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The widespread recognition of the usefulness of graphical user interfaces (GUIs)

has established their importance as critical components of today’s software. Although

the use of GUIs continues to grow, GUI testing has remained a neglected research area.

Since GUIs have characteristics that are different from those of conventional software, such

as user events for input and graphical output, techniques developed to test conventional

software cannot be directly applied to test GUIs. This thesis develops a unified solution

to the GUI testing problem with the particular goals of automation and integration of

tools and techniques used in various phases of GUI testing. These goals are accomplished

by developing a GUI testing framework with a GUI model as its central component. For

efficiency and scalability, a GUI is represented as a hierarchy of components, each used as

a basic unit of testing. The framework also includes a test coverage evaluator, test case

generator, test oracle, test executor, and regression tester. The test coverage evaluator

employs hierarchical, event-based coverage criteria to automatically specify what to test in

a GUI and to determine whether the test suite has adequately tested the GUI. The test case

generator employs plan generation techniques from artificial intelligence to automatically

generate a test suite. A test executor automatically executes all the test cases on the GUI.

As test cases are being executed, a test oracle automatically determines the correctness of

the GUI. The test oracle employs a model of the expected state of the GUI in terms of its

constituent objects and their properties. After changes are made to a GUI, a regression

tester partitions the original GUI test suite into valid test cases that represent correct

input/output for the modified GUI and invalid test cases that no longer represent correct

input/output. The regression tester employs a new technique to reuse some of the invalid

test cases by repairing them. A cursory exploration of extending the framework to handle

the new testing requirements of web-user interfaces (WUIs) is also done. The framework
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has been implemented and experiments have demonstrated that the developed techniques

are both practical and useful.
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Chapter 1

Introduction

Graphical user interfaces (GUIs) have become nearly ubiquitous as a means of

interacting with software systems. GUIs make software easy to use and, recognizing the im-

portance of user-friendly software, today’s software developers are dedicating an increasingly

large portion of software code to implementing GUIs. A GUI is the front-end to underly-

ing code (Figure 1.1), and a software user interacts with the software using the GUI. The

user performs events such as mouse movements, object manipulation, menu selections, and

opening and closing of windows. The GUI, in turn, interacts with the underlying code

through messages and/or method calls. GUIs constitute as much as 45-60% of the total

software code [49, 54, 56, 57, 52]. The widespread use of GUIs is leading to the construction

of increasingly complex GUIs. Their use in safety-critical systems is also growing [92].

Although the use of GUIs continues to grow, GUI testing has remained a neglected

research area. Adequately testing a GUI is required to help ensure the safety, robustness

and usability of an entire software system [55]. Testing is, in general, labor and resource

intensive, accounting for 50-60% of the total cost of software development [30, 64]. GUI

testing is especially difficult today because GUIs have characteristics different from those

of traditional software, and thus, techniques typically applied to software testing are not

adequate. Current GUI testing techniques are incomplete, ad-hoc, and largely manual.

When testing the underlying code, the code for the GUI may also be tested.

However, it is important to separate the testing of the GUI from that of the underlying

code. Multiple GUIs and multiple versions of GUIs are increasingly being used as front-ends

to the same underlying code. The increased use of mobile devices interacting with software

places limitations on the capabilities of GUIs that are used with some of these devices

[44]. Device restrictions such as display resolution may require that different interfaces be

implemented to access the same underlying application, such as a web application. Also,

security restrictions may require that restricted views of the same software be provided

to users with different security privileges. For example, the GUI for the MS Windows

1
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Figure 1.1: The GUI is the Front-end to Underlying Code.

2000 control panel of a system administrator has many more features than that of an

ordinary user. Finally, the increased use of customizable interfaces provides different views

to the same underlying code. A common example is customizable tool-bars available in

most of today’s software. By separately testing the underlying code (employing code-based

testing techniques) and separately testing each GUI (employing GUI testing techniques),

the final software can be composed by plugging-in the appropriate GUI as demanded by

the application.

The focus of this research is to develop techniques and tools to test GUIs. Before

designing such tools, it is important to describe the GUI testing process. The next section

presents the steps that a test designer must perform for GUI testing.

1.1 GUI Testing Steps

Although GUIs have characteristics, such as user events for input and graphical

output, that are different from those of conventional software and thus require the devel-
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opment of different testing techniques, the overall process of testing GUIs is similar to that

of testing conventional software. The testing steps for conventional software, extended for

GUIs, follow:

• Determine what to test

During this first step of testing, coverage criteria, which are sets of rules used to

determine what to test in a software, are employed. In GUIs, a coverage criterion

may require that each event be executed to determine whether it behaves correctly.

• Generate test input

The test input is an important part of the test case and is constructed from the

software’s specifications and/or from the structure of the software. For GUIs, the test

input consists of events such as mouse clicks, menu selections, and object manipulation

actions.

• Generate expected output

Test oracles generate the expected output, which is used to determine whether or

not the software executed correctly during testing. A test oracle is a mechanism that

determines whether or not the output from the software is equivalent to the expected

output. In GUIs, the expected output includes screen snapshots and positions and

titles of windows.

• Execute test cases and verify output

Test cases are executed on the software and its output is compared with the expected

output. Execution of the GUI’s test case is done by performing all the input events

specified in the test case and comparing the GUI’s output to the expected output as

given by the test oracles.

• Determine if the GUI was adequately tested

Once all the test cases have been executed on the implemented software, the software

is analyzed to check which of its parts were actually tested. In GUIs, such an analysis

is needed to identify the events and the resulting GUI states that were tested and

those that were missed. Note that this step is important because it may not always

be possible to test in a GUI implementation what is required by the coverage criteria.

After testing, problems are identified in the software and corrected. Modifications

then lead to regression testing, i.e., re-testing of the changed software.
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• Perform regression testing

Regression testing is used to help ensure the correctness of the modified parts of the

software as well as to establish confidence that changes have not adversely affected

previously tested parts. A regression test suite is developed that consists of (1) a

subset of the original test cases to retest parts of the original software that may have

been affected by modifications, and (2) new test cases to test affected parts of the

software, not tested by the selected test cases. In GUIs, regression testing involves

analyzing the changes to the layout of GUI objects, selecting test cases that should

be rerun, as well as generating new test cases.

