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Abstract

With the widespread deployment of broadband connections worldwide, software development
and maintenance are increasingly being done by multiple engineers, often working around-the-
clock to maximize code churn rates. To ensure rapid quality assurance of such software, tech-
niques such as “nightly/daily building and smoke testing” have become widespread since they
often reveal bugs early in the software development process. During these builds, a development
version of the software is checked out from the source code repository tree, compiled, linked, and
(re)tested with the goal of (re)validating its basic functionality. Although successful for conven-
tional software, smoke tests are difficult to develop and automatically rerun for software that
has a graphical user interface (GUI). In this paper, we describe a framework called DART (Daily
Automated Regression Tester) that addresses the needs of frequent and automated re-testing of
GUI software. The key to our success is automation: DART automates everything from struc-
tural GUI analysis, smoke test case generation, test oracle creation, to code instrumentation,
test execution, coverage evaluation, regeneration of test cases, and their re-execution. Together
with the operating system’s task scheduler, DART can execute frequently with little input from
the developer/tester to retest the GUI software. We provide results of experiments showing the
time taken and memory required for GUI analysis, test case and test oracle generation, and test
execution. We empirically compare the relative costs of employing different levels of detail in
the GUI test oracle. We also show the events and statements covered by the smoke test cases.

1 INTRODUCTION

Today’s competitive software development market demands that several developers, perhaps geo-
graphically distributed, work simultaneously on large parts of the code during maintenance. Al-
though successful for improving code churn rates, these practices also create new challenges for
quality assurance, requiring the development of novel and practical solutions. One challenge is
to provide rapid feedback to the developers about parts that may have inadvertently broken dur-
ing maintenance. Once approach to handle this challenge is to perform “nightly/daily builds
and smoke tests” [25, 30, 42]. Smoke tests have become widespread [44] as many software devel-
opers/maintainers find them useful [21]. Popular software that use daily/nightly builds include
WINE [14], Mozilla [10], AceDB [4], and openwebmail [11]. During nightly builds, a development
version of the software is checked out from the source code repository tree, compiled, linked and

∗A preliminary report of this work appeared in the Proceedings of the International Conference on Software
Maintenance 2003 [34].
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“smoke tested” (“smoke tests” are also called “sniff tests” or “build verification suites” [28]). Typ-
ically unit tests [44] and sometimes acceptance tests [18] are executed during smoke testing. Such
tests are run to (re)validate the basic functionality of the system [28]. The smoke tests exercise
the entire system; they don’t have to be an exhaustive test suite but they should be capable of
detecting major problems. A build that passes the smoke test is considered to be “a good build”.
Bugs are reported, usually in the form of e-mails to the developers [44], who can quickly resolve
the bugs. Frequent building and re-testing is also gaining popularity because new software devel-
opment processes (such as extreme programming [20, 48]) advocate a tight development/testing
cycle [43]. A number of tools support daily builds; some of the popular tools include CruiseControl
[3], IncrediBuild [6], Daily Build [12], and Visual Build [8].

A limitation of current nightly builds is inadequate testing and re-testing of software that has
a graphical user interface (GUI).1 Frequent and efficient re-testing of conventional software has
leveraged the strong research conducted for automated regression testing [46], which is a software
maintenance activity, done to ensure that modifications have not adversely affected the software’s
quality [46]. Although there has been considerable success in developing techniques for regres-
sion testing of conventional software [16, 45], regression testing of GUIs has been neglected [31].
Consequently, there are no automated tools and efficient techniques for GUI regression testing
[32, 39].

Not being able to adequately test GUIs has a negative impact on overall software quality because
GUIs have become nearly ubiquitous as a means of interacting with software systems. GUIs today
constitute as much as 45-60% of the total software code [41]. Currently, three popular approaches
are used to handle GUI software when performing nightly builds. First, and most popular, is to
perform no GUI smoke testing at all [28], which either leads to compromised software quality or
expensive GUI testing later. Second is to use test harnesses that call methods of the underlying
business logic as if initiated by a GUI. This approach not only requires major changes to the software
architecture (e.g., keep the GUI software “light” and code all “important” decisions in the business
logic [29]), it also does not perform testing of the end-user software. Third is to use existing tools
to do limited GUI testing [19, 27]. Examples of some tools used for GUI testing include extensions
of JUnit such as JFCUnit, Abbot, Pounder, and Jemmy Module2 and capture/replay tools [22]
such as WinRunner3 that provide very little automation [33], especially for creating smoke tests.
Developers/maintainers who employ these tools typically come up with a small number of smoke
tests [30].

In this paper, we describe a new framework called DART (Daily Automated Regression Tester)
that addresses the needs of re-testing frequent builds of GUI software. The key to the success
of DART is automation. DART automates everything from structural GUI analysis (which we
refer to as GUI ripping [35]), test case generation [38, 36], test oracle creation [37], and code
instrumentation to test execution, coverage evaluation [40], regeneration of test cases, and their
re-execution. Together with the operating system’s task scheduler (e.g., Unix cron job), DART
can execute frequently with little input from the developer/tester to smoke test the GUI software.
We provide results of experiments showing the time taken by the ripper, test case generator, test
oracle generator, and test executor. We empirically compare the relative costs (in terms of time and
space) of employing different levels of oracle information for re-testing. We also show the events
and statements covered by the smoke test cases.

The important contributions of the method presented in this paper include the following.

1Note that we focus on testing the functionality of the GUI, not usability [47] issues such as user-friendliness.
2http://junit.org/news/extension/gui/index.htm
3http://mercuryinteractive.com

2



• We define a formal model of a GUI derived from specifications that is useful for smoke
testing. In this paper we demonstrate its usefulness in developing an efficient and automated
regression tester that can be run daily.

• We develop a new process for re-testing nightly builds of GUI software.

• Our regression testing process can not only be used for nightly builds but for general GUI
re-testing.

• We show our re-testing process as a natural extension of our already implemented GUI testing
tools [33, 37, 38, 32, 40, 36, 31].

• We provide relationships between code and event coverage in the form of reports, to be used
later during the testing phase.

In the next section, we describe the process employed by DART for GUI re-testing. In Section 3,
we present details of the design of DART. In Section 4, we describe the GUI representation that
enables us to perform efficient smoke testing. We then discuss the modules of DART in Section 5.
Results of experiments in Section 6 show that DART is efficient enough for frequent re-testing
and produces coverage reports that can be later reused for the testing phase. We discuss related
research and practice in Section 7 and finally conclude in Section 8 with a discussion of ongoing
and future work.

2 THE DART PROCESS

A very high-level overview of the DART maintenance process is shown in Figure 1. The top part of
the figure shows the one-time SETUP phase, and the lower part shows the ITERATIVE nightly smoke
testing cycle. During the SETUP phase, version i of the application is automatically analyzed, test
cases and oracles are automatically generated and stored for the iterative phase. As the application
is maintained to produce version i + 1, smoke test cases are executed automatically. Reports,
including bug and coverage reports are sent to the developers after smoke testing. The developers
then fix the bugs, add new functionality, and the iterative smoke testing cycle continues.

We now present more details of the process as steps. The goal is to provide the reader with a
step-by-step picture of the operation of DART during maintenance and highlight the role of the
developer/tester in the overall process. Details of technologies used to develop DART are given
in Section 3. Some of the terms used here will be formally defined later. These steps are also
summarized in Table 1.

1. The developer identifies the application under test (AUT). This essentially means that the
source files and executables are identified.

2. DART automatically analyzes the AUT’s GUI structure by a dynamic process that we call
GUI ripping (Section 5.1). It automatically traverses all the windows of the GUI, identifies
all the GUI objects and their properties, and saves the extracted structure in an XML file.

