
Automated Test Oracles for GUIs

Atif M. Memon
∗

Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

atif@cs.pitt.edu

Martha E. Pollack
†

Dept. of Computer Science
and Intelligent Systems

Program
University of Pittsburgh
Pittsburgh, PA 15260

pollack@cs.pitt.edu

Mary Lou Soffa
‡

Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

soffa@cs.pitt.edu

ABSTRACT
Graphical User Interfaces (GUIs) are critical components of
today’s software. Because GUIs have different character-
istics than traditional software, conventional testing tech-
niques do not apply to GUI software. In previous work, we
presented an approach to generate GUI test cases, which
take the form of sequences of actions. In this paper we de-
velop a test oracle technique to determine if a GUI behaves
as expected for a given test case. Our oracle uses a formal
model of a GUI, expressed as sets of objects, object proper-
ties, and actions. Given the formal model and a test case,
our oracle automatically derives the expected state for ev-
ery action in the test case. We represent the actual state of
an executing GUI in terms of objects and their properties
derived from the GUI’s execution. Using the actual state ac-
quired from an execution monitor, our oracle automatically
compares the expected and actual states after each action
to verify the correctness of the GUI for the test case. We
implemented the oracle as a component in our GUI testing
system, called Planning Assisted Tester for grapHical user
interface Systems (PATHS), which is based on AI planning.
We experimentally evaluated the practicality and effective-
ness of our oracle technique and report on the results of
experiments to test and verify the behavior of our version of
the Microsoft WordPad’s GUI.

Keywords
GUI testing, GUI Test Oracles, Automated Oracles.

∗Partially supported by the Andrew Mellon Pre-doctoral
Fellowship.
†Partially supported by the Air Force Office of Scien-
tific Research (F49620-98-1-0436) and NSF (IRI-9619579).
Effective Sep 1, 2000: Department of Electrical Engi-
neering and Computer Science, University of Michigan.
pollackm@eecs.umich.edu
‡Partially supported by NSF (CCR 9808590 and EIA
9806525).

This paper appears in the Proceedings of the Eighth International Sym-
posium on the Foundations of Software Engineering (FSE-8), held in San
Diego, CA, on Nov. 6-10, 2000. Copyright of this paper belongs to the
ACM.

1. INTRODUCTION
Graphical User Interfaces (GUIs) are critically important
components of most current software [11]. As with all soft-
ware, the behavior of a GUI, as well as the underlying code,
needs to undergo extensive testing to help ensure that it
behaves correctly. Although extensive research has been
devoted to testing conventional software, the resulting tech-
niques and approaches are not applicable when testing GUIs,
because GUIs have special characteristics. Thus, testing
technology for GUIs requires new approaches. In a previous
paper, we described an approach to automatically generate
test cases, which are sequences of actions, for GUIs by using
Artificial Intelligence planning techniques [9]. In this paper,
we focus on the problem of automatically determining, given
a test case, whether a GUI behaves correctly.

The characteristics of GUIs present special challenges when
verifying a GUI’s behavior [12, 10, 24]. Many of these chal-
lenges stem from the fact that GUIs are event-based systems.
With conventional software, a test case usually consists of
a single set of inputs, and the expected result is the out-
put that results from completely processing that input. The
form of the output can be readily specified, e.g., as the val-
ues of a certain set of variables. With GUIs, the input is an
entire action sequence, where the effect of each action may
depend upon the effects of its previous actions. There is no
specific output: rather, each action affects the state of the
GUI. Moreover, comparison of the expected and actual GUI
states cannot wait until the entire action sequence has been
executed. Instead, it is necessary to verify the state of the
GUI after the execution of each action; otherwise, incorrect
GUI behavior for one action may result in a state in which
future actions in the sequence cannot be executed at all.

The above challenges suggest the need to develop an auto-
mated oracle that answers the question of whether a GUI
executing under a test case behaves as expected. The au-
tomation should occur both in the derivation of the expected
states and the comparison of the expected and actual states.
The development of an automated test oracle for GUIs has
certain requirements. First, we need a way of modeling the
GUI’s intended behavior so that we can automatically de-
rive its expected state during the execution of a test case.
In order to model the GUI’s intended behavior, we need to
develop a representation of the GUI elements and actions.
Second, we need to represent the state of the executing GUI
in a form that is suitable for comparison with the expected

Test Case

Expected-state
Generator

Verifier

Expected State

Execution
Monitor

Oracle

Actual
State

Run-time
information from

executing GUI

Verdict

Formal
GUI

Model

Figure 1: An Overview of the GUI Oracle.

state description. Finally, we need to design a mechanism
to automatically compare the expected state with the state
of the executing GUI.

In this paper, we present a technique to develop an auto-
mated GUI test oracle. An overview of the oracle is shown
in Figure 1. The oracle uses a formal model that is de-
veloped by the oracle designer from the GUI specifications.
The model is composed of the GUI objects and a set of prop-
erties for those objects. GUI actions are represented in the
model by their preconditions and effects. The oracle auto-
matically derives the expected state using the model and the
actions from a test case. Likewise, the actual state is also
described by a set of objects and properties typically found
in a GUI toolkit or specialized GUI language. The oracle
obtains the actual state information from an execution mon-
itor. A verifier in the oracle then automatically compares
the two states and determines if the GUI is performing as
expected. We implemented our technique in our GUI testing
system PATHS (the Planning Assisted Tester for grapHical
user interface Systems), and show how we were able to facil-
itate automation of the GUI test oracle by exploiting the AI
planning-based tools already present in PATHS. We experi-
mentally evaluated the oracle on a version of Microsoft Word
Pad and provide timing results that establish the feasibility
of our approach.

In particular, the important contributions of the method
presented in this paper include the following.