Any GUI testing method must perform all of the above steps. Currently, GUI test

designers typically rely on record/playback tools to test GUIs [83, 32]. The process involved

in using these tools is largely manual, making GUI testing slow and expensive.

Automated GUI testing techniques for each of the above steps are needed in order

to efficiently and effectively test GUIs. One approach is to develop independent tools and

techniques to automate each GUI testing step. There have been several research efforts at

designing some automated tools, for example, using finite-state machine (FSM) models to

generate test cases [14, 13, 21, 8], programming the test case generator [43], and using a

Latin square method for regression testing [90]. Although such independent tools are useful

for automating some aspects of GUI testing, they do not address all aspects. A test designer

who makes use of these independent tools will need to learn the various idiosyncrasies of each

tool. Moreover, since these tools are independently developed, they may not be compatible.

Hence, in practice, it may be difficult to use these tools in a testing problem.

This thesis takes an alternative approach: developing a comprehensive GUI testing

framework that includes techniques and tools to perform all of the GUI testing steps. The

goals for the framework and its testing techniques are:

• All the techniques must be integrated, employing a common representation so that

results of one tool are compatible with the others.

• The GUI testing tasks should be as automated as possible so that the test designer’s

work is simplified.

• The overall testing cycle defined by the techniques should be efficient since software

testing is usually a tedious and expensive process. Inefficiency may lead to frustration

and abandonment of the techniques.
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• The techniques should be robust. Whenever the GUI enters an unexpected state, the

testing algorithms should detect the error state and report all information necessary

to debug the GUI.

• The tools/techniques should be portable. Test information (e.g., test cases, oracle

information, coverage report, and error report) generated and/or collected on one

platform should be usable on all other platforms on which the GUI can be executed.

• Finally, the techniques should be general enough to be applicable to a wide range of

GUIs.

1.2 Challenges of Developing a GUI Testing Framework

Developing a GUI testing framework with the above goals offers a number of

challenges. First, a representation of a GUI must be created that can be used across

the various techniques and tools. A representation must be developed at a sufficiently high

level of abstraction that it effectively captures the GUI events and their interactions and

is general enough to be applicable to a wide variety of GUIs. Yet, the same representation

must capture sufficient low level details of the GUI to enable a test oracle to verify the

correctness of the GUI. An additional challenge for the representation is scalability; GUIs

are large, containing huge bit-maps and a large number of events. If the representation is

not scalable, then all phases of testing that employ it will also fail to scale.

For conventional software, coverage is evaluated using the amount and type of

underlying code tested. Traditional coverage criteria may not work well for GUI testing,

because what matters is not only how much of the code is tested, but whether the tested

code corresponds to potentially problematic user interactions. Consider the example of

a Telnet application’s Edit menu shown in Figure 1.2. Traditional code-based coverage

criteria evaluate the amount of underlying code tested. GUIs and the underlying code are

conceptually at different levels of abstraction. Therefore, it is difficult to obtain a mapping

between GUI events and the underlying code. If code-based coverage criteria are used when

testing GUIs, then problematic event interactions might be missed. For example, in the

absence of sufficient memory, the events Edit + Copy generate a memory error but allow the

user to continue after closing the error window. If the user continues to use the application,

another Edit + Copy results in a system crash. If traditional code-based coverage criteria

are employed, it may be difficult to test the code for such an interaction. This example

illustrates that it is important to develop coverage criteria based on user events.
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Paste

Figure 1.2: A Telnet Application’s GUI

A third challenge is that even though the coverage criteria may help focus on

specific parts of a GUI, it may be impractical to generate all possible test cases for these

selected parts. A subset of these test cases must be generated for testing. The subset

selection decision may have to be made by the test designer during test case generation.

Another problem related to test case generation is called the controllability problem, i.e.,

bringing the GUI to a state in which a test case may be executed on it [12]. For each test

case, appropriate events may need to be performed on the GUI to bring it to the desired

state.

Fourth, test oracles for GUIs are different from those for conventional software.

Test oracles determine whether or not the software executed correctly during testing. In

conventional software testing, the test oracle is invoked after the end of test case execution,

as shown in Figure 1.3(a). The test case is executed by the software, and the final output

is compared with the expected output. In contrast, GUI test case execution, shown in

Figure 1.3(b), requires that the test oracle invocation and test case execution be interleaved

because an incorrect GUI state can lead to an unexpected screen. This screen may make

further execution of the test case useless since events in the test case may not match any

button on the GUI screen. Thus, execution of the test case should be terminated as soon as

an error is detected. Also, if verification is not done after each step of test case execution, it

may become difficult to pinpoint the actual cause of the error since in some cases the final
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Figure 1.3: Comparing the Test Case Execution of (a) Conventional Software, and (b) GUIs.

output may be correct whereas the intermediate outputs may be incorrect. Consequently,

in GUI test case execution, the inputs are given one step at a time, and the expected output

is compared with the GUI’s output after each step. This interleaving of verification and test

case execution makes GUI testing more complex because (1) the expected output needs to

be generated for each event, and (2) the correctness of the GUI is checked after each event

is executed.

Finally, regression testing presents special challenges for GUIs. Both inputs and

outputs to a GUI depend on positions of graphical elements on the screen. The input-output

mapping may not remain constant across successive versions of the software [53]. Movement

of buttons, changes in the bit-maps, and organization of menus may render older test cases

useless. Moreover, the expected output used by the test oracles may become obsolete.
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Regression testing is especially important for GUIs as they are typically designed using

rapid prototyping [53]. The GUI software is modified and tested on a continuous basis.

Efficient regression testing mechanisms are needed to detect the frequent modifications to

the GUI and adapt the old test cases.

1.3 GUI Testing Framework

Regression
Tester

Test
Coverage
Evaluator

Test 
Oracle

GUI 
Representation

Executing
GUI

GUI Implementation:
Tools (Languages/Toolkits)

GUI Specifications

Test 
Executor

Test Case
Generator

Figure 1.4: An Overview of the GUI Testing Framework.

