
Automated Testing of GUI Applications: Models,
Tools, and Controlling Flakiness
Atif M. Memon

University of Maryland
Department of Computer Science

College Park, MD 20742
atif@cs.umd.edu

Myra B. Cohen
University of Nebraska-Lincoln

Department of Computer Science & Eng.
Lincoln, NE 68588-0115

myra@cse.unl.edu

Abstract—System testing of applications with graphical user
interfaces (GUIs) such as web browsers, desktop, or mobile apps,
is more complex than testing from the command line. Specialized
tools are needed to generate and run test cases, models are needed
to quantify behavioral coverage, and changes in the environment,
such as the operating system, virtual machine or system load, as
well as starting states of the executions, impact the repeatability
of the outcome of tests making tests appear flaky.

In this tutorial, we present an overview of the state of the art
in GUI testing, consisting of both lectures and demonstrations on
various platforms (desktop, web and mobile applications), using
an open source testing tool, GUITAR. We show how to setup a
system under test, how to extract models without source code,
and how to then use those models to generate and replay test
cases. We then present a lecture on the various factors that may
cause flakiness in the execution of GUI-centric software, and
hence impact the results of analyses and experiments based on
such software. We end with a demonstration of a community
resource for sharing GUI testing artifacts aimed at controlling
these factors.

This tutorial targets both researchers who develop techniques
for testing GUI software, and practitioners from industry who
want to learn more about model-based GUI testing or who run
and rerun GUI tests and often find their runs are flaky.

I. TUTORIAL OVERVIEW

System testing of applications on which the user interacts
through a graphical user interface (GUI) such as common
desktop applications, web clients or mobile apps, requires
a more complex test harness than traditional command line
interfaces. This event-driven paradigm creates several chal-
lenges. Models are needed to evaluate behavioral coverage,
and specialized tools are required to generate and replay tests
in an automated fashion [1]. And these tools and techniques
may be platform dependent. Test cases are sequences of
events, instead of simple inputs; actions that are performed
on the interface in a specific order. The starting state of the
application and its environment (e.g. Java version, OS and
system load) can both impact the outcome of a test, and
as events are executed, threads may be spawned to perform
calculations, which will change the system state, and may
incur delays before they are complete. All of these factors,
if not carefully controlled lead to flakiness – the inability to
repeat execution in a reliable manner, and can affect both test
results and experimentation on new techniques.

This tutorial aims to de-mystify testing in event-driven
systems by presenting an overview on the state of the art in
GUI testing, with lectures on modeling, test generation and
replay, as well as a discussion of the important factors that
should be considered for controlling flakiness. We include
demonstrations on the basics of automated GUI testing using
the open source framework GUITAR [2], with examples from
various domains such as desktop, web and mobile applications.
A second demonstration on benchmarking and experimenta-
tion uses artifacts from the COMET (COMmunity Event-based
Testing) website [3] with a focus on repeatability of test results.
COMET is a community resource that the presenters of this
tutorial have been developing to help alleviate some of the
challenges faced when comparing and repeating experiments
on event-driven testing.

II. AUDIENCE

The expected audience for this tutorial includes students,
industry practitioners, and researchers who work on software
testing of systems with graphical interfaces. The tutorial in-
cludes fundamental material that is applicable to both research
and industry as well as more advanced topics related to
benchmarking and experimentation which are of interest to
researchers or industrial practitioners who want repeatable test
results. Recent research that leverages GUI testing tools to
build models for predicting human performance [4] suggests
that the tutorial may also be of interest to some researchers
from the HCI community.

III. TUTORIAL DESCRIPTION AND PLAN

The tutorial will consist of a combination of lectures inter-
mingled with demonstrations. Within each lecture or demon-
stration period, sufficient time will be left open for questions
or clarifications of key concepts.

The tutorial begins with an overview of GUI testing cov-
ering techniques for modeling the event space using state
machine and graph models [1], [5]. We then demonstrate how
the graph models can be automatically extracted and used
for test case generation. To make this concept concrete, we
leverage our tools (the GUI Testing frAmewRk, GUITAR) [2]
for extracting, generating and running GUI tests. Materials

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Tutorial Summaries

1479

will be provided for tutorial attendees so that they can repeat
these demonstrations later at their own leisure.