• We define a formal model of a GUI derived from spec-
ifications that is useful in testing. In this paper we
demonstrate its usefulness in developing oracles.

• Our oracle is general in that it will work for any GUI
as long as an appropriate model can be established.
The oracle is also portable across platforms since it
depends on properties that can be acquired from GUI
toolkits or special programming language features.

• The technique allows reuse of operator definitions that
commonly appear across GUIs. These definitions can
be maintained in a library and reused to help develop
oracles for GUIs.

• We show our oracle creation process as a natural exten-
sion of our already implemented planning-based test-
case generation system. We reuse the planning oper-
ators defined for test-case generation and apply them
in a unique way to create oracles.

In the next section, we describe our GUI model. In Sec-
tion 3, we show how this model is used to determine the

expected state sequence of the GUI for a test case. In Sec-
tion 4, we show how to compare the expected state informa-
tion with the executing GUI’s actual state. In Section 5, we
demonstrate how the oracle is used in testing an example
GUI. Section 6 describes our implementation and presents
experimental results. We present related work in Section 7
and concluding remarks in Section 8.

2. MODELING THE GUI
We begin by describing how a GUI can be formally modeled,
and then show how that model can be used to compute
expected states of the GUI.

2.1 Objects and Properties
We model a GUI as a set of objects, (window, menu, but-
ton, text, etc.), a set of properties of those objects (back-
ground color, font, is-open, etc.), and a set of actions that
change the properties of certain objects (set-background-
color, etc.). Each GUI will use certain types of objects with
associated properties; at any specific point in time, the GUI
can be described in terms of the specific objects, or GUI
elements that it currently contains, and the current values
of their properties.

More formally, we model a GUI at a particular time t as:

• its objects O = {o1, o2, . . . , om}, i.e., the objects the
GUI currently contains, and
• the properties P = {p1, p2, . . . , pl} of those objects.
Each property pi is an ni-ary Boolean relation, for
ni ≥ 1, where the first argument is an object o1 ∈ O.
If ni > 1, the last argument may be either an object or
a property value, and all the intermediate arguments
are objects. The property value is a constant drawn
from a set associated with the property in question:
for instance, the property “background-color” has an
associated set of values, {white, yellow, pink, etc.}.
We assume a distinguished set of properties, the ob-
ject types, which are unary relations, e.g., “window”
or “button”.

Thus we might specify the state of a (extraordinarily sim-
ple) GUI at some particular time by noting that it currently
has two window objects, w17 and w29, for which the following
properties hold: window(w17), window(w29), background-

color(w17, red), is-current(w17). The state of a GUI
at a particular time is everything that is currently true of
it. So a description of the state would contain information
about the types of all the objects currently extant in the
GUI, as well as all of the properties of each of those objects.

There are several points that should be noted about our
description of properties. First, properties are relations, not
functions, and so there may sometimes be multiple values for
the same property of a given object. For example, there may
be multiple objects in a window. Next, properties as we have
defined them are fluents [8], i.e., relations which are true in
some situations (or states of the world) and not others. An
everyday example of a fluent is the relation president(US,

Clinton), with the obvious meaning, where the state it is
evaluated in is the state of the real world. Our fluents are
evaluated with respect to a state of the GUI. Finally, note
that a fluent may be undefined in some states, for example,

president(US, Dole) in the state of the world in the year
1567, or background-color(w24, blue) in the state of a
GUI immediately after window w24 has been destroyed.

In practice, we can determine the set of object types and
properties for our GUI model in several different ways. One
approach would be manual examination of the GUI: we look
at it, and write down all the object types and properties we
can discover. This approach is prone to incompleteness, es-
pecially since GUIs may have hidden properties that must
be checked during verification. For example, the tab order
of windows in a GUI (the order in which windows receive
input focus when the Tab key is pressed) is a property that
is not visible. A second approach is to derive the objects
and properties directly from the GUI’s specifications, which
will describe them either directly or implicitly within the
descriptions of GUI actions. A third approach is to examine
the language or toolkit used to develop a particular GUI. For
example, if the GUI was developed using the Java language,
then the GUI objects would be instances of the swing GUI
components of the Java swing package, and the properties
would correspond to the instance variables (also called data
members in C++) of each object. Visual programming envi-
ronments provide a more direct interface to properties. For
example, Borland’s C++ Builder presents the properties as
a table for the currently selected object.

The third approach can lead to a larger set of object types
and properties than does the second. This is because the
set of object types and properties made available by a lan-
guage or toolkit may not all be used in the construction
of a particular GUI. For example, one might use Borland’s
C++ builder to construct a simple GUI in which the user
is not permitted to manipulate the text color, and in which
the text color does not influence the execution of any other
action. (In fact, Microsoft’s NotePad is like this.) Thus, if
one establishes the set of properties from the GUI’s specifi-
cations, text color will not be amongst the properties mod-
eled, whereas if one establishes it from the toolkit used for
development, text color will be included as a property in
the model. We thus distinguish between the complete set
of properties for a GUI, which are all those that would be
identified by our third (language/toolkit-based) approach,
and the reduced set, which includes only those that would
be identified by our second (specifications-based) approach.
Note that the reduced set is always a (possibly improper)
subset of the complete set of properties.

2.2 Actions
The state of a GUI is not static; actions are used to change
it over time. We model actions as state transducers, i.e., we
define an action as follows:

Definition: The actions A = {a1, a2, . . . , an} associated
with a GUI are functions from one state of the GUI to
another state of the GUI. 2

Actions may be parameterized, e.g., set-background-color(
w, x). Whenever the action set-background-color(w19,
yellow) is executed in a state in which window w19 is
open, the background color of w19 should become yellow

(or stay yellow if it already was), and no other proper-
ties of the world should change. This example illustrates
that, typically, actions can only be executed in some states;

set-background-color(w19, yellow) cannot be executed
when window w19 is not open.