3. The developer then verifies the correctness of the structure and makes any needed changes
by using an editing tool. The number of changes needed depend on the AUT and the im-
plementation platform. Common examples include missed events and windows. The changes
are saved so that they can be automatically applied to future versions of the AUT.
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Figure 1: The DART Process at a Glance.
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Phase Step Developer/tester DART
Identification 1 Identify AUT  

2  Rip AUT's GUI

3
Verify and modify 
structure

 

4  
Create event-flow graphs 
and integration tree

5  Create matrix M

6 Define M'

7  Generate test cases 

8  Generate expected output

Modification 9 Modify AUT  

10  Instrument code

11  
Execute test cases and 
compare with expected 
output

12  Generate execution report

13  Generate coverage report

14  E-mail reports

15
Examine reports and fix 
bugs

 

16 Modify M'  if needed  

17  
Generate additional test 
cases

18  
Generate additional 
expected output

Analysis and 
Regeneration

Analysis

Test Adequacy 
Definition

Test 
Generation

Regression 
Testing

Table 1: Roles of the Developer/tester and DART.
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4. DART uses the GUI structure to create event-flow graphs and an integration tree [40] (Sec-
tion 3). These structures are used in the next step and in Step 7 to automatically generate
test cases and evaluate test coverage.

5. The developer is then presented with a matrix M(i, j), where i is a GUI component (a modal
dialog with associated modeless windows; defined formally in Section 3) and j is the length of
a test case. M(i, j) = N means that N test cases of length j can be executed on component
i. Although we advocate running at least all test cases of length 1 and 2 for smoke testing,
the developer is free to choose test cases of any length. An example of such a matrix for MS
WordPad is shown in Figure 2. The rows show the components of the WordPad GUI and
columns show the length of the test cases.

Matrix M
Component Name 1 2 3 4
Main 56 791 14354 255720
FileOpen 10 80 640 5120
FileSave 10 80 640 5120
Print 12 108 972 8748
Properties 13 143 1573 17303
PageSetup 11 88 704 5632
FormatFont 9 63 441 3087

Test Case Length

Figure 2: Matrix M for MS WordPad.

6. The developer creates a new matrix M ′(i, j); the entries of M ′ specify the number of test
cases of length j that should be executed on component i. The developer needs to fill in the
required number of test cases, a task that typically requires a few minutes. An example is
seen in Figure 3. Note that, in the matrix shown, the test designer has chosen to generate
only a few length 3 test cases indicated in Column 3, and none of the length 4 test cases,
indicated by 0’s in Column 4.

Matrix M'
Component Name 1 2 3 4
Main 56 791 50 0
FileOpen 10 80 80 0
FileSave 10 80 70 0
Print 12 108 0 0
Properties 13 143 0 0
PageSetup 11 88 25 0
FormatFont 9 63 400 0

Test Case Length

Figure 3: Matrix M ′ for MS WordPad.

7. DART uses an automated test case generator to generate the smoke test cases.

8. A test oracle generator is used to automatically create an expected output for the next version
of the AUT. The smoke test suite for subsequent versions is now ready.

9. The development team modifies the AUT during maintenance.

10. The operating system’s task scheduler launches DART, which in turn launches the AUT.
DART automatically instruments the AUT’s source code and events. A code instrumenter
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(e.g., Instr [7]) is used to instrument the code whereas an event-level instrumenter (Sec-
tion 5.5) is used to instrument the events. This code is executed during testing to gather
code coverage information.

11. Test cases are executed on the AUT automatically and the output is compared to the stored
expected output.

12. An execution report is generated in which the executed test cases are classified as successful
or unsuccessful.

13. Two types of coverage reports are generated: (1) statement coverage showing the frequency
of each statement executed, and (2) event coverage, reported as a matrix C(i, j). The format
of C is exactly like M ′, allowing direct comparison between M ′ and C. C(i, j) = N ′ shows
that N ′ test cases were executed on the AUT.

14. These results of the test execution are e-mailed to the developers.

15. The next morning, developers examine the reports and fix bugs. They also examine the
unsuccessful test cases. Note that a test case may be unsuccessful because (1) the expected
output did not match the actual output. If the expected output is found to be incorrect, then
a test oracle generator is used to automatically update the expected output for the modified
AUT, or (2) an event in the test case had been modified (e.g., deleted) preventing the test
case from proceeding. These test cases can no longer be run on the GUI and are deleted.

16. Using the coverage reports, the developers identify new areas in the GUI that should be
tested. They modify M ′ accordingly.

17. The new test cases, and

18. expected output for the test oracle is generated.

Steps 10 through 18 are repeated throughout the maintenance cycle of the AUT.

Note that we do not mention test cases other than those generated for GUI testing. Additional
test cases (such as code-based tests) can easily be integrated in the above maintenance cycle to
improve overall test effectiveness and coverage.

3 DESIGN OF DART

Before we discuss the details of the design of DART, we will first mention the requirements that
provided the driving philosophy behind this design. We required that DART be:

• automated so that the developer’s work is simplified. This is especially necessary for first-
time generation of smoke test cases;

• efficient since GUI testing is usually a tedious and expensive process. Inefficiency may lead
to frustration and abandonment;

• robust; whenever the GUI enters an unexpected state, the testing algorithms should detect
the error state and recover so that the next test case can be executed;
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• portable; test information (e.g., test cases, oracle information, coverage report, and error
report) generated and/or collected on one platform should be usable on other platforms if
the developers choose to change the implementation platform during development;

• general enough to be applicable to a wide range of GUIs.

Figure 4 shows the primary modules of DART and their interaction. The GUI representation
is the “glue” that holds all modules together. The GUI ripper employs a new reverse engineering
technique to automatically obtain parts of the representation. The test case generator uses the
representation to create GUI test cases. The test oracle generator creates the expected state of
the GUI to be used during testing. The code/event instrumenter instruments the code to collect
coverage information during test execution. The test executor runs all the test cases on the GUI
automatically and uses the coverage evaluator to determine how much testing was done. All these
modules interact with each other via the representation, described next.

GUI
Representation

Components

Objects & Properties

Event-flow Graphs

Integration Tree

Events

Test case
Generator

Test Oracle
Generator

Coverage
Evaluator

Code/Event
Instrumenter

Test
Executor

GUI Ripper

Figure 4: Modules of DART.

4 GUI REPRESENTATION

The GUI representation is a formal model of the AUT’s GUI. Note that the entire representation
is extracted automatically from the implemented GUI.
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4.1 OBJECTS & PROPERTIES

A GUI is modeled as a set of objects O = {o1, o2, . . . , om} (e.g., label, form, button, text) and
a set of properties P = {p1, p2, . . . , pl} of those objects (e.g., background-color, font, caption).
Each GUI will use certain types of objects with associated properties; at any specific point in time,
the state of the GUI can be described in terms of all the objects that it contains, and the values of
all their properties. Formally we define the state of a GUI as follows:

Definition: The state of a GUI at time t is the set P of all the properties of all the objects O that
the GUI contains. 2

With each GUI is associated a distinguished set of states called its valid initial state set:

Definition: A set of states SI is called the valid initial state set for a particular GUI iff the GUI
may be in any state Si ∈ SI when it is first invoked. 2

The state of a GUI is not static; events performed on the GUI change its state. These states
are called the reachable states of the GUI.

4.2 EVENTS

The events are modeled as functions from one state to another.

Definition: The events E = {e1, e2, . . . , en} associated with a GUI are functions from one state
to another state of the GUI. 2

The function notation Sj = e(Si) is used to denote that Sj is the state resulting from the
execution of event e in state Si. Events may be stringed together into sequences. Of importance
to testers are sequences that are permitted by the structure of the GUI. We restrict our testing to
such legal event sequences, defined as follows:

Definition: A legal event sequence of a GUI is e1; e2; e3; ...; en where ei+1 can be performed im-
mediately after ei. 2

An event sequence that is not legal is called an illegal event sequence. For example, since in MS
Word, Cut (in the Edit menu) cannot be performed immediately after Open (in the File menu),
the event sequence Open; Cut is illegal (ignoring keyboard shortcuts).