This dissertation presents the design and implementation of a comprehensive

framework for testing GUIs. As shown in Figure 1.4, the framework consists of several

interacting components: a GUI representation, test coverage evaluator, test case generator,

test oracle, test executor, and regression tester. These components are briefly described

next.

1. A GUI is represented as a set of objects, a set of properties of those objects, and a set

of events that change the properties of certain objects. For efficiency and scalability,

the GUI is decomposed into a hierarchy of components that is used by the test case

generator, coverage evaluator, test oracle, and regression tester.
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2. The coverage evaluator employs a new class of coverage criteria called event-based

coverage criteria. These criteria use events and event sequences to specify a measure of

test adequacy. The coverage evaluator employs (1) intra-component criteria for events

within a component and (2) inter-component criteria for events across components.

3. The test case generator is based on a new algorithm that exploits planning [87, 86],

a well-developed and used technique in artificial intelligence (AI). The motivating idea

is that GUI test designers will often find it easier to specify typical goals that users of

their software might have than to specify sequences of GUI events that users might

perform to achieve those goals. Given a specification of initial and goal states for a

GUI, a planner is used to generate “plans” that become test cases for the GUI.

4. The GUI test oracle employs the GUI representation and, for each test case, auto-

matically derives the expected state for each event in the test case. The actual state of

an executing GUI is also represented in terms of objects and their properties derived

from the GUI’s execution. Using the actual state acquired from an execution monitor,

the oracle automatically compares the expected and actual states after each event to

verify the correctness of the GUI for the test case.

5. Execution automation is achieved by designing/implementing an automated test ex-

ecutor. Test cases (that may be generated off-line by the test case generator) are

input to the test executor, which executes each event in the test case. The test execu-

tor generates physical events, such as mouse and keyboard events, thereby mimicking

a GUI user.

6. The regression tester partitions the original GUI test suite into valid test cases that

represent correct input/output for the modified GUI and invalid test cases that no

longer represent correct input/output. The regression tester employs a new technique

to reuse some of the invalid test cases by repairing them. The repaired test cases are

more likely to reveal faults in the modified GUI since they test specific sequences of

events that were affected by modifications.

All the above components of the GUI testing framework have been implemented

as part of this dissertation. The GUI testing framework was used to test a newly imple-

mented word processor, which is similar to Microsoft’sWordPad (except for theHelpmenu,

which was not modeled). WordPad was chosen because it has a moderately complex GUI,

containing events that are common across many GUIs. For example, WordPad contains

editing events such as cut, copy, and paste; file events used to open, and save files; various

dialog types such as modal and modeless dialogs; complex functions to find and replace

text. On the other hand, the WordPad GUI contains text objects that are straightforward
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to represent. It is expected that results of experiments performed on WordPad will also

hold for most of today’s GUIs. The entire WordPad software can be implemented by one

person in a reasonable amount of time. Moreover it is widely used and most readers are

familiar with its functionality. In this dissertation, when scaling issues are discussed, the

much larger GUI of MS Word is also considered. Details of the WordPad software and

testing algorithms are presented in subsequent chapters.

The next chapter provides the background necessary to understand the context

and details of the techniques developed in this dissertation. Chapter 3 presents the GUI

representation that is employed by all the other components of the framework to perform

their respective tasks. In Chapter 4, the coverage evaluator is described that employs

new event-based coverage criteria to help determine whether a GUI has been adequately

tested. Chapter 5 describes the design of the test case generator that employs AI plan

generation techniques. The design of test oracles that verify the correctness of the GUI as

it is being tested is presented in Chapter 6. Chapter 7 presents a new method of performing

regression testing by repairing existing test cases. Chapter 8 explores how the framework

may be extended to test web-user interfaces. Finally, Chapter 9 concludes with a discussion

of the merits of this research and possible future directions.



Chapter 2

Background and Related Work

The research presented in this dissertation focuses on developing a testing frame-

work for GUIs and thus spans the areas of testing environments, test coverage criteria

development, test case generation, test oracles, and regression testing. This chapter intro-

duces the relevant terms, presents the background and prior related research in each of these

areas. Since GUI testing is still in its infancy, very little research has been done in this area.

However, there is a potential to use techniques from general software testing and tailor them

for GUI testing. Hence, in each subsequent section, some of the terms and approaches used

for testing non-GUI software are described, and their possible adaptation for GUI testing

is discussed. The approaches used to automate some aspects of testing are also presented.

Among them, AI planning has been used to automate test case generation; a brief descrip-

tion of the system that uses planning for test case generation, and a detailed discussion of

AI planning is presented. Subsequent sections present the background and related work

in testing environments, test coverage, test case generation, test oracles, regression testing,

and AI planning.

2.1 Testing Environments

Ostrand et al. [58] present the design of the only environment for GUI testing

reported in the available literature. Their visual test development environment (TDE)

links a test designer, a test design library, and a test generator to a capture/replay tool.

By using this environment, the test designer captures sequences of interactions with the

GUI and visually modifies them. However, most of the tasks are done manually, except

for minimal support for modeling the GUI and using the model to tailor regression tests.

A test designer creates a GUI model consisting of a top-level graph with representations

for individual windows. Data variations and path variations are introduced by the test

designer to create multiple test cases. Ostrand et al. indicate the need to develop a facility

11
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for defining result comparison actions in test scenarios using which the test designer can

augment test scripts with oracles to check the state of the GUI.

2.2 Test Coverage

An important question in testing is, “what constitutes an adequate test suite?”

This question, posed by Goodenough and Gerhart in 1975, was declared as the central

question of software testing [27]. Since then, much research has been done to define test

coverage, resulting in the development of several dozen criteria.

Coverage criteria are sets of rules used to help determine whether a test suite

has adequately tested a program and to guide the testing process. The most well-known

coverage criteria are statement coverage, branch coverage, and path coverage. Zhu et al.

provide a comprehensive survey of existing test coverage criteria [97]. One classification

of coverage presented therein is based on the source of information used to specify the

testing requirements. This classification defines a coverage criterion as either specification

based, program based, or interface based. Of interest to this research are interface based

coverage criteria that specify testing requirements in terms of the type and range of software

input without reference to any internal features of the program code or the specifications.