We use the notation sj = [si, a] to denote that sj is the
state resulting from the execution of action a in state si.
We can string actions together into sequences. We will say
that a1; a2; . . . ; an is a legal action sequence for initial state
s0 iff there exists a sequence of states, s0; s1, . . . ; sn such
that si = [si−1, ai] for i = 1, . . . , n. Extending the notation
above, we use sj = [si, a1; a2; ...an], where a1; a2; . . . ; an
is a legal action sequence, to denote that sj is the state
that results from executing the specified sequence of actions
starting in state si.

Definition: AGUI test case is a pair< s0, a1; a2; . . . an >,
consisting of an initial state and a legal sequence of ac-
tions for that state. 2

We model actions using their descriptions in the GUI spec-
ifications: after all, the purpose of verification is to ensure
that the implementation of the actions matches the expected
behavior promised in the specifications. In the next section,
we provide further details about modeling actions.

3. DERIVING EXPECTED STATE
We can now see how the model of the GUI can in principle
be used to determine the expected state of a GUI after the
complete or partial execution of any test case. Recall that
actions are modeled as state transducers. For any test case
< s0, a1; a2; . . . an >, the sequence of states s1; s2; . . . sn such
that si = [si−1, ai] for i = 1, . . . , n represents the expected
state of the GUI after each action is executed, starting in s0.
The question is how, in practice, to compute these expected
states.

It is of course infeasible to give exhaustive specifications of
the state mapping for each action: in principle, as there
is no limit to the number of objects a GUI can contain at
any point in time, there can be infinitely many states of
the GUI.1 Thus, we adopt the technique of modeling GUI
actions using operators, which specify their preconditions
and effects:

Definition: An operator is a 3-tuple <Name, Precondi-
tions, Effects> where:

• Name identifies an action and its parameters.
• Preconditions is a set of positive ground literals2

p(arg1, . . . , argn), where p is an n-ary property
(i.e., p ∈ P).

• Effects is also a set of positive or negative ground
literals p(arg1, . . . , argn), where p is an n-ary prop-
erty (i.e., p ∈ P).

2

1Of course in practice, there are memory limits on the ma-
chine on which the GUI is running, and hence only finitely
many states actually possible, but the number of possible
states will be extremely large.
2A literal is a sentence without conjunction, disjunction or
implication; a literal is ground when all of its arguments are
bound; and a positive literal is one that is not negated. It
is straightforward to generalize the account given here to
handle partially instantiated literals. However, it needlessly
complicates the presentation for this paper.

We write Pre(Op) and Eff (Op) to represent the set of pre-
conditions and effects, respectively, for operator Op. An
operator is applicable in any state si in which all the literals
in Pre(Op) are true. In the resulting state sj, all of the pos-
itive literals in Eff (Op) will be true, as will all the literals
that were true in si except for those that appear as negative
literals in Eff (Op). The scheme for encoding operators we
use is the same as what is standardly used in the AI plan-
ning literature [14, 22, 23]; the persistence assumption built
into the method for computing the result state is called the
STRIPS assumption. A complete formal semantics for op-
erators making the STRIPS assumption has been developed
by Lifschitz [7].

The STRIPS-style of encoding operators also makes it fairly
easy to derive result state sj = [si, a], via simple additions
and deletions to the list of relations representing state si.

For example, if we were to define an operator for the set-bac-
kground-color action, then we would get the following op-
erator definition:

Name: set-background-color(wX: window, Col:
Color)

Preconditions: is-current(wX), background-col-
or(wX, oldCol), oldCol 	= Col

Effects: background-color(wX, Col)

Going back to our simple example of the GUI in which the
following properties were true: window(w17), window(w29),

background-color(w17, red), is-current(w17). If we ap-
plied the above operator, with variables bound as set-back-
ground-color(w17, blue), we would get the following
state: window(w17), window(w29), background-color(w17,

blue), is-current(w17), i.e., the background color of win-
dow w17 would change from red to blue.

The next state is obtained from the current state Sc and the
operator’s effects e as follows:

1. Delete all literals in Sc that unify with a negated literal
in e, and

2. add all positive literals in e.

Thus, using a formal model of a GUI, we can derive the ex-
pected state, given an initial state and a sequence of actions.

Given that GUI specifications can describe the intended be-
havior of actions in terms of their preconditions and effects
[5, 4], it is relatively straightforward for the test designer to
construct operators for the GUI model. In fact, as we will
see later, the operators can also be used in other aspects of
testing.

4. STATE COMPARISON
We have just described how to model a GUI and use that
model to derive the expected state. Now we turn to the
question of how to compare that information to the actual
state.

The simplest approach is manual comparison. One manually
executes a test case, and after each step, manually compares
the appearance of the GUI with the expected state at that

time. Manual verification has at least two problems: (1)
it is labor intensive, and (2) often the GUI state includes
“hidden” properties that are not visually accessible.

Our goal is therefore to automate the process of extracting
actual GUI state information in a form that is suitable for
comparison with the expected state description. We define
an execution monitor to be a process that, given an exe-
cuting GUI, returns the current values of all the properties
in the complete set for the GUI. Once the actual values of
properties for an element or elements are known, the verifier
can compare them against the expected values, to determine
if they are equal. We, therefore define the verifier to be a
process that compares the expected state of the GUI with
the actual state and returns a verdict of equal or not equal.

The remaining question, then, is what properties should be
compared during the verification process. There are several
possible answers to this question, and the decision amongst
them establishes the level of testing performed:
Changed-Properties Verification: Here, comparison is

made only for those properties that were expected to
change as a result of the immediately preceding action.
That is, if action a was just executed, only the proper-
ties that are included in Eff (a) are compared against
their expected values. Although efficient, this level of
testing will fail to detect changes to properties that
change when they are not expected to change. For ex-
ample, if the background color of a window changes,
but it was not expected to change, the error would go
unnoticed.