4.3 COMPONENTS

GUIs, by their very nature, are hierarchical4, and this hierarchy may be exploited to identify groups
of GUI events that may be performed in isolation. One hierarchy of the GUI, and the one used in
this research, is obtained by examining modal windows in the GUI, i.e., windows that once invoked,
monopolize the GUI interaction, restricting the focus of the user to a specific range of events within
the window, until the window is explicitly terminated. The language selection window in MS Word
is an example of a modal window. Other windows, also examined, in the GUI are called modeless
windows5 that do not restrict the user’s focus; they merely expand the set of GUI events available

4http://www.acm.org/sigchi/bulletin/1998.2/students.html
5Standard GUI terminology, e.g., see http://java.sun.com/products/jlf/ed2/book/HIG.Dialogs.html.
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to the user. For example, in MS Word, performing the event Replace opens a modeless window
entitled Replace.

At all times during interaction with the GUI, the user interacts with events within a modal
dialog. This modal dialog consists of a modal window X and a set of modeless windows that have
been invoked, either directly or indirectly by X. The modal dialog remains in place until X is
explicitly terminated. Intuitively, the events within the modal dialog form a GUI component,6

Definition: A GUI component C is an ordered pair (RF , UF), where RF represents a modal
window in terms of its events and UF is a set whose elements represent modeless windows
also in terms of their events. Each element of UF is invoked either by an event in UF or
RF . 2

Note that, by definition, events within a component do not interleave with events in other
components without the components being explicitly invoked or terminated.

4.4 EVENT-FLOW GRAPHS

A GUI component may be represented as a flow graph. Intuitively, an event-flow graph (EFG)
represents all possible interactions among the events in a component.

Definition: An event-flow graph for a component C is a 4-tuple <V, E, B, I> where:

1. V is a set of vertices representing all the events in the component. Each v ∈V represents
an event in C.

2. E ⊆ V × V is a set of directed edges between vertices. Event ej follows ei iff ej may
be performed immediately after ei. An edge (vx, vy) ∈ E iff the event represented by vy

follows the event represented by vx.

3. B ⊆ V is a set of vertices representing those events of C that are available to the user
when the component is first invoked.

4. I ⊆ V is the set of events that invoke other components.

2

File
Edit

Help

Open Save

Cut Copy Paste

About Contents

To File, Edit 
and Help

To File, Edit 
and Help

Figure 5: EFG for Part of MS WordPad.

6GUI components should not be confused with GUI widgets that are the building blocks of a GUI.
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Note that an event-flow graph is not a state machine. The nodes represent events in the
component and the edges show the follows relationship. An example of an event-flow graph for a
part of the Main7 component of MS WordPad is shown in Figure 5. At the top are three vertices
(File, Edit, and Help) that represent part of the pull-down menu of MS WordPad. They are
events that are available when the Main component is first invoked. Once File has been performed
in WordPad, any of Edit, Help, Open, and Save events may be performed. Hence there are edges
in the event-flow graph from File to each of these events. Note that Open, About and Contents

are shown with dashed ovals. We use this notation for events that invoke other components, i.e., I
= {Open, About, Contents}. Other events include Save, Cut, Copy, and Paste. After any of these
events is performed in MS WordPad, the user may perform File, Edit, or Help, shown as edges
in the event-flow graph.

Main

FileNew FileOpen Print FormatFont

Properties

FileSave PageSetup ViewOptions

Figure 6: IT for Part of MS WordPad.

4.5 INTEGRATION TREE

Once all the components of the GUI have been represented as event-flow graphs, the remaining
step is to construct an integration tree (IT) to identify interactions among components. These
interactions take the form of invocations, defined formally as:

Definition: Component Cx invokes component Cy iff Cx contains an event ex that invokes Cy.
2

Intuitively, the integration tree shows the invokes relationship among all the components in a
GUI. Formally, an integration tree is defined as:

Definition: An integration tree is a triple < N ,R,B >, where N is the set of components in
the GUI and R ∈ N is a designated component called the Main component. B is the set
of directed edges showing the invokes relation between components, i.e., (Cx, Cy) ∈ B iff Cx

invokes Cy. 2

Note that in general, the relationship among components may be represented by a dag, since
multiple components may invoke a component. However, the dag can be converted into a tree by
copying nodes. The tree model simplifies our algorithms based on tree traversals of the integration
tree. Figure 6 shows an example of an integration tree representing a part of the MS WordPad’s
GUI. The nodes represent the components of the GUI and the edges represent the invokes rela-
tionship between the components. Components’ names indicate their functionality. For example,
FileOpen is the component of WordPad used to open files. The tree in Figure 6 has an edge from
Main to FileOpen showing that Main contains an event, namely Open (see Figure 5) that invokes
FileOpen.

7The component that is presented to the user when the GUI is first invoked.
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4.6 EVENT CLASSIFICATION

Creation of the event-flow graphs and integration tree requires the identification of specific types
of events. The classification of GUI events is as follows:

Restricted-focus events open modal windows. Set Language in Figure 7 is a restricted-focus
event.

English (United States)

OK Cancel Default...

Set Language

Figure 7: The Event Set Language Opens a Modal Window.

Unrestricted-focus events open modeless windows. For example, Replace in Figure 8 is an
unrestricted-focus event.

Edit

Replace

Figure 8: The Event Replace Opens a Modeless Window.

Termination events close modal windows; common examples include Ok and Cancel (Figure 7).

The GUI contains other types of events that do not open or close windows but make other GUI
events available. These events are used to open menus that contain several events.

Menu-open events are used to open menus. They expand the set of GUI events available to
the user. Menu-open events do not interact with the underlying software. Note that the
only difference between menu-open events and unrestricted-focus events is that the latter
open windows that must be explicitly terminated. The most common example of menu-open
events are generated by buttons that open pull-down menus. For example, in Figure 9, File
and SendTo are menu-open events.

Finally, the remaining events in the GUI are used to interact with the underlying software.
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File

Send To

Mail Recipient

Figure 9: Menu-open Events: File and Send To.

System-interaction events interact with the underlying software to perform some action; com-
mon examples include the Copy event used for copying objects to the clipboard (see Figure 10).

8QGHUO\LQJ
6RIWZDUH

Edit

Copy

Figure 10: A System-interaction Event: Copy.

Table 2 lists some of the components of WordPad. Each row represents a component and each
column shows the different types of events available within each component. Main is the component
that is available when WordPad is invoked. Other components’ names indicate their functionality.
For example, FileOpen is the component of WordPad used to open files.

5 MODULES OF DART

Having presented a formal model of the GUI, we now describe each module shown in Figure 4.
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Component
Name

Menu
Open

System
Interaction

Restricted
Focus

Unrestricted
Focus Termination Sum

Main 7 27 19 2 1 56
FileOpen 0 8 0 0 2 10
FileSave 0 8 0 0 2 10
Print 0 9 1 0 2 12
Properties 0 11 0 0 2 13
PageSetup 0 8 1 0 2 11
FormatFont 0 7 0 0 2 9
Sum 7 78 21 2 13 121

Event Type

Table 2: Types of Events in Some Components of MS WordPad.