Developing interface based coverage criteria remains an open area for research.

None of the test coverage criteria surveyed by Zhu et al. are directly applicable to

GUI testing. In fact, almost no research has been reported on developing coverage criteria

for GUIs. The only exception is the work by Ostrand et al., mentioned in Section 2.1, which

briefly indicates that a model-based method may be useful for improving the coverage of a

test suite [58]. However, this prior research deferred a detailed study of the coverage of the

generated test cases using this type of GUI model to future work. In practice, since there

are no well-established coverage criteria for GUIs, ad hoc techniques are employed. One

example criterion is “stop testing when no more than 50 new defects are found per 1,000

test hours” [82].

There is a close relationship between test-case generation techniques and the un-

derlying coverage criteria used. Much of the literature on GUI test case generation focuses

on describing the algorithms used to generate the test cases; little or no discussion about the

underlying coverage criteria is presented [79, 91, 38]. The next section presents a discussion

of some of the test case generation techniques.



13

2.3 Test Case Generation

Test cases contain the input supplied to the software being tested. For example,

a test case for a GUI software system may contain a sequence of mouse events. Techniques

for generating test cases depend on the type of testing being conducted. The test case

generation technique developed in this dissertation employs a model of the GUI derived from

its specifications (as opposed to its code), i.e., a type of black-box testing. The remainder of

this section first presents some GUI test case generation techniques, their limitations and

shortcomings. Then it describes some black-box testing techniques that may be applicable

to GUI testing.

Currently, test designers rely on record/playback tools to create test cases for GUIs

[83, 32]. The test designer interacts with the GUI, generating mouse/keyboard events. The

record tool captures these events and GUI screens during the interactive session; these

recorded sessions are later played back whenever it is necessary to recreate the same events.

This process is extremely labor intensive. A higher level of support is provided by program-

ming the test case generator [43]. For comprehensive testing, programming requires that

the test designer code all possible decision points in the GUI. However, this approach is time

consuming and is susceptible to missing important GUI decisions. A popular alternative to

performing rigorous, expensive, in-house testing is to release large number of beta copies of

the software and let the users do part of the testing. For example, Microsoft did part of its

testing of its Windows ’95 software by releasing almost 400,000 beta copies [38].

A number of research efforts have addressed the automation of test case generation

for GUIs. Several finite-state machine (FSM) models have been proposed to generate test

cases [14, 13, 21, 8]. In this approach, the software’s behavior is modeled as a FSM where

each input triggers a transition in the FSM. A path in the FSM represents a test case,

and the FSM’s states are used to verify the software’s state during test case execution.

This approach has been used extensively for test generation of hardware circuits [31]. An

advantage of this approach is that once the FSM is built, the test case generation process is

automatic. It is relatively easy to model a GUI with a state machine model; each user action

leads to a new state, and each transition models a user action. However, a major limitation

of this approach, which is an especially important limitation for GUI testing, is that state

machine models have scaling problems [79]. To aid in the scalability of the technique,

variations such as variable finite state machine (VFSM) models have been proposed by

Shehady et al. [79].

Test cases have also been generated that mimic novice users [38]. This approach

relies on an expert to first manually generate a sequence of GUI events, and then uses genetic
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algorithm techniques [23, 24] to modify and lengthen the sequence, thereby mimicking

a novice user. The assumption is that experts take a more direct path when solving a

problem using GUIs whereas novice users often take longer paths. Although useful for

generating multiple test cases, the technique relies on an expert to generate the initial

sequence. Consequently, the final test suite depends largely on the paths taken by the expert

user. Another problem with this approach is that it assumes that novices’ interactions with

the GUI randomly diverge from those of experts.

White et al. present a new test case generation technique for GUIs [91]. This

technique also requires a substantial amount of manual work on the part of the test de-

signer. The test designer/expert manually identifies a responsibility, i.e., a GUI activity.

For each responsibility, a machine model called the “complete interaction sequence” (CIS)

is identified manually.

Avritzer et al. [3] have proposed a technique for software load testing, which has

characteristics that may be relevant to GUI testing. This technique assesses how the system

performs under a given load. The goal of this technique is to generate test cases to test

the software’s resource allocation strategies rather than its functionality. Load testing is

done after the software has been thoroughly tested for correctness of functionality. The test

case generation process uses an operational profile that describes the expected workload

of the software once it is operational. The operational profile consists of the number and

types of inputs to the software, the probability distribution of each type of input, and the

average input arrival rate. This type of testing is attractive for GUIs since it is possible

to obtain similar profiles from user sessions recorded during usability testing. However, a

major limitation of this technique is that the software has to be represented by a Markov

chain model. GUIs have a large number of states, and a state description that encodes a

sequence of states may be impractical.

Donat [17] presents a technique for automatically transforming formal specifica-

tions into black-box test cases. The approach requires the specifications to be written in

a predicate logic with quantification. The system generates test frames, i.e., structures

that specify combinations of conditions corresponding to a single test step. Each test step

demonstrates that a specified test requirement has been implemented. An important limi-

tation of this approach is that the test designer has to manually refine the test frame into

a test step by entering data values.

AI Planning has been found to be useful for generating focused test cases for a

robot tape library command language [35]. The main idea is that test cases for command

language systems are similar to plans. Given an initial state of the tape library and a desired
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goal state, the planner generates a “plan”, which is executed on the software as a test case.

Each command in the language is modeled as a planning operator. This approach works

well for systems with a small command language. Since GUIs typically have a large number

of operations such as menus, buttons, and windows, the approach needs to be extended to

handle a large number of operators. The test case generator presented in this dissertation

employs planning to generate test cases. Section 2.6 gives a brief introduction to planning

and different planning techniques.

2.4 Test Oracles

Once test cases have been generated, they are executed on the GUI, and the GUI’s

output needs to be verified for correctness. A test oracle is a mechanism for determining

whether or not the output from the GUI is equivalent to the expected output derived from

the GUI’s specifications.