Relevant-Properties Verification: Here, all the proper-
ties in the reduced property set (see Section 2.1 above)
are checked. Recall that the reduced property set in-
cludes all the properties that the current GUI is ever
supposed to access. This is, thus, a much more ex-
tensive level of testing than changed-properties verifi-
cation, but it may still fail when some GUI property
P changed in the executing GUI, but P was not a
part of the GUI specification. For example, consider a
GUI for a plain-text editor, e.g., MS NotePad in which
users cannot change the text color. If some action in
the test case has the unintended effect of changing the
text color, then this error would go unnoticed, since
the color information was not encoded in the expected
state.

Complete-Properties Verification: Here, a check is made
for all the properties that a language or toolkit pro-
vides for a GUI. Recall that the verifier has access to
the complete set of properties. The only problem is
the absence of an expected state to compare against
all these additional properties. The currently available
expected state encodes only the reduced property set.
To address this problem, before the test case is exe-
cuted, a baseline complete expected state of the GUI is
created. During test-case execution, the comparisons
are done between the GUI’s actual state and the up-
dated complete expected state.

In practice, the test designer can choose a combination of
the above levels of testing. For example, the verifier can per-
form changed-properties verification after each test action
and complete-properties verification after every 10 actions.

Up

Select

Figure 2: The Example GUI.

We now have all the necessary mechanisms to develop an
automated test oracle for GUIs.

5. A GUI EXAMPLE
In this section we show, through an example, how a GUI is
tested using an automated test oracle.

Figure 2 presents a small part of the Microsoft WordPad’s
GUI. This GUI can be used for loading text from files, ma-
nipulating the text (by cutting and pasting) and then saving
the text in another file. At the highest level, the GUI has a
pull-down menu with two actions (File and Edit). The GUI
user can execute the GUI actions to make other elements
available. For example clicking on File opens a menu with
New, Open, Save and SaveAs actions. Edit opens a menu
with Cut, Copy, and Paste actions. Open and SaveAs open
windows with several more actions. These actions are used
to traverse the directory hierarchy and select a file. The up
button moves up one level in the directory hierarchy and
clicking on files and directories is used to select files or enter
subdirectories respectively. The window is closed by clicking
on either Open or Cancel.

We assume that the GUI’s test cases are given. Recall that
we defined a test case as a pair (S0, a1; a2; a3; ...;an), where
S0 is the initial state and a1; a2; a3; ...;an is an action se-
quence. Consider, for example, the sequence of actions to
be applied to our version of the WordPad software shown
in Figure 3. This sequence of actions transforms the GUI
from the initial state S0 shown in Figure 4(a) to the one
shown in 4(b). Figure 4(a) shows a collection of files stored
in a directory hierarchy. When the actions are executed on
the GUI, the new document shown in Figure 4(b) is created
and then stored in file f4.doc in the /Root/Latex/Samples
directory.

5.1 The Oracle Designer
To test the above GUI, an Oracle Designer uses the GUI
specifications to develop a formal model of the GUI. The

File Open
EnterDir

(“private”)
SelectFile
(“f1.doc”)

Open

TypeInText
(“must”, Times, Normal, 12pt)

DeleteText
(“needs to”)

File SaveAs

EnterDir
(“Latex”)

EnterDir
(“Samples”)

SelectFile(“f4.doc”) Save

SelectText
(“This”)

Format Font
ChangeFont
(“Italics”)

OK

a1 a2
a3 a4 a5

a18

a6 a7 a8
a9 a10

a11 a12 a13 a14

a15 a16 a17

Figure 3: An Action Sequence for our Version of the
WordPad Software

Property Args Semantics
in File, Text File contains Text
contains ParentDir,

Dir
ParentDir contains Dir

containsfile Dir, File Dir contains File
currentFile File The current file is File
currentFont Font,

Style,
Size

The current font is
Font, style is Style, and
size is Size

font Text,
Font,
Style,
Size

Text is in Font, Style,
and Size

isCurrent Dir Dir is the current direc-
tory

onScreen Text Text is displayed on the
screen

selectedFile File File is selected
selectedText Text Text is highlighted

Table 1: Some Properties, their Parameters, and
Semantics.

rest of the process, i.e., deriving an expected state sequence
for each test case, executing the test case, extracting the
actual state, and verifying its outcome of the test case is
handled automatically.

The first step in deriving the expected state is for the oracle
designer to use the GUI specifications to identify the prop-
erties of the elements of the GUI. The semantics of some
properties used in this example are shown in Table 1. The
columns show the property name, the parameters, and the
semantics of each property. The oracle designer then rep-
resents the initial state (Figure 4) in terms of the identi-
fied properties as shown in Figure 5. The initial state de-
scribes the file structure (using the properties contains()
and containsFile()), and the contents of the file f1.doc us-
ing the property in(). Additional properties are used to
describe the fonts, current file, and the current directory.

By using the actions described in the specifications, the ora-
cle designer defines the preconditions and effects of the oper-
ators. Figure 6 shows an example of an operator called Open,

(a)

(b)

f4.doc must be stored
in /Root/Latex/Samples

f1.doc

report.doc

f4.doc

Figure 4: The Action Sequence of Figure 3 Trans-
forms the GUI from: (a) the Initial State, to (b) the
Final State

representing the Open action from the File menu. The op-
erator Open takes two parameters, dir and file. The oper-
ator is available only if its precondition, containsfile(dir,
file) is TRUE, i.e., directory “dir” contains the file “file”.
The effects of applying this operator are that the currentFile
value is modified, all the objects on the screen are deleted,
and all the objects in the file are displayed on the screen.
Quantifiers and conditional statements are used to make the
notation concise and intuitive. They are later replaced with
their expansions when the expected state is derived.