5.1 GUI RIPPER

The GUI ripper is the first module used by the tester/developer to start the smoke testing pro-
cess. The GUI ripper invokes a process called GUI ripping to automatically obtain the GUI’s
representation. GUI ripping is a dynamic process that is applied to an executing software’s GUI.
Starting from the software’s first window (or set of windows), the GUI is “traversed” by opening
all child windows. All the window’s widgets (building blocks of the GUI, e.g., buttons, text-boxes),
their properties (e.g., background-color, font), and values (e.g., red, Times New Roman, 18pt)
are extracted. Developing this process has several challenges that required us to develop novel
solutions. First, the source code of the software may not always be available; we had to develop
techniques to extract information from the executable files. Second, there are no GUI standards
across different platforms and implementations; we had to extract all the information via low-level
implementation-dependent system calls, which we have found are not always well-documented.
Third, some implementations may provide less information than necessary to perform automated
testing; we had to rely on heuristics and human intervention to determine missing parts. Finally,
the presence of infeasible paths in GUIs prevents full automation. For example, some windows may
be available only after a valid password has been provided. Since the GUI Ripper may not have
access to the password, it may not be able to extract information from such windows. We had to
provide another process and tool support to visually add parts to the extracted GUI model.

The process of GUI Ripping consists of two steps. First, the GUI of the application is auto-
matically traversed and its structure is extracted. Second, since the implementation may be wrong
(after all, that’s what is being tested), the extracted information may be incorrect; the tester visu-
ally inspects the extracted GUI structure and makes corrections so that the structures conform to
software specifications.

We first describe the algorithm used for the GUI Ripper and then discuss the role of the human
tester in inspecting and correcting the extracted structure. We will use a top-down approach to
describe our ripping algorithm. Since we use a depth-first traversal (DFS) of the GUI to extract
its structure, we will start with a generalized DFS algorithm and tailor it for GUIs. We have
instantiated the same algorithm for Windows and Java implementations [35].

5.1.1 GUI TRAVERSAL AND EXTRACTION ALGORITHM

As discussed earlier in Section 4, the GUI of an application is modeled using event-flow graphs and
an integration tree. The GUI ripper uses an intermediate representation to create these models.
This representation is called a GUI forest. Intuitively, a GUI forest represents all the windows in
the GUI and the invokes relationship between them. In most simple GUIs, the forest is a single
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tree. However, since a GUI can have multiple windows (called its top-level windows) when it is
first invoked, a forest structure is a more convenient representation. We obtain this structure by
performing a depth-first traversal of the hierarchical structure of the GUI. We start with a
generalized depth-first search algorithm [17] shown in Figure 11 and adapt it for GUIs.

PROCEDURE DFS-Trees(DFS-Forest F)
R /* Set of all root nodes in the forest F */ 1
forall root ∈ R do 2

DFS-Tree-Recursive(root) 3

PROCEDURE DFS-Tree-Recursive(Node n)
W = get-child-nodes(n) 4
W /* Set of child nodes of the node being visited */ 5
forall w ∈ W do 6

DFS-Tree-Recursive(w) 7

Figure 11: Visiting Each Node in a Forest of Directed Trees.

The procedure DFS-Trees takes as input a forest, represented as a set of trees. It performs a
DFS traversal starting from the root of each tree (lines 2–3). The procedure DFS-Tree-Recursive
visits the tree rooted at node n. A list W of all the child nodes of the node n is obtained (line 4).
Then a recursive visit for the sub-trees rooted at each of the child nodes is performed (line 6–7).

We tailor the algorithm of Figure 11 to handle GUI traversal. The resulting algorithm is
shown in Figure 12. Two procedures DFS-GUI and DFS-GUI-Recursive traverse the GUI of the
application and extract its structure. The function access-top-level-windows (line 1) returns
the list of top-level windows in the application under test (AUT). Recall that top-level windows of
an application are those windows that become visible when the application is first launched. A GUI
tree is constructed for each of the top-level window by invoking the procedure DFS-GUI-Recursive.
The trees are constructed in the set GUI. At the termination of the algorithm, GUI contains the
GUI forest of the application.

Note that lines 4–7 of Figure 11 has been replaced with lines 5–12 in Figure 12. This is
because, for a directed tree, the children of a node can be obtained by invoking the procedure
get-child-nodes. However, for a GUI application, a node is a GUI window. It may contain
several widgets, which in turn, may invoke one or more GUI windows. To obtain a list of all GUI
windows that can be invoked from a GUI window g, we must query each of g’s constituent widgets.

The procedure DFS-GUI-Recursive performs a depth-first search of the GUI tree rooted at the
GUI window g. In line 5 the call to get-widget-list-and-properties returns a list W of the
constituent widgets in the GUI window g. The function identify-executable-widgets in line 6
searches the set W and returns a list of widgets which invoke other GUI windows. This is necessary
because not all of the widgets in W invoke other GUI windows.

A widget e that invokes other GUI windows is executed by execute-widget in line 8. When
executed, e may invoke one or more GUI windows. The function get-invoked-gui-windows in
line 9 returns the list of GUI windows invoked by e. Note that each of the GUI windows c in the
set C are child nodes of the node g in the GUI tree. The GUI tree GUI is updated in line 10. This
is done by inserting each GUI Window c from C as a child node of the GUI window g. Lines 11–12
performs a recursive search of the sub-tree rooted at each of the invoked GUI window c.

When the procedure DFS-GUI-Recursive returns to DFS-GUI, the tree rooted at the top-level
window t is constructed. At the completion of the procedure DFS-GUI, the complete GUI forest of
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the application under test is available in GUI.

GUI /* GUI tree of application under test */
PROCEDURE DFS-GUI(Application A)

T = access-top-level-windows(A) 1
GUI = T 2
/* T is set of top-level windows in the application */
forall t ∈ T do 3

DFS-GUI-Recursive(t) 4

PROCEDURE DFS-GUI-Recursive(Window g)
W = get-widget-list-and-properties(g) 5
/* W is the set of all widgets in the Window */
E = identify-executable-widgets(W) 6
/* From W identify executable widgets */
forall e ∈ E do 7

execute-widget(e) 8
/* Execute the widget e */
C = get-invoked-gui-windows(e) 9
GUI = GUI ∪ g 10
forall c ∈ C do 11

DFS-GUI-Recursive(c) 12

Figure 12: GUI Traversing and Extracting the GUI Representation of an Application.

The algorithm described in Figure 12 is general and can be applied to any GUI described in
Section 4. In earlier work, we have described how the high-level functions used in the algorithm
may be implemented using Windows and Java API [35].

5.1.2 MANUAL INSPECTION

The automated ripping process is not perfect. Different idiosyncrasies of specific platforms some-
times result in missing windows, widgets, and properties. For example, we cannot distinguish
between modal and modeless windows in MS Windows; we cannot extract the structures of the
Print dialog in Java. Such platform specific differences require human intervention. We provide
tools to edit and view the extracted information. We also provide a process called “spy” using
which a test designer can manually interact with the AUT, open the window that was missed by
the ripper, and add it to the GUI forest at an appropriate location.

5.1.3 GENERATING THE EVENT-FLOW GRAPH AND INTEGRATION TREE

During the traversal of the GUI, we also determine the event type (discussed in Section 4) by
using low-level system calls. Once this information is available, we create the event-flow graphs
and integration tree relatively easily using algorithms described in [31].

5.2 TEST CASE GENERATOR

Our concepts of events, objects and properties can be used to formally define a GUI test case:
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Definition: A GUI test case T is a pair < S0, e1; e2; . . .; en >, consisting of a state S0 ∈ SI ,
called the initial state for T, and a legal event sequence e1; e2; . . . ; en. 2

We know from Section 3 that event-flow graphs and the integration tree represent legal sequences
of events that can be executed on the GUI. To generate test cases, we start from a known initial
state S0 and use a graph traversal algorithm, enumerating the nodes during the traversal, on the
event-flow graphs. Sequences of events e1; e2; . . . ; en are generated as output and serve as a GUI
test case < S0, e1; e2; . . .; en >.