Very few techniques have been developed to automatically generate the expected

output for conventional software. Hence, software systems rarely have an automated test

oracle [65, 70, 69, 16]. In most cases, the expected behavior of the software is assumed to be

provided by the test designer. The expected behavior is specified by the test designer in the

form of a table of pairs (actual output, expected output) [65], as temporal constraints that

specify conditions that must not be violated during software execution [69, 15, 16, 70], or as

logical expressions to be satisfied by the software [18]. This expected behavior is then used

by the verifier by either performing a table lookup [65], FSM creation [36, 16], or boolean

formula evaluation [18] to determine the correctness of the actual output.

Richardson in TAOS (Testing with Analysis and Oracle Support) [69] proposes

several levels of test oracle support. One level of test oracle support is given by the

Range-checker which checks for ranges of values of variables during test-case execution. A

higher level of support is given by the GIL and RTIL languages in which the test designer

specifies temporal properties of the software. Siepmann et al. in their TOBAC system [80]

assume that the expected output is specified by the test designer and provide seven ways of

automatically comparing the expected output to the software’s actual output. A popular

alternative to manually specifying the expected output is by performing reference testing

[82, 85]. Actual outputs are recorded the first time the software is executed. The recorded

outputs are later used as expected output for regression testing.
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2.5 Regression Testing

Regression testing is an important software maintenance activity and can account

for as much as one-third of the total cost of software production [67, 78, 6]. The goal of

regression testing is to help ensure the correctness of the modified parts of the software as

well as to establish confidence that changes have not adversely affected previously tested

parts.

Although regression testing of conventional software has received a lot of attention

[10, 73, 75, 76], there has been almost no reported research on GUI regression testing. The

exception is White [90] who proposes a Latin square method to reduce the size of the

regression test suite. The underlying assumption is that it is enough to check pairwise

interactions between components of the GUI. The technique requires that each menu item

appears in at least one test case. This strategy seems promising since it also employs GUI

events. However, the technique needs to be extended to GUI items other than menus.

Moreover, detailed studies need to be conducted to verify whether the pairwise interactions

checking assumption is sufficient.

Several strategies for regression testing of conventional software have been pro-

posed [4, 33, 71, 47]. One regression testing strategy proposes rerunning all test cases that

have not become obsolete. Since this retest-all strategy is resource intensive, numerous ef-

forts have been made to reduce its cost. Selective retest techniques [1, 7, 34] attempt to

reduce the cost of regression testing by testing only selected parts of the software. These

techniques have traditionally focused on two problems: (1) regression test selection prob-

lem, i.e., selecting a subset of the existing test cases [75], and (2) coverage identification

problem, i.e., identifying portions of the software that require additional testing. Solutions

to the regression test selection problem traditionally compare structural representations

(e.g., control-flow graphs [75], control-dependence graphs [74]) of the original and modified

software. Test cases that cause the execution of different paths in these structures are likely

to be selected for re-testing. Among selective retest strategies, the safe approaches require

the selection of every existing test case that exercises any program element that could be

affected by a given program change. Although computationally less expensive than the

retest-all strategy, safe approaches still make heavy demands on resources. At the other

end of the spectrum of selective retest strategies are minimization approaches that attempt

to select the smallest set of test cases necessary to test affected program elements at least

once [77]. These techniques attempt to assure that some structural coverage criterion is

met by the test cases that are selected. Practical strategies fall between the safe strategies
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Figure 2.1: The Spectrum of Regression Testing Strategies.

and minimization strategies (see Figure 2.1). The test designer may be satisfied with using

near-minimal sets of test cases [72].

Other regression testing techniques include analyzing changes in functions, types,

variables, and macro definitions [71], using def-use chains [33], constructing procedure de-

pendence graphs [9], and analyzing code and class hierarchy for object-oriented programs

[47]. These techniques are not directly applicable to GUI regression testing because regres-

sion information is derived from changes made to the software’s code. However, if a logical

structure of the user event sequences can be constructed, then some of the ideas from these

techniques may be applicable.

2.6 AI Plan Generation

Automated plan generation has been widely investigated and used within the field

of artificial intelligence. Given an initial state, a goal state, a set of operators, and a set of

objects, a planner returns a set of actions (instantiated operators) with ordering constraints

to achieve the goal. Many different algorithms for plan generation have been proposed and

developed. Weld presents an introduction to least commitment planning [86] and a survey

of the recent advances in planning technology [87].

Formally, a planning problem P (Λ, D, I, G) is a 4-tuple, where Λ is the set of

operators, D is a finite set of objects, I is the initial state, and G is the goal state. Note

that an operator definition may contain variables as parameters; typically an operator does

not correspond to a single executable action but rather to a family of actions, one for each

different instantiation of the variables. The solution to a planning problem is a plan: a tuple

< S,O, L, B > where S is a set of plan steps (instances of operators, typically defined with

sets of preconditions and effects), O is a set of ordering constraints on the elements of S, L

is a set of causal links representing the causal structure of the plan, and B is a set of binding

constraints on the variables of the operator instances in S. Each ordering constraint is of
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Figure 2.2: (a) A Plan to Install RAM and a Network Interface Card in the Computer, (b)
The Operators Used in the Plan, and (c) Detailed Definition of the installNIC Operator.

the form Si < Sj (read as “Si before Sj”) meaning that step Si must occur sometime before

step Sj (but not necessarily immediately before). Typically, the ordering constraints induce

only a partial ordering on the steps in S. Causal links are triples < Si, c, Sj >, where Si

and Sj are elements of S and c represents a proposition that is the unification of an effect

of Si and a precondition of Sj. Note that corresponding to this causal link is an ordering

constraint, i.e., Si < Sj. The reason for tracking a causal link < Si, c, Sj > is to ensure

that no step “threatens” a required link, i.e., no step Sk that results in ¬c can temporally

intervene between steps Si and Sj.
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Figure 2.2(a) shows an example plan for a problem in which memory (RAM) and

a network interface card (NIC) need to be installed in a computer system (PC). The initial

and goal states describe the problem to be solved. Plan steps (shown as boxes) represent

the actions that must be carried out to reach the goal state from the initial. For ease

of understanding, partial state descriptions (italicized text) are also shown in the figure.