5.2 The Automated Oracle
Using the operators defined by the oracle designer, the auto-
mated oracle derives the GUI’s expected state corresponding
to the given test case. The expected state sequence is de-
rived from S0 by using the method outlined in the previous
section. The next expected state is automatically obtained
by applying a1 on S0, i.e., S1 = [S0, a1]. The process is
repeated until the entire expected state sequence has been
derived. For example, consider the expected state shown in
terms of properties for actions a4 and a5 in Figure 7. (Note
that the shown subsequence is a part of the sequence shown
in Figure 3) The expected state corresponding to a4 is repre-
sented as S4. The GUI’s state changes after action a5 (Open)
is executed. The new state obtained is S5. The changes
are highlighted using bold font. As mentioned earlier in
the description of the Open operator, the currentFile value
changes, and the objects from the file are now displayed on
the screen (using the property onScreen()).

The test case and expected state sequence shown in Figure 7
have all the necessary components to carry out a successful
test run and can be used for manual testing. The tester
alternates between the test-case actions and the expected

initial:
contains(root private)
contains(private Latex)
contains(Latex Samples)

containsfile(Samples f4.doc)
containsfile(private f1.doc)

currentFont(Times Normal 12pt)

in(f1.doc “This”)
font(“This” Times Normal 12pt)

in(f1.doc “is the”)
font(“is the” Times Normal 12pt)

in(f1.doc “text”)
font(“text” Times Normal 12pt)

in(f1.doc “that”)
font(“that” Times Normal 12pt)

in(f1.doc “needs to”)
font(“needs to” Times Normal 12pt)

in(f1.doc “be modeled.”)
font(“be modeled” Times Normal 12pt)

Figure 5: Representing the Initial State.

Operator Name
Open(dir: DIRS, file: FILES)

Preconditions
containsfile(dir, file)

Effects
/* The current file is now file */

currentFile(file)
/* Now there are no objects on the screen */

¬ onScreen(obj) ∀ obj ∈ OBJECTS
/* All objects in file are now on the screen */

onScreen(obj) ∀ obj ∈ OBJECTS | in(file, obj)

Figure 6: An Operator.

state, executing the input events in the test case and check-
ing the GUI state by verifying each property.3 However, we
have fully automated test execution by implementing the
execution monitor and the verifier.

Now that the expected state has been automatically derived,
it is compared with the actual state. The actual state of
the executing GUI is obtained from the execution monitor,
which maintains a list of all the properties of our version of
the WordPad software. At each step in the test case, the
verifier uses the values of all these properties to check them
for correctness. Thus, in our example, the expected state
shown in S4 and S5 will be automatically compared with
the actual GUI state when the test case is executed.

6. IMPLEMENTATION
In this section, we first give an algorithm that shows how the
components of the test oracle are used when testing the GUI.
We also show the details of how the expected state is derived
from the current state. Then we describe an implementation
of our oracle and results of experiments to determine the
time needed to derive the expected state and execute the
verifier and execution monitor.

3Note that since the expected state has been derived from
the specifications the names of properties may not match
those in the toolkit. Renaming of properties may be needed
at this step to match those used in the toolkit.

contains(Latex Samples)
contains(private Latex)
contains(root private)
containsfile(private f1.doc)
containsfile(Samples f4.doc)
currentFont(Times Normal 12pt)
font("be modeled" Times Normal 12pt)
font("is the" Times Normal 12pt)
font("needs to" Times Normal 12pt)
font("text" Times Normal 12pt)
font("that" Times Normal 12pt)
font("This" Times Normal 12pt)
in(f1.doc "be modeled")
in(f1.doc "is the")
in(f1.doc "needs to")
in(f1.doc "text")
in(f1.doc "that")
in(f1.doc "This")
isCurrent(private)
selectedFile(f1.doc)

contains(Latex Samples)
contains(private Latex)
contains(root private)
containsfile(private f1.doc)
containsfile(Samples f4.doc)

currentFile(f1.doc)
currentFont(Times Normal 12pt)
font("be modeled" Times Normal 12pt)
font("is the" Times Normal 12pt)
font("needs to" Times Normal 12pt)
font("text" Times Normal 12pt)
font("that" Times Normal 12pt)
font("This" Times Normal 12pt)
in(f1.doc "be modeled")
in(f1.doc "is the")
in(f1.doc "needs to")
in(f1.doc "text")
in(f1.doc "that")
in(f1.doc "This")
isCurrent(private)

onScreen("be modeled")
onScreen("is the")
onScreen("needs to")
onScreen("text")
onScreen("that")
onScreen("This")
selectedFile(f1.doc)

SelectFile
(“f1.doc”)

SelectFile
(“f1.doc”) Open Open Select"text"

(“"This"”)
Select"text"
(“"This"”)

S4 S5

a4 a5
a6

Figure 7: A Few Test-Case Actions with Expected
State Information.

6.1 GUI Testing Algorithm
Figure 8 gives a high-level view of the main testing algo-
rithm (TestGUI) and a procedure ExpStateGen, invoked by
TestGUI. The algorithm TestGUI executes a test case auto-
matically on the GUI, examining its actual state and com-
paring it with the expected state. The algorithm takes
three parameters: (1) the levelOfTesting, which deter-
mines what properties will be compared by the verifier, (2)
the test case T to be executed on the GUI; T contains the
expected initial state and a sequence of actions, and (3) the
operators GUI Operators representing the abstract model
of the GUI. Note that each action in the test case has a
corresponding definition in GUI Operators. The algorithm
returns a verdict, depending on the outcome of the test case
execution. For each action in the test case, TestGUI calls
the procedure ExpStateGen (line 9) to determine the ex-
pected state of the GUI. If ExpStateGen is successful, then
the action in the test case is automatically executed (line
12) on the GUI and its actual state is determined by invok-
ing the execution monitor ExecMonitor (line 13). Both the
expected and actual state are compared by the verifier (line
15) that performs comparisons based on the current level
of testing. TestGUI returns the verdict (line 31), i.e., the
outcome of the execution of the test case.

