupta, “Test Suite Reduction with Selective
Redundancy,” Proc. 21st IEEE Int’l Conf. Software Maintenance,
pp. 549-558, 2005.

[14] D. Leon and A. Podgurski, “A Comparison of Coverage-Based
and Distribution-Based Techniques for Filtering and Prioritizing
Test Cases,” Proc. 14th IEEE Int’l Symp. Software Reliability Eng.,
Nov. 2003.

[15] S. McMaster and A. Memon, “Call Stack Coverage for GUI Test-
Suite Reduction,” Proc. 17th IEEE Int’l Symp. Software Reliability
Eng., Nov. 2006.

[16] S. McMaster and A. Memon, “Call Stack Coverage for Test Suite
Reduction,” Proc. 21st IEEE Int’l Conf. Software Maintenance,
pp. 539-548, 2005.

[17] A. Memon, A. Nagarajan, and Q. Xie, “Automating Regression
Testing for Evolving GUI Software,” J. Software Maintenance and
Evolution: Research and Practice, vol. 17, no. 1, pp. 27-64, 2005.

[18] A. Memon, M. Pollack, and M.L. Soffa, “Automated Test Oracles
for GUIs,” Proc. Eighth ACM SIGSOFT Symp. Foundations of
Software Eng., pp. 30-39, 2000.

[19] A. Memon, M. Pollack, and M.L. Soffa, “Hierarchical GUI Test
Case Generation Using Automated Planning,” IEEE Trans. Soft-
ware Eng., vol. 27, no. 2, pp. 144-155, Feb. 2001.

[20] A. Memon, M.L. Soffa, and M. Pollack, “Coverage Criteria for GUI
Testing,” Proc. Eight European Software Eng. Conf./Ninth ACM
SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 256-267,
2001.

[21] A. Memon and Q. Xie, “Studying the Fault-Detection Effectiveness
of GUI Test Cases for Rapidly Evolving Software,” IEEE Trans.
Software Eng., vol. 31, no. 10, pp. 884-896, Oct. 2005.

[22] J. Offutt, J. Pan, and J. Voas, “Procedures for Reducing the Size of
Coverage-Based Test Sets,” Proc. 12th Int’l Conf. Testing Computer
Software, pp. 111-123, June 1995.

[23] S. Rapps and E.J. Weyuker, “Selecting Software Test Data Using
Data Flow Information,” IEEE Trans. Software Eng., vol. 11, no. 4,
pp. 367-375, Apr. 1985.

[24] G. Rothermel, M.J. Harrold, J. Ostrin, and C. Hong, “An Empirical
Study of the Effects of Minimization on the Fault Detection
Capabilities of Test Suites,” Proc. 14th Int’l Conf. Software
Maintenance, pp. 34-43, Nov. 1998.

[25] G. Rothermel, M.J. Harrold, J. von Ronne, and C. Hong,
“Empirical Studies of Test-Suite Reduction,” J. Software Testing,
Verification, and Reliability, vol. 12, no. 4, Dec. 2002.

[26] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold, “Test Case
Prioritization,” IEEE Trans. Software Eng., vol. 27, no. 10, pp. 929-
948, Oct. 2001.

[27] A. Rountev, S. Kagan, and M. Gibas, “Static and Dynamic
Analysis of Call Chains in Java,” Proc. ACM SIGSOFT Int’l Symp.
Software Testing and Analysis, pp. 1-11, July 2004.

[28] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock, “A Scalable
Approach to User-Session Based Testing of Web Applications
through Concept Analysis,” Proc. 19th IEEE Int’l Conf. Automated
Software Eng., pp. 132-141, 2004.

[29] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock, “Web
Application Testing with Customized Test Requirements: An
Experimental Comparison Study,” Proc. 17th IEEE Int’l Symp.
Software Reliability Eng.), Nov. 2006.

[30] S. Wagner, “A Model and Sensitivity Analysis of the Quality
Economics of Defect-Detection Techniques,” Proc. ACM Int’l Symp.
Software Testing and Analysis, July 2006.

[31] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur, “Effect of
Test Set Minimization on Fault Detection Effectiveness,” Proc. 17th
Int’l Conf. Software Eng., pp. 41-50, 1995.

[32] T. Xie, D. Marinov, and D. Notkin, “Rostra: A Framework for
Detecting Redundant Object-Oriented Unit Tests,” Proc. 19th IEEE
Int’l Conf. Automated Software Eng., pp. 196-205, Sept. 2004.

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Scott McMaster received the BS degree in
mathematics from the University of Nebraska,
Lincoln, in 1994 and the master’s degree in
software engineering from Seattle University in
2001. He is currently working toward the PhD
degree at the University of Maryland, College
Park. His research interests include software
testing, program analysis, software tools, and
distributed systems. He is a member of the ACM
and the IEEE Computer Society.

Atif M. Memon received the BS degree from the
University of Karachi in 1991, the MS degree
from the King Fahd University of Petroleum and
Minerals in 1995, and the PhD degree in
computer science from the University of Pitts-
burgh in 2001. He received fellowships from the
Andrew Mellon Foundation for his PhD research.
He is currently an associate professor in the
Department of Computer Science at the Uni-
versity of Maryland, College Park. His research

interests include program testing, software engineering, artificial
intelligence, plan generation, reverse engineering, and program
structures. He is a member of the ACM and the IEEE. He received a
gold medal during his undergraduate studies and the US National
Science Foundation Faculty Early Career Development (CAREER)
Award in 2005.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MCMASTER AND MEMON: CALL-STACK COVERAGE FOR GUI TEST SUITE REDUCTION 115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