Note that all test cases of length 1 and 2 execute all GUI events and all pairs of events. We
recommend that the smoke test suite contain at least these test cases, although the final choice of
smoke tests lies with the developer.

5.3 TEST ORACLE GENERATOR

Test oracles are used to determine whether or not the software executed correctly during testing.
They determine whether or not the output from the software is equivalent to the expected output.
In GUIs, the expected output includes screen snapshots and positions and titles of windows. Our
model of the GUI in terms of objects/properties can be used to represent the expected state of a
GUI after the execution of an event. For any test case < S0, e1; e2; . . . en >, the sequence of states
S1;S2; . . . Sn can be computed by extracting the complete (or partial) state of the GUI after each
event.

There are several different ways to compute the expected state (oracle information). We now
outline three of them:

1. Using capture/replay tools is the most commonly used method to obtain the oracle in-
formation [26]. Capture/replay tools are semi-automated tools used to record and store a
tester’s manual interaction with the GUI with the goal of replaying it with different data
and observing the software’s output. The key idea of using these tools is that testers man-
ually select some widgets and some of their properties that they are interested in storing
during a capture session. This partial state is used as oracle information during replay. Any
mismatches are reported as possible defects.

2. We have used formal specifications in earlier work [37] to automatically derive oracle
information. These specifications are in the form of pre/postconditions for each GUI event.

3. For the smoke tester, we have used a third approach that we call execution extraction.
During this process, a test case is executed on an existing, presumably correct version of
the software and its state is extracted and stored as oracle information. We have employed
platform-specific technology such as Java API8, Windows API9, and MSAA10 to obtain this
information.

Depending on the resources available, DART can collect and compare oracle information at the
following different levels (LOI) of (decreasing) cost and accuracy.11 Detailed comparison between
these levels is given in Section 6.

8java.sun.com
9msdn.microsoft.com/library/default.asp?url=/library/en-us/winprog/winprog/windows api reference.asp

10msdn.microsoft.com/library/default.asp?url=/library/en-us/msaa/msaaccrf 87ja.asp
11The need for these levels is explained in detail in earlier reported work [37].
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Complete: LOI1 = {(w, p, o), ∀w ∈ Windows, ∀o = objects ∈ w, ∀p = properties ∈ o}, i.e., the
set containing triples of all the properties of all the objects of all the windows in the GUI.

Complete visible: LOI2 = {(w, p, o), ∀(w ∈ Windows)&(w is visible), ∀o = objects ∈ w, ∀p = properties ∈ o},
i.e., the set containing triples of all the properties of all the objects of all the visible windows
in the GUI.

Active window: LOI3 = {(w, p, o), (w = active Window), ∀o = objects ∈ w, ∀p = properties ∈ o},
i.e., the set containing triples of all the properties of all the objects of the active window in
the GUI.

Widget: LOI4 = {(w, p, o), (w = active Window), o = current object, ∀p = properties ∈ o}, i.e.,
the set containing triples of all the properties of the object in question in the active window.

In practice, a combination of the above may be generated for a given test case.

5.4 COVERAGE EVALUATOR

Although smoke tests are not meant to be exhaustive, we have found that coverage evaluation
serves as a useful guide to additional testing, whether it is done for the next build or for future
comprehensive testing. Also, our use of the matrix M ′ to specify test requirements is an intuitive
way for the developer to specify smoke testing requirements and analyze testing results. In DART,
two different types of coverage are evaluated – code coverage and event coverage. Code based
coverage is the conventional statement/method coverage that requires the code to be instrumented
by a code instrumenter. In addition, we employ a new class of coverage criteria called event-based
coverage criteria to determine the adequacy of tested event sequences. The key idea is to define
the coverage of a test suite in terms of GUI events and their interactions.

An important contribution of event-based coverage is the ability to intuitively express GUI
testing requirements and examine test adequacy via a matrix. The entries of the matrix can be
interpreted as follows:

Event Coverage requires that individual events in the GUI be exercised. These individual events
correspond to length 1 event-sequences in the GUI. Matrixj,1, where j ∈ S, represents the
number of individual events covered in each component.

Event-interaction Coverage requires that all the edges of the event-flow graph be covered by at
least one test case. Each edge is effectively captured as a length 2 event-sequence. Matrixj,2,
where j ∈ S, represents the number of branches covered in each component j.

Length-n Event-sequence Coverage is available directly from Matrix. Each column i of Ma-
trix represents the number of length-i event-sequences in the GUI.

Details of algorithms to compute the matrix are presented in earlier reported work [40]. We
have already shown examples of matrices in Figures 2 and 3.

5.5 EVENT INSTRUMENTER

The coverage evaluator requires that all event sequences that are executed on the GUI be collected.
We have developed an event-based instrumenter based on our previous work [35]. We now describe
the design of the instrumenter.
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Source Code--Event Handler
File file = new File(“myFile”);
public void actionPerformed(ActionEvent evt) {

doSave(file);
} (a)

Profiler-- Register Event Listener
saveButton.addActionListener(

new myActionListenerforButton());
class myActionListenerforButton implements 

ActionListener {
public void actionPerformed(ActionEvent evt) {

Button_Action_Handler(evt);
}

} (b)

Figure 13: Event-based Instrumenter.

Recall that GUIs have widgets such as Buttons, Menus, TextFields and Labels that are the
building blocks of a GUI. Some of these widgets (e.g., Buttons, Menus and TextFields) allow user
interactions whereas other widgets are static (e.g., Labels used to display text). Users interact with
the widgets by performing events. For example typing a character or pressing a mouse button.

Each widget that handles user events has event listeners attached to it. Event listeners are
invoked when events are performed on the widgets. For example, a Mouse-Over event listener
for a toolbar button may display a tool-tip. In Figure 13(a) actionPerformed is a method of
ActionListener event listener that handles events on the Save menu-item. Note that multiple event
listeners can be attached to a widget. For example, a TextField may have a key event listener and
a mouse event listener attached to it.

The key idea of our instrumenter is to detect the existing listeners and attach our own listeners.
Hence, whenever a user performs an event on a particular widget, our listener gets a message.
The choice of event listeners depends on the type of the widget. For example ActionListener is a
listener that is attached to widgets such as Buttons and Menus, and ItemListener is attached to
Checkboxes.

We have implemented the instrumenter in Java. It is implemented as a separate Thread of
execution and is activated when the application is invoked. In a Java application, all GUI windows
and widgets are instances of Java classes. They are analyzed using Java APIs. For example, API
java.awt.Frame.getFrames() is used to identify all visible GUI windows of the application. The
GUI windows are analyzed, using methods getComponents of class Container and getJMenuBar()
of class JFrame, to extract widgets.

The next step is to analyze the extracted widgets to identify the existing listeners and attach
our own listener. For example in Figure 13(b), myActionListenerforButton() is the listener that
the profiler attaches to the Save menu-item, at runtime. Hence, whenever a user performs an event
or action on Save, the profiler gets a message of the event in addition to the default action that
Save event performs. The profiler records all this event information.
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5.6 TEST EXECUTOR

The test executor is capable of executing an entire test suite automatically on the AUT. It performs
all the events in each test case and compares the actual output with the expected output. Events
are triggered on the AUT using the native OS API. For example, the windows API SendMessage
is used for windows application and Java API doClick for Java application.

The remaining question, then, is what properties should be compared. There are several possible
answers to this question, and the decision amongst them establishes the level of testing (LOT1-
LOT4) performed. These levels of testing correspond directly to the oracle information that was
collected, i.e., complete, complete-visible, active-window, and widget. During test execution, de-
pending on the resources available, the test designer may choose to employ partial oracle informa-
tion, even though more detailed information may be available. For example, the test designer may
choose to compare only the properties of the current widget even though the complete property
set for all windows may be available. In fact, the test designer has the ability to execute at least
10 different such combinations. Figure 14 shows all these combinations, marked with an “x”. Note
that information cannot be used unless it has been generated, i.e., if only LOI4 is available, then
LOT1-LOT3 cannot be performed. We compare these combinations in an experiment in the next
section.