The procedure ExpStateGen takes as input the current state
of the GUI (currentState), the action to be executed on
the GUI, and the GUI (operators). Every action in the test
case has a corresponding operator definition (line 38). The
action contains the actual parameters of the operator defini-
tion, which are substituted for the formal parameters (line
39). ExpStateGen performs an extra check to determine if
the preconditions of the operator are satisfied in the current
state (lines 40..42). If they are not satisfied, then there is an
error in the test case, and this result is propagated to the

calling procedure. If the preconditions are satisfied, the new
state is computed by applying the effects of the operator.
If the effects contain a negated property, then it is deleted
from the new state (lines 45..46) and if it contains a positive
property, it is inserted (lines 47..48) in the new state. The
result newState is returned to the calling algorithm.

6.2 Implementation
In an earlier paper we presented the design of a test case
generation system based on AI plan generation techniques
that used planning operators for GUIs [9]. In the cur-
rent research, we leverage off our planning-based approach
to create test oracles for GUIs by essentially reusing the
planning operators used for test case generation.4 We im-
plemented the expected-state generator, execution monitor,
and the verifier. We have incorporated the GUI test oracles
into our GUI testing system – PATHS. Figure 9 shows an
overview of our testing system in terms of its components,
and the flow of information. The GUI specifications are used
to create a formal model of the GUI as well as to implement
the GUI. The GUI model is used to create test cases and
corresponding expected state. The test cases are executed
on the GUI, and the oracle verifies the behavior of the GUI
for the test case.

We implemented the expected-state generator in C, running
under Linux. The expected-state generator produces the ex-
pected states of all the test cases offline, during test case gen-
eration. As each test case is generated, the expected state
generator uses the operators to produce the corresponding
expected state.

We implemented the execution monitor and verifier in Bor-
land C++ Builder, running under Windows NT.5 In de-
signing an execution monitor, we maintained a list of all the
properties of the executing GUI and extracted the values
after each action of the test case. Some properties were visi-
ble, e.g., open menus, so we could retrieve their values from
the screen by using a process called screen scraping,6 but
other properties required getting values from the executing
GUI’s state by using function calls.

Implementing the verifier was straightforward. We chose to
perform relevant properties verification. During comparison,
we checked for equivalence of the expected and actual states.

We also implemented an automated test-execution system,
so that all the test cases could be automatically executed
without human intervention. Automatically executing the
test cases involved generating the physical mouse/keyboard
events. Since our test cases are represented at a high level of

4Note that during test case generation, we make use of hier-
archical planning, and hence derive hierarchical operators.
For test oracles, we restrict ourselves to primitive operators,
i.e., those that directly correspond to GUI actions.
5Our current implementation of the test case generator and
expected-state generator runs under Unix because the plan-
ner that we use is Unix-based. We execute test cases on
Windows NT because we are using the Windows API to
generate mouse movements and keyboard events.
6Screen scraping is a traditional way to selectively remove
information from a host application’s terminal interface for
reuse. Typically, the information is programmatically ac-
cessed.

ALGORITHM: TestGUI(
levelOfTesting, /* changed, relevant, or complete property

A verification */

T, /* test case {S0, a1;a2;a3;…;an} */

GUI_Operators /* {Op1, OP2, OP3, …, OPn}. Each Opi =

A <Name, Preconditions, Effects>*/) {
StateÄ S0;
foreach action a in <a1, a2, a3, …, an> {

expStateÄ ExpStateGen(State, a, GUI_Operators);
if (expState == TEST_CASE_INVALID)

break;
ExecuteAction(a, GUI); /* Automatically execute action on GUI */

actualStateÄ ExecMonitor(GUI);
A /* check actual state and expected for this LEVEL_OF_TESTING. */

if (Verifier(expState, actualState,
levelOfTesting) == FALSE)

break;
StateÄ expState;}

if (TEST_CASE_INVALID) {
error(“Invalid Test Case”);
debugInfo(“Actual GUI State = ”, actualState);
debugInfo(“Expected GUI State = ”, expState);
Verdict = INVALID;}

if (FALSE) {/* if verifier reported FALSE, then GUI is incorrect*/

report(“GUI failed the test case”);
debugInfo(“Actual GUI State = ”, actualState);
debugInfo(“Expected GUI State = ”, expState);
Verdict = INCORRECT;}

else Verdict = CORRECT;
return(Verdict);}

PROCEDURE: ExpStateGen(
currentState, /* properties, {p1, p2, p3, …, pn} - the state of the GUI */

action, /* step of the test case -- actionName(parameters)*/

operators /* {Op1, OP2, OP3, …, OPn}. */) {

opDefÄ Lookup(action, operators); /* get operator for action */

opÄ Bind(opDef, action); /* bind all variables in op def. */

pÄ preconditions(op); /* extract the preconditions of the operator */

if (Satisfied(p, currentState) == FAILED)
return(TEST_CASE_INVALID);

eÄ effects(op); /*extract the effects of the operator*/

newStateÄ currentState;
foreach (f in e) {/*delete all properties that are negated in effects*/

if (negated(f)) delete f from newState;
foreach (f in e) {/*insert all properties that are positive in effects*/

if (positive(f)) insert f in newState;
return(newState);}

1 A
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36 A
37
38
39
40
41
42
43
44
45
46
47
48
49

Figure 8: The GUI Testing Algorithm.