Note that the plan shown is a partial-order plan, i.e., the RAM and NIC can be installed

in any order once the PC is open. Figure 2.2(b) shows the four operators used by the

planner to construct the plan. Each operator is defined in terms of preconditions and

effects. Preconditions are the necessary conditions that must be true before the operator

could be applied. Effects are the result of the operator application. Figure 2.2(c) shows the

details of the installNIC operator. This operator can only be applied (i.e., the NIC can

only be installed) when a NIC is available (haveNIC), the PC is open (∼PCclosed), and

there is no NIC already installed (∼installedNIC). Once all these conditions are satisfied,

the installNIC operator can be applied resulting in an installed NIC (installedNIC).

As mentioned above, most AI planners produce partially-ordered plans, in which

only some steps are ordered with respect to one another. A total-order plan can be derived

from a partial-order plan by adding ordering constraints, induced by removing threats.

Each total-order plan obtained in such a way is called a linearization of the partial-order

plan. A partial-order plan is a solution to a planning problem if and only if every consistent

linearization of the partial-order plan meets the solution conditions.

Figure 2.3(a) shows another partial-order plan, this one for a GUI interaction. The

nodes (labeled Si, Sj, Sk, and Sl) represent the plan steps (instantiated operators) and the

edges represent the causal links. The bindings are shown as parameters of the operators.

Figure 2.3(b) lists the ordering constraints, all directly induced by the causal links in this

example. In general, plans may include additional ordering constraints. The ordering

constraints specify that the DeleteText() and TypeInText() actions can be performed in

either order, but they must precede the FILE SAVEAS() action and must be performed after

the FILE OPEN() action. Two legal orders shown in Figure 2.3(c) are obtained.

2.6.1 Action Representation

The output of the planner is a set of actions with certain constraints on the rela-

tionships among them. An action is an instance of an operator with its variables bound to

values. One well-known action representation uses the STRIPS1 language [22] that specifies

operators in terms of parameterized preconditions and effects. STRIPS was developed more

1STRIPS is an acronym for STanford Research Institute Problem Solver.
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DeleteText
(“needs to be modified”)

TypeInText
(“is the final text”)

FILE_OPEN
(“Samples”, “report.doc”)

FILE_SAVEAS
(“public”, “new.doc”)

(a)

(c)

DeleteText
(“needs to be modified”)

TypeInText
(“is the final text”)

FILE_OPEN
(“Samples”, “report.doc”)

FILE_SAVEAS
(“public”, “new.doc”)

DeleteText
(“needs to be modified”)

TypeInText
(“is the final text”)

FILE_OPEN
(“Samples”, “report.doc”)

FILE_SAVEAS
(“public”, “new.doc”)

Si

Sj

Sk

Sl

Ordering Constraints
Si < Sj; Si < Sk; Sj < Sl; Sk < Sl

(b)

Figure 2.3: (a) A Partial-order Plan, (b) the Ordering Constraints in the Plan, and (c) the
Two Linearizations.

than twenty years ago and has limited expressive power. For instance, no conditional or

universally quantified effects are allowed. Although, in principle, sets of STRIPS opera-

tors could be defined to encode conditional effects, such encodings lead to an exponential

number of operators, making even small planning problems intractable. A more powerful

representation is ADL [62, 61], which allows conditional and universally quantified effects in

the operators. This facility makes it possible to define operators in a more intuitive manner.

A more recent representation is the Planning Domain Definition Language2 (PDDL). The

goals of designing the PDDL language were to encourage empirical evaluation of planner

performance and the development of standard sets of planning problems. The language has

roughly the expressiveness of ADL for propositions.

2Entire documentation available at http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
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2.6.2 Plan Generation as a Search Problem

The roots of AI planning lie in problem solving by using search. This search can

either be through a space of domain states or plans. A state space search starts at the

initial state, and applies operators one at a time until it reaches a state containing all the

requirements of the goal. This approach - as is the case with all search problems - requires

good heuristics to avoid exploring too much of the huge search space. State space planners

typically produce totally-ordered plans. A plan space planner searches through a space

of plans. It starts with a simple incomplete plan that contains a representation of only

the initial and goal states. It then refines that plan iteratively until it obtains a complete

plan that solves the problem. The intermediate plans are called “partial plans”. Typical

refinements include adding a step, imposing an ordering that puts one step before another,

and instantiating a previously unbound variable. Plan space planners produce partial-

order plans, introducing ordering constraints into plans only when necessary. A solution

to the planning problem is any linearization of the complete plan that is consistent with

the ordering constraints specified there. A partial order plan is a solution to a planning

problem if and only if every consistent linearization of the partial order plan meets the

solution conditions. Usually, the performance of plan space planners is better than that of

state space planners because the branching factor is smaller (but cf. Veloso and Stone [84]).

Again, however, heuristic search strategies have an important effect on efficiency.

A popular example of a plan space planner is UCPOP [63]. UCPOP and other

earlier planning systems rely on graph search requiring unification of unbound variables.

Unification considerably slows down the planning process. Consequently, these planners are

useful for solving small problems and studying the behavior of different search strategies

[66]. Results of experiments conducted by Memon et al. have in fact shown that these

planners are much faster than their modern counterparts in finding short plans in domains

containing a large number of objects [51].

2.6.3 Graphplan and IPP

Recently developed planning technology based on propositionalizationof the search

space has greatly increased the efficiency of plan generation. A well-known planner based

on this technology is the Interference Progression Planner (IPP) [45], a system that extends

the ideas of the Graphplan system [11] for plan generation. Graphplan introduced the idea

of performing plan generation by converting the representation of a planning problem into

a propositional encoding. Plans are then found by means of a search through a leveled

graph, in which even levels (0, 2, . . . , i) represent all the (grounded) propositions that might
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be true at stage i of the plan, and odd levels (1, 3, . . . i+1) represent actions that might be

performed at time i+1. The planners in the Graphplan family, including IPP, have shown

increases in planning speeds of several orders of magnitude on a wide range of problems

compared to earlier planning systems (but cf. [51]).