Complete
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Complete
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x x
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Figure 14: Possibilities Available to the Test Designer for Level of Detail of Oracle Information.

6 EXPERIMENTS

Having presented the design of DART, we now examine its practicality using actual test runs,
report execution time and space requirements, and the code covered by the smoke test cases.

OPEN QUESTIONS: We identified the following questions that needed to be answered to
show the practicality of the process and to explore the cost of using different levels of testing.

1. How much time does DART take for complete smoke testing?

2. What is the additional cost (in terms of time and space) of generating detailed test oracle
information?

3. What is the additional cost of test execution when using detailed test oracle information?

4. What is the code coverage of the smoke test cases?

To answer our questions we needed to measure the cost of the overall smoke testing process
while controlling the details of the test oracle and the different levels of testing.
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SUBJECT APPLICATIONS: For our study, we used six Java programs as our subjects.
These programs were developed as part of an OpenSource office suite software.12 Table 3 describes
these subjects, showing the number of windows, lines of code, number of classes and components.
Note that these are not toy programs. In all, they contain more than 30 KLOC, with at least two
programs almost 10 KLOC.

Subjects Windows LOC Classes Components
TerpPaint 8 9287 42 7
TerpSpreadsheet 6 9964 25 5
TerpPad 8 1747 9 5
TerpCalc 3 4356 9 3
TerpDraw 5 4769 4 3
TerpManager 1 1452 3 1

TOTAL 31 31575 92 24

Table 3: Our Subject Applications.

6.1 EXPERIMENTAL DESIGN

Variables: In the experiment, we manipulated three independent variables:

1. P: the subject programs (6 programs),

2. LOI: level of oracle information detail (4 levels: complete, complete visible, active window,
widget),

3. LOT: levels of testing (4 levels). Note that for a given test run, LOI ≥ LOT , i.e., the
information must be generated before it can be used.

On each run, with program P, levels LOI, levels LOT, we “ripped” the GUI, generated smoke
test cases and measured the total generation time and space required. The exact number of test
cases that we generated and their lengths are shown for each application in Figures 15 through 20.
Note that the maximum number of test cases were generated for TerpPaint (Figure 15), which has
a complex user interface, especially the drawing toolbars. Since we wanted to test all interactions
between drawing tools, we generated a large number of length 2 test cases; no length 3 test cases
were generated. TerpPad (Figure 16) and TerpSpreadSheet (Figure 17) were less complex; we chose
to generate approximately 5000 test cases for each. TerpCalc (Figure 18) has only one window with
many buttons; we again chose to test a large number of interactions by generating a large number
of length 2 test cases. TerpDraw (Figure 19) and TerpManager (Figure 20) have simple GUIs, with
TerpManager having only one modal window. We generated less than 3000 test cases for each of
these applications. We then (code+event) instrumented each application and executed all these
test cases for each of the 10 possible LOI and LOT combinations (Figure 14).

6.1.1 THREATS TO VALIDITY

Threats to internal validity are influences that can affect the dependent variables without the
researchers knowledge. Our greatest concerns are test case composition and platform-related effects
that can bias our results. We have noticed that some events, e.g., file operations, take longer than

12The software can be downloaded from http://www.cs.umd.edu/users/atif/TerpOffice
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Matrix M’
Component Name 1 2 3
Main 81 6500 0
Open_1 16 225 0
Save_2 19 324 0
Choose a file to 
import…_3

19 324 0

rotate_4 8 56 0
stretch_5 6 30 0
Attribute_6 9 72 0
Choose 
Background 
Color_7

28 729 0

Total per Length 186 8260 0
Total 8446

     Test Case Length
TerpPaint

Figure 15: Number of Smoke Test Cases for TerpPaint.

Matrix M’
Component Name 1 2 3
Main 12 148 100
Open_1 18 289 800
Save_2 19 324 800
Save_3 19 324 800
Go To Line_6 3 4 4
Change Font_7 21 400 1000
Encrypte/Decrypt
_9

3 4 4

Total per Length 95 1493 3508
Total 5096

TerpPad

     Test Case Length

Figure 16: Number of Smoke Test Cases for TerpPad.

Matrix M’
Component Name 1 2 3
Main 28 780 500
Open_1 19 324 100
Save_2 19 324 100
Find_3 5 16 20
Format Cells_4 14 156 100
Background 
Color_5

28 729 500

Font Color_6 28 729 500
Column_Width_7 3 4 4
Row Height_8 3 4 4
Total per Length 147 3066 1828
Total 5041

     Test Case Length
TerpSpreadSheet

Figure 17: Number of Smoke Test Cases for TerpSpreadSheet.
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Matrix M’
Component Name 1 2 3
Main 77 5865 0
Total per Length 77 5865 0
Total 5942

TerpCalc

     Test Case Length

Figure 18: Number of Smoke Test Cases for TerpCalc.

Matrix M’
Component Name 1 2 3
Main 8 70 200
Open_1 19 324 1000
Save_2 19 324 1000
Total per Length 46 718 2200
Total 2964

TerpDraw

     Test Case Length

Figure 19: Number of Smoke Test Cases for TerpDraw.

Matrix M’
Component Name 1 2 3
Main 27 702 1500
Total per Length 27 702 1500
Total 2229

     Test Case Length
TerpManager

Figure 20: Number of Smoke Test Cases for TerpManager.
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others (e.g., events that open menus); hence a short test case with a file event may take more time
than a long test case without a file event. Also, performance of the Java runtime engine varies
considerably during test execution; the overall system slows down as more test cases are executed.
The performance improves once the garbage collector starts. To minimize the effect of this threat
we executed each test independently, completely restarting the JVM each time.

Threats to external validity are conditions that limit our ability to generalize the results
of our experiment. We consider at least one source of such threats: artifact representativeness,
which is a threat when the subject programs are not representative of programs found in general.
There are several such threats in this experiment. All programs are written in Java and they were
developed by students. We may observe different results for C/C++ programs written for industry
use. As we collect other programs, we will be able to reduce these problems.

Threats to construct validity arise when measurement instruments do not adequately cap-
ture the concepts they are supposed to measure. For example, in this experiment our measure of
cost is CPU time. Since GUI programs are often multi-threaded, and interact with the windowing
system’s manager, our experience has shown that the execution time varies from one run to an-
other. One way to minimize the effect of such variations is to run the experiments multiple number
of times and report average time.

The results of these experiments should be interpreted keeping in mind the above threats to
validity.

6.2 RESULTS

6.2.1 SPACE REQUIREMENTS

We expected DART to have significant space requirements, since it requires the generation of the
GUI representation, test cases, oracle information, and test results. Figure 21 shows the space
requirements for the six subject programs. LOI0 represents test cases that contain no oracle
information, i.e., the LOI0 column shows the space required to store the GUI representation and
test cases. We had expected that the space requirements would increase as the level of oracle
detail increases. Figure 21 shows that the space requirements grow very rapidly when using a
detailed level of test oracle. Note that we are using a logarithmic scale to improve readability. The
space demands are not so serious for our smaller subject programs. However, they become very
high for large programs (TerpPaint and TerpDraw) that contain a large number of windows. The
space requirements also depend on the number of smoke test cases that we generated. Recall that
we generated a large number of test cases for TerpPaint, TerpCalc, and TerpSpreadSheet; they
required the maximum disk space. On the other hand, even though a large number of test cases
were generated for TerpPad, it required less space because of the small number of widgets and
objects in its GUI.