GUI Specifications
GUI Implementation

Tools (Languages/Toolkits)

GUI Model

Expected-state
Generator

Expected-state
sequence

Verifier

Test-Case
Generator

Test Case

Execution
Monitor

GUI State
(run-time)

GUI

7HVW�2UDFOH
'HVLJQHU *8,�

,PSOHPHQWHU

Actual State
Information

Verdict

Oracle

Figure 9: A Tool for GUI Testing.

abstraction, we translate the high-level actions into physical
events. The actual screen coordinates of the buttons, menus,
etc. were derived from the layout information.

6.3 Experimental Results
To explore the practicality of our approach, we evaluated the
performance of the oracle on our WordPad GUI. We wanted
to determine (1) the execution time to derive the expected
state information, and (2) the time to execute the verifier
and the execution monitor. In both cases, we compared
the times with test case generation and execution time to
determine the extra time needed to derive the expected state
and execute the verifier and the execution monitor.

Our experiments are designed to help determine the scalabil-
ity of our expected-state generator and test-oracle executor.
We generated 290 test cases of lengths varying from 6 to 56
actions. All test cases were generated for, and executed on,
our version of the WordPad software. This software con-
sists of 36 modal windows containing a total of 362 actions
(not counting short-cuts). Our version of WordPad is more
or less similar to Microsoft’s WordPad except for the Help
Menu, which we did not model.

For our first experiment, we implemented our test case and
expected-state generator in C. We executed our system on a
Pentium-based computer (350MHz, 256MB RAM) running
Linux.

The results of this experiment are summarized in Figure 10.
The x-axis shows the test case length and the y-axis shows
the time in seconds. As the graph shows, the significant
portion of the time was spent in generating the test cases.
The expected state was derived much faster. Note that the
total time needed to generate the test cases and expected
state was very small. In fact, we could generate all of our 290
test cases and their corresponding expected state sequences

Generating Test Cases and Deriving Expected State

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 6 11 16 21 26 31 36 41 46 51 56

Test-Case Length

T
im

e
(s

ec
.)

Expected State

Test Case

Test Case + Expected State

Figure 10: Time needed to Generate the Test Cases
and Expected-State Information.

Executing Test Cases,
Verifier and Execution Monitor

0

1

2

3

4

5

1 6 11 16 21 26 31 36 41 46 51 56

Test-Case Length

T
im

e
(s

ec
.)

Test Case

Verifier + Execution Monitor

Test Case + Verifier + Execution Monitor

Figure 11: Time needed to Execute the Test Cases
and Verifier.

in a total of 75.84 sec. CPU time.

Next, we implemented the verifier, execution monitor, and
an automated test-execution system using Borland’s C++
Builder. We executed these on a Pentium-based machine
(350MHz, 256MB RAM) running Windows NT. We per-
formed relevant-properties verification, i.e., we checked all
the properties in the expected state after each action of the
test case. Note that we deliberately chose to perform this
more expensive level of testing to determine the worst-case
time for oracle execution. As seen in Figure 11, the total
time needed to execute the verifier and the execution mon-
itor was very small. All 290 test cases required less than a
total of 10 minutes to execute.

These experiments demonstrate that the use of planning for
test case generation and oracle creation can result in an effi-
cient testing paradigm. The human effort required to create
the test oracle was reasonable and the effort can be amor-
tized by using the same GUI model for test case generation.

7. RELATED WORK
To our knowledge, no work has been done in automating
test oracles for GUIs. However, the need for such an oracle

had been stressed in the literature. Ostrand et al. present a
visual Test Development Environment (TDE) [13] for test-
ing GUIs. They indicate the need to develop a facility for
defining result comparison actions in test scenarios, which
will give the test designer the ability to augment test scripts
with oracles to check the state of the GUI as well as the sys-
tem state and computation results. Shehady et al. present a
FSM based technique to generate test cases for GUIs. Once
the test cases have been generated, the expected output se-
quences can be determined by applying the test cases to the
FSM model and recording the outputs [18]. They, however,
do not use the FSM state to verify the GUI’s behavior.

There has been some work done to create oracles for con-
ventional software. Few techniques to generate the expected
state have been developed. In most cases the expected be-
havior of the software is assumed to be provided by the test
designer. The expected behavior is specified by the test de-
signer in the form of a table of pairs (actual output, expected
output) [15], or as temporal constraints that specify condi-
tions that must not be violated during software execution
[16, 1, 2, 17], or as logical expressions to be satisfied by the
software [3]. This expected behavior is then used by the
verifier by either performing a table lookup [15], FSM cre-
ation [6, 2], or boolean formula evaluation [3] to determine
the correctness of the actual output.

Richardson in TAOS (Testing with Analysis and Oracle Sup-
port) [16] proposes several levels of test oracle support. One
level of test oracle support is given by the Range-checker
which checks for ranges of values of variables during test-
case execution. A higher level of support is given by the GIL
and RTIL languages in which the test designer must specify
temporal properties of the software.

Siepmann et al. in their TOBAC system [19] assume that
the expected output is specified by the test designer and
provide seven ways of automatically comparing the expected
output to the software’s actual output.

A popular alternative to manually specifying the expected
output is by performing reference testing [20, 21]. Actual
outputs are recorded the first time the software is executed.
The recorded outputs are later used as expected output for
regression testing.

8. CONCLUSIONS
In this paper, we presented a new technique to develop an
automated GUI test oracle. The test oracle automatically
derives the expected state sequences and compares the ac-
tual and expected states after each action in the test case.
The oracle generates the expected state sequences from a
formal model developed by the test/oracle designer using
the GUI specifications. The GUI model contains operators,
representing GUI actions in terms of their preconditions and
effects. The oracle obtains the actual state from an execu-
tion monitor. The actual state is represented as a set of
objects and properties. The oracle then compares the two
states and determines if the GUI is performing as expected.