In the second part of this tutorial, we highlight the chal-
lenges of reducing flakiness. We demonstrate how varying
some factors may cause the software to change behavior in
unexpected ways. We discuss some of these factors and how
to control them to improve execution results reproducibility. In
a second demonstration, we introduce participants to COMET,
and the shared GUI benchmarks that they can use for experi-
mentation.
Planned Tutorial Structure
This is a half-day tutorial with the following structure:
• Lecture: Introduction to GUI Testing and Models

1) Overview of GUI testing
2) State machines and event flow graphs
3) Ripping (model extraction) and replaying

• Lecture: Test Generation and Coverage
1) Overview of event-based coverage criteria
2) Test generation

• Demonstration: Using GUITAR to Automate the GUI Test
Process
• Lecture: Extending GUITAR with New Test Generation
Methods and Models of Interaction
• Lecture: Controlling Factors

1) Factors that impact repeatability
2) Introduction to benchmarking for experimentation

• Demonstration: Using COMET benchmarks
1) Downloading and configuring the benchmarks
2) Executing the benchmark subjects

IV. PRESENTERS

Myra Cohen and Atif Memon are the architects of this tu-
torial. They have expertise in testing graphical user interfaces,
testing configurable software, and in experimental software
engineering, all of which form the core content of the tutorial,
and they have collaborated on recent papers on the state of the
in GUI testing [6]–[8]. Atif Memon developed the GUITAR
framework that is used for demonstration in this tutorial.
Together they host COMET [3] that serves as a repository for
GUI software subjects used in experimentation for increased
repeatability and comparison between experiments.

Atif Memon is an Associate Professor in the Department
of Computer Science, University of Maryland, where he
founded and heads the Event Driven Software Lab (EDSL).
He designed and developed the model-based GUI testing
software GUITAR. He has published over 100 research articles
on the topic of event driven systems, software testing, and
software engineering. He is the founder of the TESTBEDS
workshop. He also helped develop the workshop on Exper-
imental Evaluation of Software and Systems in Computer
Science (EVALUATE). He has given numerous talks on
model-based testing, experimentation, and testing of event-
driven software including 2 at the Google Test Automation
Conference (GTAC) with videos available online.1

1 see (http://youtu.be/6LdsIVvxISU) and (http://youtu.be/OiE9zRPD6ps)

Myra Cohen is an Associate Professor in the Department
of Computer Science and Engineering at the University of
Nebraska-Lincoln where she is a member of the Laboratory
for Empirically based Software Quality Research and Devel-
opment (ESQuaReD). She is a recipient of a National Science
Foundation early CAREER development award and an Air
Force Office of Scientific Research young investigator program
award. Her research expertise is in testing highly configurable
software, GUI testing, combinatorial interaction testing, appli-
cations of combinatorial designs to software engineering, and
search based software engineering.

V. LINKS TO TUTORIAL MATERIALS

The tutorial materials will be hosted on the COMET web-
site [3] and can be found at http://comet.unl.edu/tutorial.php.
COMET includes software subjects combined with artifacts
such as models and coverage adequate test suites and oracles,
process descriptions, and open source tools. We also use the
GUITAR [2] to demonstrate how to extract models, generate
and replay tests. Other material comes from courses and
papers on testing event-driven systems from the presenters’
respective websites (see: http://www.cse.unl.edu/∼myra and
http://www.cs.umd.edu/∼atif).

ACKNOWLEDGMENTS

This tutorial is supported in part by the National Science
Foundation through award CCF-1161767, CNS-1205472 and
CNS-1205501 and by the Air Force Office of Scientific Re-
search, award FA9550-10-1-0406. The views and conclusions
in this manuscript and tutorial are those of the authors and
do not necessarily reflect the position or policy of NSF or
AFOSR.

REFERENCES

[1] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria
for GUI testing,” in Proceedings of the European Software Engineering
Conference and ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE), 2001, pp. 256–267.

[2] “GUITAR – a GUI Testing frAmewoRk,” website, 2009,
http://guitar.sourceforge.net.

[3] “COMET - COMmunity Event-based Testing,” website, 2012, http://
comet.unl.edu/.

[4] A. Swearngin, M. Cohen, B. John, and R. Bellamy, “Easing the gener-
ation of predictive human performance models from legacy systems,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, (CHI), 2012, pp. 2489–2498.

[5] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
the 10th Working Conference on Reverse Engineering, ser. WCRE ’03,
2003, pp. 260–269.

[6] X. Yuan, M. Cohen, and A. Memon, “GUI interaction testing: Incorporat-
ing event context,” IEEE Transactions on Software Engineering, vol. 37,
no. 4, pp. 559 –574, 2011.

[7] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test suites
using a genetic algorithm,” in International Conference on Software
Testing (ICST), April 2010, pp. 245–254.

[8] M. B. Cohen, S. Huang, and A. M. Memon, “AutoInSpec: Using
missing test coverage to improve specifications in GUIs,” in International
Symposium on Software Reliability Engineering (ISSRE), November 2012,
pp. 245–254.

1480