Even though some of our subject applications required more space than we expected, given
the large sizes and low cost of today’s hard-disks, we feel that this space requirement (500MB for
TerpPaint) is reasonable. We also note that no attempt was made on our part to save space, i.e.,
all the files used for the representation were human-readable in XML. We could easily get upto
90% compression if we used a more efficient binary encoding.

6.2.2 TIME REQUIREMENTS

The time required for the overall DART process includes SETUP that contains application ripping,
test case, and test oracle generation, followed by the ITERATIVE phase. In earlier work [35], we
have demonstrated that ripping and test case generation are very fast, requiring a few minutes per
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Figure 21: Space Requirements of our Subject Applications for Different Level of Detail of Oracle
Information.

application. Test oracle generation requires that all test cases be executed and oracle information
collected. The iterative process time is also dominated by the test case execution time. We therefore
measured test case execution time for all LOIs and LOTs. All times are reported for a 2.2 GHz
Pentium 4 machine with 256 MB of RAM.

The results of this experiment are shown in Figures 22 through 27. The y-axis shows the time
in seconds and the x-axis shows the LOI. In each figure, we have 10 data points, corresponding to
the “×” in Figure 14, grouped into 4 curves, one for each LOT. For example, the total time taken
to execute all 8446 test cases on TerpPaint with LOT 4 and LOI=Widget was 147000 seconds.
The time increased close to 185000 for LOT1 and LOI=“All Windows”. With the exception of
TerpPaint, all our applications could be tested in one night. Examination of TerpPaint revealed
that 3-4 seconds per test case were lost because of a splashscreen. We also noted that TerpPad
exhibited different behavior with LOI=“Widget” taking much longer than the other (seemingly
more expensive) LOIs. We attribute this result to the additional algorithms implemented to traverse
the TerpPad GUI and extract individual widgets.

Our results show that the smoke testing process is practical, in that it can be performed in one
night. If developers want to run a large number of longer smoke test cases (i.e., those that require
more than one night), we also note that the test cases are completely independent of one another
and could easily be distributed across several machines, making the smoke testing process even
faster. The coverage and bug reports can be merged to provide feedback to developers.

6.2.3 CODE COVERAGE

Since our smoke testing process is iterative, we have found that examining the code coverage of the
smoke test cases helps to improve the overall testing process. The tester can focus on missed parts
by either generating additional GUI smoke tests that can be run during the next smoke testing
cycle or create non-GUI tests using tools such as JUnit. To observe the code coverage of our smoke
test cases, we instrumented the applications before running all our smoke test cases. We recorded
the statements that were executed for each user-implemented class during test case execution. The
results of our experiment are shown in Tables 4 through 9. The first column in these tables shows

25



7000

27000

47000

67000

87000

107000

127000

147000

167000

187000

Widget Active Window Visible Windows All Windows (Visible and
Invisible)

Level of Oracle Information (LOI)

T
im

e 
fo

r 
84

46
 te

st
ca

se
s (

se
c.

)

LOT4 LOT3 LOT2 LOT1

Figure 22: Total Execution Times for TerpPaint for Different LOI and LOT.
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Figure 23: Total Execution Times for TerpPad for Different LOI and LOT.
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Figure 24: Total Execution Times for TerpCalc for Different LOI and LOT.
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Figure 25: Total Execution Times for TerpSpreadSheet for Different LOI and LOT.
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Figure 26: Total Execution Times for TerpDraw for Different LOI and LOT.
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Figure 27: Total Execution Times for TerpManager for Different LOI and LOT.

28



names of individual classes, stored in different files. Columns 2, 3, and 4 show the number of
statements covered by test cases of length 1, 2 and 3 respectively. The last column shows the total
number of statements instrumented. Note that statements do not correspond to lines in the source
files; these are source statements as identified by a compiler’s syntax analyzer.

From the tables, we noted that some classes were not at all covered by the smoke tests. We
identified two reasons for this result. First, our smoke tests were inadequate, which we easily fixed
by specifying additional test cases in the matrix M ′. Second, we noted that some parts of the
code could never be executed by the smoke test cases because it required setting up execution
context using event sequences longer than 3. Developers will need to add specific test cases to
cover these parts of the code. We did, however, observe that all the GUI-related classes, i.e.,
Frame2.java (Table 4), Faint.java (Table 5), DrawingArea.java (Table 6), TwoMenus.java (Table 7),
ChangeFontDialog.java (Table 7), FormatMenuOp.java (Table 8), TerpOffice.java (Table 9), and
TerpOfficeExplorer.java (Table 9) were covered by the smoke test cases. Note that these GUI-
related classes are difficult to cover using other code-based test cases since they require creating
instances of GUI widgets and executing events on them.

Class Name 1 2 3
AboutInfoBox.java 16 16 0 39
BigNumber.java 110 173 0 231
BrowserControl.java 0 0 0 24
Frame2.java 1328 1925 0 3026
Graph.java 51 51 0 286
Grapher.java 85 85 0 347
Gui_Front_End.java 23 23 0 44
Mystring.java 0 2 0 8
StandardFunctions.java 0 0 0 10
StatDat.java 0 6 0 20
StatFrame.java 65 73 0 189
UMClipObj.java 0 0 0 21
backend.java 89 144 0 216
convToPostfix.java 0 0 0 152
splash.java 0 0 0 55

TerpCalc
Test Case Length Total 

Instrumented
Lines

Table 4: Code Coverage for TerpCalc.

From this result, we observed that the coverage reports from the smoke tests were useful to
guide the overall smoke testing process. We also discovered that DART and conventional tools
such as JUnit have complementary strengths: DART is better-suited for GUI code whereas JUnit
is better for testing the underlying “business logic” code.

7 RELATED WORK

Although there is no prior work that directly addresses the research presented in this paper, several
researchers and practitioners have discussed concepts that are relevant to its specific parts. We
discuss the following broad categories: daily builds, tool support, eXtreme Programming, and GUI
testing tools.
Daily Builds: Daily building and smoke testing has been used for a number of large-scale projects,
both commercial and OpenSource. For example, Microsoft used daily builds extensively for the
development of its popular Windows NT operating system [30]. By the time it was released,
Windows NT 3.0 consisted of 5.6 million lines of code spread across 40,000 source files. The NT
team attributed much of its success on that huge project to their daily builds.
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Class Name 1 2 3
AutoBackup.java 7 7 0 13
Faint.java 1678 1937 0 2963
FaintContainer.java 6 6 0 14
FaintFileFilter.java 38 38 0 60
Fill.java 0 0 0 37
HTMLDisplay.java 0 0 0 13
HelpWindow.java 0 0 0 183
ImageUtilities.java 0 0 0 15
ScrollablePicture.java 7 7 0 26
SlideShow.java 0 6 0 119
Text.java 0 0 0 177
UMClipObj.java 0 0 0 25
about.java 0 0 0 3
attributes.java 187 240 0 254
brushTool.java 6 6 0 126
bucketTool.java 2 2 0 31
canvas_size.java 0 111 0 223
converter.java 0 0 0 309
curveTool.java 3 7 0 116
ellipseTool.java 0 2 0 54
eraserTool.java 3 3 0 55
letterTool.java 3 3 0 10
lineTool.java 3 5 0 37
main_canvas.java 83 110 0 175
medicineTool.java 2 2 0 15
pencilTool.java 2 2 0 46
polygonTool.java 2 6 0 81
printer.java 2 2 0 69
rectTool.java 0 2 0 72
rotate.java 125 145 0 162
roundedRectTool.java 0 2 0 69
saveChanges.java 0 0 0 74
selectTool.java 3 10 0 270
selectallTool.java 3 29 0 272
splash.java 0 0 0 55
sprayTool.java 4 4 0 43
stretch.java 138 138 0 168
viewBitmap.java 0 16 0 25
zoomTool.java 3 3 0 18

TerpPaint
Test Case Length Total

Instrumented
Lines

Table 5: Code Coverage for TerpPaint.