We have demonstrated that our technique can be both prac-
tical and useful by deriving expected state sequences for our
version of the Microsoft WordPad software’s GUI and us-

ing them to test the software’s GUI. Our experiments have
shown that we can generate and execute a large number of
test cases automatically in very little time.

One of the tasks currently performed by the test/oracle de-
signer is the definition of the preconditions and effects of the
operators. Such definitions of commonly used operators can
be maintained in libraries, making this task easier. We are
also currently investigating how to automatically generate
the preconditions and effects of the operators from a GUI’s
specifications.

9. REFERENCES
[1] L. K. Dillon and Y. S. Ramakrishna. Generating oracles

from your favorite temporal logic specifications. In
Proceedings of the Fourth ACM SIGSOFT Symposium
on the Foundations of Software Engineering, volume 21
of ACM Software Engineering Notes, pages 106–117,
New York, Oct.16–18 1996. ACM Press.

[2] L. K. Dillon and Q. Yu. Oracles for checking temporal
properties of concurrent systems. In Proceedings of the
ACM SIGSOFT ’94 Symposium on the Foundations of
Software Engineering, pages 140–153, Dec. 1994.

[3] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
N. Zuanon. Lutess: a specification-driven testing
environment for synchronous software. In Proceedings of
the 21st International Conference on Software
Engineering, pages 267–276. ACM Press, May 1999.

[4] M. Frank, J. J. G. de, D. Gieskens, and J. D. Foley.
Building user interfaces interactively using pre- and
postconditions. In Proceedings of CHI ’92, 1992.

[5] M. Green. The Design of Graphical User Interfaces.
Ph.d. thesis, Department of Computer Science, University
of Toronto, 1985.

[6] L. J. Jagadeesan, A. Porter, C. Puchol, J. C. Ramming,
and L. G. Votta. Specification-based testing of reactive
software: Tools and experiments. In Proceedings of the
19th International Conference on Software
Engineering (ICSE ’97), pages 525–537, Berlin -
Heidelberg - New York, May 1997. Springer.

[7] V. Lifschitz. On the semantics of STRIPS. In M. P.
Georgeff and A. L. Lansky, editors, Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop,
pages 1–9, Timberline, Oregon, June-July 1986. Morgan
Kaufmann.

[8] J. McCarthy. Situations, actions, and causal laws. Memo 2,
Stanford University Artificial Intelligence Project, Stanford,
California, 1963.

[9] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a
goal-driven approach to generate test cases for GUIs. In
Proceedings of the 21st International Conference on
Software Engineering, pages 257–266. ACM Press, May
1999.

[10] B. A. Myers. Why are human-computer interfaces difficult
to design and implement? Technical Report CS-93-183,
Carnegie Mellon University, School of Computer Science,
July 1993.

[11] B. A. Myers, J. D. Hollan, and I. F. Cruz. Strategic
directions in human-computer interaction. ACM
Computing Surveys, 28(4):794–809, Dec. 1996.

[12] B. A. Myers, D. R. Olsen, Jr., and J. G. Bonar. User
interface tools. In Proceedings of ACM INTERCHI’93
Conference on Human Factors in Computing Systems
– Adjunct Proceedings, Tutorials, page 239, 1993.

[13] T. Ostrand, A. Anodide, H. Foster, and T. Goradia. A
visual test development environment for GUI systems. In
Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis
(ISSTA-98), volume 23,2 of ACM Software Engineering
Notes, pages 82–92, New York, Mar.2–5 1998. ACM Press.

[14] E. P. D. Pednault. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proceedings
of KR’89, Toronto, Canada, pp 324-331, May 1989.

[15] D. Peters and D. L. Parnas. Generating a test oracle from
program documentation. In T. Ostrand, editor,
Proceedings of the 1994 International Symposium on
Software Testing and Analysis (ISSTA), pages 58–65,
1994.

[16] D. J. Richardson. TAOS: Testing with analysis and oracle
support. In T. Ostrand, editor, Proceedings of the 1994
International Symposium on Software Testing and
Analysis (ISSTA): August 17–19, 1994, Seattle,
Washington, USA, ACM Sigsoft, pages 138–153, New
York, NY 10036, USA, 1994. ACM Press.

[17] D. J. Richardson, S. Leif-Aha, and T. O. OMalley.
Specification-based Test Oracles for Reactive Systems. In
Proceedings of the 14th International Conference on
Software Engineering, pages 105–118, May 1992.

[18] R. K. Shehady and D. P. Siewiorek. A method to automate
user interface testing using variable finite state machines.
In Proceedings of The Twenty-Seventh Annual
International Symposium on Fault-Tolerant Computing
(FTCS’97), pages 80–88, Washington - Brussels - Tokyo,
June 1997. IEEE Press.

[19] E. Siepman and A. R. Newton. TOBAC: Test Case Browser
for Object-Oriented Sofwtare. In Proc. International
Symposium on Software Testing and Analysis, pages
154–168, New York, Aug. 1994. ACM Press.

[20] J. Su and P. R. Ritter. Experience in testing the Motif
interface. IEEE Software, 8(2):26–33, Mar. 1991.

[21] P. Vogel. An integrated general purpose automated test
environment. In T. Ostrand and E. Weyuker, editors,
Proceedings of the International Symposium on
Software Testing and Analysis, pages 61–69, New York,
NY, USA, June 1993. ACM Press.

[22] D. S. Weld. An introduction to least commitment planning.
AI Magazine, 15(4):27–61, 1994.

[23] D. S. Weld. Recent advances in AI planning.AI Magazine,
20(1):55–64, Spring 1999.

[24] W. I. Wittel, Jr. and T. G. Lewis. Integrating the MVC
paradigm into an object-oriented framework to accelerate
GUI application development. Technical Report 91-60-06,
Department of Computer Science, Oregon State University,
1991.