IPP uses ADL for the representation of actions in which preconditions and effects

can be parameterized: subsequent processing does the conversion to propositional form. In

fact, IPP generalizes Graphplan precisely by increasing the expressive power of its represen-

tation language, allowing for conditional and universally quantified effects. As is common

in planning, IPP produces partial order plans.

2.6.4 Plan Generation as Propositional Satisfiability

Another promising planning system, namely SATPLAN, also based on proposi-

tionalization of the search space, uses satisfiability (SAT) [39] to find a plan. SATPLAN

has now evolved into a complete planning system called BLACKBOX [41]. This system has

been shown to be superior to IPP on several problems [40]. It also allows specification of

domain knowledge to help speed up the planning process [42]. It makes use of very fast ran-

dom SAT solvers [26]. One current limitation of this planning system is its restrictive input

language, namely STRIPS, which as noted earlier does not allow quantification, making it

unsuitable for efficient specification of complex actions.

2.6.5 Hierarchical Planning

The planners described in the previous section form plans at a single level of

abstraction. Planning at one level of abstraction may be impractical for complex systems

which consist of a large number of objects and operators. Techniques have been developed to

generate plans at multiple levels of abstraction, typically called Hierarchical Task Network

(HTN) planning [95, 20, 19]. In HTN planning, domain actions are modeled at different

levels of abstraction, and each operator at level n specifies one or more “methods” at level

n − 1. A method is a single-level partial plan, and an action is said to “decompose” into

its methods. HTN planning focuses on resolving conflicts among alternative methods of

decomposition at each level.

2.7 Conclusions

This chapter presented an overview of the research that serves as the foundation

for some of the concepts developed in this dissertation. In particular, the coverage evalua-
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tor extends the ideas of path-based coverage criteria to develop new event-based coverage

criteria for GUIs; the test case generator develops a restricted form of hierarchical planning

to generate GUI test cases; the test oracles extend the idea of using the expected output,

to verify the correctness of a software, to using an expected state, automatically derived

from the specifications, to verify the behavior of the GUI; the regression tester uses the idea

of comparing graph-representations of the original and modified GUI to perform regression

testing of the GUI. Details of the GUI representation that integrates all these GUI testing

tools into one comprehensive framework are presented in the next chapter.



Chapter 3

GUI Representation

In the development of the integrated testing framework in this dissertation, a

representation of the GUI that models its behavior is created from the GUI’s specifications

and/or from the structure of the GUI. All the other components of the framework employ

the representation to perform a wide variety of tasks such as generating test cases and

expected output, evaluating coverage and performing regression testing.

The GUI representation must satisfy a number of requirements. First, it should be

at a conceptually high level of abstraction, free from platform-specific details, so that the

generated testing information is portable across platforms. Second, it should be expressive

enough so that a wide variety of GUIs can be represented. Third, it should be able to capture

low-level details of GUIs so that a test oracle can be developed to determine whether an

implemented GUI is executing correctly during testing. Fourth, it should be scalable so

that large GUIs can be represented and tested efficiently. Finally, it should be intuitive,

easy to develop and use.

The GUI representation developed in this dissertation models the GUI’s state in

terms of the specific objects that it contains and the values of their properties. Events

that are performed on the GUI are modeled as state transducers and are represented as

operators. These operators are defined in terms of the preconditions and effects of the events

they represent. For efficiency and scalability, the GUI representation includes a hierarchy

of components, each of which is used as a basic unit of testing. A new representation of

a GUI component called an event-flow graph identifies events and their interactions. An

integration tree represents the interactions among components. Subsequent sections in this

chapter provide a formal definition of a GUI and details of the GUI representation, including

algorithms to construct event-flow graphs and the integration tree.

24
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3.1 What is a GUI?

AGUI is a graphical user interface to a program. Most of today’s software interacts

with a user through a graphical user interface. A GUI uses one or more metaphors for

objects familiar in real life, such as buttons, menus, a desktop, the view through a window,

trash-can, and the physical layout in a room. Objects of a GUI include elements such as

windows, pull-down menus, buttons, scroll bars, iconic images, and wizards. The software

user performs events to interact with the GUI, manipulating GUI objects as one would real

objects. For example, dragging an item, discarding an object by dropping it in a trash-can,

and selecting items from a menu are all familiar actions available in today’s GUI. These

events cause deterministic changes to the state of the software that may be reflected by a

change in the appearance of one or more GUI objects.

GUIs, by their very nature, are hierarchical. This hierarchy is reflected in the

grouping of events in windows, dialogs, and hierarchical menus. A typical GUI user focuses

on events related by their functionality by opening a particular window or clicking on a

pull-down menu. For example, all the “options” in MS Internet Explorer can be set by

interacting with events in one window of the software’s GUI.

The important characteristics of GUIs include their graphical orientation, event-

driven input, hierarchical structure, the objects they contain, and the properties (attributes)

of those objects. Formally, the class of GUIs of interest may be defined as follows:

Definition: A Graphical User Interface (GUI) is a hierarchical, graphical front-end to

a software system that accepts as input user-generated and system-generated events,

from a fixed set of events and produces deterministic graphical output. A GUI contains

graphical objects; each object has a fixed set of properties. At any time during the

execution of the GUI, these properties have discrete values, the set of which constitutes

the state of the GUI. 2

The above definition specifies a class of GUIs that have a fixed set of events with

deterministic outcome that can be performed on objects with discrete valued properties.

This definition would need to be extended for other GUI classes such as web-user interfaces

that have synchronization/timing constraints among objects, movie players that show a

continuous stream of video rather than a sequence of discrete frames, and non-deterministic

GUIs in which it is not possible to model the state of the software in its entirety and hence

the effect of an event cannot be predicted. This dissertation focuses on techniques to test

the class of GUIs defined above. In Chapter 8, the framework is extended to test web user

interfaces (WUIs).
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In order to create a representation for the GUI, a model must be created for the

GUI’s state in terms of GUI objects, their properties, values, and the events that can be

performed on the GUI. The GUI’s hierarchical structure must also be modeled. The next

section describes how to model the state of GUIs.

3.2 Representing the GUI’s State

A GUI’s state is modeled as a set of objects, (label, form, button, text, etc.) and

a set of properties of those objects (background-color, font, caption, etc.). Each GUI

will use certain types of objects with associated properties; at any specific point in time,

the GUI can be described in terms of the specific objects that it contains and the values of

their properties.