Class Name 1 2 3
DrawingArea.java 155 268 268 2030
OODFilter.java 5 5 5 8
ObjectOrientedDrawer.java 20 24 24 32
Toolbar.java 71 71 71 128
converter.java 0 0 0 309

TerpDraw
Test Case Length Total 

Instrumented
Lines

Table 6: Code Coverage for TerpDraw.
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Class Name 1 2 3
ChangeFontDialog.java 157 157 157 188
EncryptDialog.java 30 30 30 34
FileManager.java 0 0 0 77
FindDialog.java 0 49 49 54
FontMacros.java 91 91 91 187
GoToDialog.java 34 34 34 36
HTMLDisplay.java 0 0 0 22
OpenList.java 50 50 50 75
PageCounter.java 10 12 10 12
RC4.java 21 21 21 33
ReplaceDialog.java 0 48 48 58
SplashWindow.java 0 0 0 29
StatusBar.java 18 43 18 92
TwoContentArea.java 135 156 202 532
TwoMenus.java 327 346 365 477
TwoPad.java 54 54 54 109
TwoStyledDocument.java 2 2 2 40
WordCount.java 0 66 66 74

TerpPad
Test Case Length Total 

Instrumented
Lines

Table 7: Code Coverage for TerpPad.

Class Name 1 2 3
CellPoint.java 7 15 17 35
CellRange.java 17 24 33 96
ClearUndo.java 0 0 13 23
Config.java 32 32 32 77
CopyPaste.java 0 0 20 27
CutUndo.java 12 12 12 22
Debug.java 4 6 6 7
EditMenuOp.java 82 137 146 250
FileHistory.java 21 21 21 59
FileMenuOp.java 42 54 54 196
FindDialog.java 24 24 24 28
FormatCellsTabs.java 150 152 154 173
FormatMenuOp.java 233 272 293 566
Formula.java 11 137 137 415
Function.java 0 21 21 127
FunctionsMenuOp.java 4 109 109 178
GraphsMenuOp.java 4 17 17 119
HTMLDisplay.java 0 0 0 16
HelpMenuOp.java 3 3 3 8
LinesBorder.java 41 64 64 95
Node.java 13 42 42 120
NumberField.java 21 21 21 57
ParserException.java 3 5 5 12
PasteUndo.java 0 23 23 39
SharpDialog.java 37 37 37 92
Splash.java 0 0 0 31
UMCell.java 69 76 76 169
UMCellEditor.java 5 5 5 50
UMCellRenderer.java 55 55 55 60
UMClipObj.java 11 16 16 23
UMDialog.java 40 42 42 92
UMOptionPane.java 33 31 33 63
UMSpreadSheet.java 476 506 514 660
UMTableModel.java 210 334 424 752

TerpSpreadSheet
Test Case Length Total

Instrumented
Lines

Table 8: Code Coverage for TerpSpreadSheet.
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Class Name 1 2 3
ClipboardViewer.java 51 51 51 64
ImageFileView.java 22 22 22 34
IntegratorClipboardObject.java 4 17 17 78
TerpManagerSplash.java 0 0 0 26
TerpOffice.java 179 179 188 324
TerpOfficeExplorer.java 271 298 311 686
TerpOfficeFileFilter.java 37 37 37 60
fileProperties.java 0 0 0 177

TerpManager
Test Case Length Total 

Instrumented
Lines

Table 9: Code Coverage for TerpManager.

The GNU project (http://www.gnu.org) continues to use daily builds for most of its projects.
For example, during the development of Ghostscript software daily builds were used widely. The
steps in the daily builds involved: preparing the source code by compiling the source, executing
the smoke tests and updating the CVS and make the source archive. Similarly, WINE [14], Mozilla
[10], AceDB [10] and openwebmail [11] use nightly/daily builds.
Tool Support: There are number of tools available that help performing smoke testing of software
applications. For example, CruiseControl [3] is a framework for a continuous build process. It
includes, plug-ins for email notification, Ant, and various source control tools. A web interface
is provided to view the details of the current and previous builds. The continuous build process
allows each developer to integrate daily thus reducing integration problems. IncrediBuild [6] is a
tool that speeds up compilation by performing distributed compilation of source by distributing the
compilation task across available machines in an organizational network. It has been found effective
for nightly/daily builds of Miscrosoft Visual C++ (6.0, 7.0 and 7.1) applications. Similarly, other
tools such as it Daily Build [12] and Visual Build [8] support daily builds. While there are many
projects that use daily builds, there is no literature on techniques and tools for daily builds and
smoke tests of GUI software.
eXtreme Programming: A closely related paper discusses automating acceptance tests for GUIs
in an extreme programming environment [19] in which frequent testing of the software is imperative
to the overall development process. Programmers create tests to validate the functionality of the
software and whether the software conforms to the customer’s requirements. These tests are run
often, at least once a day [19, 15]. Hence, there is a need to automate the development of re-usable
and robust tests. One approach is to implement a framework-based test design [19, 24]; scripts
that control the function call are created manually using a capture/replay tool. Another popular
method for testing of GUIs in XP environments is the use of xUnit [5] frameworks, such as jUnit
and jfcUnit. GUI widgets are accessed from the GUI and tested for existence and functionality [23].
Even with limited automation, the tests have to be written manually and testing GUI functionality
becomes complex. Furthermore, these tests are intensely data-driven and very fragile. A variable
name change is all that is necessary to break the test.
GUI Testing Tools: There are number of work done in automation of GUI testing. Most of
the techniques use Capture/Replay tools for testing GUIs. These tools operate in two modes
Record and Playback mode. In the Record mode, tools such as CAPBAK and TestWorks [2] record
mouse coordinates of the user actions as test cases. And in the Playback mode the recorded test
cases are replayed automatically. The problem with such tools is that test cases might break even
with slightest change in the layout of GUI. Tools such as Winrunner [9], Abbot [1], and Rational
Robot [13] enable capturing GUI widgets rather than coordinates thereby solving the problem. The
testing technique followed by Rational Robot for GUI’s of web applications allows: recording and

32



replaying test scripts that recognize the objects in various applications; tracking and reporting
information about the quality assurance testing process; detection and repairing problems in the
elements of web site; viewing and editing test scripts. Although it allows automation, significant
effort is involved in creating test scripts, detecting failures, and editing the tests to make in work
on the modified version of software. Even with this capabilities these tools does not support smoke
testing of GUI software. Our DART framework enables smoke testing of GUIs by automatic test
case generation and automated test oracle to determine failures.

8 CONCLUSIONS AND FUTURE WORK

Today’s large software systems are often maintained by several programmers, who may be geo-
graphically distributed. To ensure quality of these systems, nightly builds and smoke tests have
become widespread as they often reveal bugs early in the software maintenance process. Although
successful for conventional software, smoke tests are difficult to develop and automatically rerun
for software that has a GUI. In this paper, we presented a technique for smoke testing software
that has a GUI. We empirically demonstrated that the technique is practical and may be used for
smoke testing nightly/daily builds of GUI software.

We have implemented our technique in a system called DART. We described the primary
modules of DART that automate the entire smoke testing process. Even though we present DART
as a smoke testing tool, it is efficient enough to be used for any type of frequent GUI re-testing.
We also note that the GUI smoke tests are not meant to replace other code-based smoke tests.
DART is a valuable tool to add to the tool-box of the tester/developer.

In the future, we will study the effectiveness of the DART process by analyzing the number
of faults detected. We will also integrate DART in a higher level process that involves executing
other types (non-GUI) of smoke tests on the software. We will also investigate the application of
DART to other software systems that take events as input. One example of such systems are web
applications.
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