Formally, a GUI is modeled at a particular time t in terms of:

• its objects O = {o1, o2, . . . , om}, and

• the properties P = {p1, p2, . . . , pl} of those objects. Each property pi is an ni-ary

Boolean relation, for ni ≥ 1, where the first argument is an object o1 ∈ O. If ni > 1,

the last argument may either be an object or a property value, and all the interme-

diate arguments are objects. Figure 3.1(a) shows the structure of properties. The

(optional) property value is a constant drawn from a set associated with the property

in question: for instance, the property “background-color” has an associated set

of values, {white, yellow, pink, etc.}. A distinguished set of properties, the object

types, which are unary relations, (“window”, “button”) is assumed to be available.

Figure 3.1(b) shows a button object called Button1. One of its properties is called

Caption and its current value is “Cancel”.

There are several points that should be noted about the description of properties.

First, properties are relations, not functions, and so there may sometimes be multiple values

for the same property of a given object. For example, there may be multiple objects in a

window. Next, properties as defined are fluents [50], i.e., relations that are true in some

situations (or states of the world) and not others. An everyday example of a fluent is the

relation president(US, Bush), with the obvious meaning, where the state it is evaluated

in is the state of the real world. The fluents are evaluated with respect to a state of the

GUI. Finally, a fluent may be undefined in some states, for example, president(US, Dole)

in the state of the world in the year 1567, or background-color(w24, blue) in the state

of a GUI immediately after window w24 has been destroyed.
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Figure 3.1: (a) The Structure of Properties, and (b) A Button Object with Associated
Properties.

To create a model of the GUI, the objects in the GUI and their associated prop-

erties are identified. In practice, the set of object types and properties for a given GUI can

be determined in several different ways.

1. Manual examination of the GUI: The GUI is manually examined, and all the object

types and properties that can be discovered are noted. This approach is prone to in-

completeness, especially since GUIs may have hidden properties that must be checked

during verification. For example, the tab order of windows in a GUI (the order in

which objects receive input focus when the Tab key is pressed) is a property that is

not visible.

2. Examination of the GUI’s specifications: The properties and object types are ex-

tracted from the GUI’s specifications, which describe them either directly or implicitly

within the descriptions of GUI events. This approach yields a more accurate set of

properties and object types than does the first. However, additional properties may

have been inadvertently introduced by the implementation platform, which, if not

tested, may cause undesirable side-effects during GUI execution. 1

3. Examination of the language/toolkit used to develop GUI: The language/toolkit is ex-

amined and all its object types and properties identified. For example, if the GUI was

1Note that testing platform-specific properties is done at the cost of reduced portability. For a fully
portable representation, the properties should be derived only from the specifications.
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Figure 3.2: The List of all Properties of the Button Object in Borland’s C++ Builder.

developed using the Java language [28, 2], then the GUI objects would be instances

of the swing GUI components of the Java swing package, and the properties would

correspond to the instance variables (also called “data members” in C++) of each ob-

ject. Visual programming environments provide a more direct interface to properties.

Borland’s C++ Builder presents the properties as a table for the currently selected

object. An example of all the properties that Borland’s C++ Builder associates with

the Button object is seen in Figure 3.2.

The third approach above can lead to a larger set of object types and properties

than does the second because the set of object types and properties made available by

a language or toolkit may not all be used in the construction of a particular GUI. For

example, one might use Borland’s C++ builder to construct a simple GUI in which the

user is not permitted to manipulate the text color, and in which the text color does not

influence the execution of any other event. If a text editor similar to Microsoft’s NotePad
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Enabled(Button1, TRUE), Visible(Button1, TRUE), Height(Button1, 65), …}
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Figure 3.3: (a) The Open GUI with three objects explicitly labeled and their associated
properties, and (b) the State of the Open GUI.

is implemented in Borland’s C++ builder, then if one establishes the set of properties from

the GUI’s specifications, text color will not be among the properties modeled, whereas if

one establishes it from the toolkit used for development, text color will be included as a

property in the model. Hence, there are two sets of properties that can be obtained: the

complete set of properties for a GUI, which are all those that would be identified by the

third (language/toolkit-based) approach, and the reduced set, which includes only those that

would be identified by the second (specifications-based) approach. Note that the reduced

set is always a (possibly improper) subset of the complete set of properties.

The set of objects and their properties can be obtained using any one of the

techniques described above and used to create a model of the state of the GUI.

Definition: The state of a GUI at a particular time t is the set P of all the properties of

all the objects O that the GUI contains. 2

A description of the state would contain information about the types of all the

objects currently extant in the GUI, as well as all of the properties of each of those objects.
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Figure 3.4: An Event Changes the State of the GUI.

For example, consider the Open GUI shown in Figure 3.3(a). This GUI contains several

objects, three of which are explicitly labeled; for each, a small subset of its properties is

shown. The state of the GUI, partially shown in Figure 3.3(b), contains all the properties

of all the objects in Open.

3.3 Representing GUI Events

The state of a GUI is not static; events preformed on the GUI change its state.

Events are modeled as state transducers.

Definition: The events E = {e1, e2, . . . , en} associated with a GUI are functions from

one state of the GUI to another state of the GUI. 2

Since events may be performed on different types of objects, in different contexts,

yielding different behavior, they are parameterized with objects and property values. For

example, an event set-background-color( w, x ) may be defined in terms of a window w

and color x; w and x may take specific values in the context of a particular GUI execution.

As shown in Figure 3.4, whenever the event set-background-color( w19, yellow ) is

executed in a state in which window w19 is open, the background color of w19 should

become yellow (or stay yellow if it already was), and no other properties of the GUI
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should change. This example illustrates that, typically, events can only be executed in

some states; set-background-color( w19, yellow ) cannot be executed when window

w19 is not open.

It is of course infeasible to give exhaustive specifications of the state mapping for

each event: in principle, as there is no limit to the number of objects a GUI can contain at

any point in time, there can be infinitely many states of the GUI.2 Hence, GUI events are

represented using operators, which specify their preconditions and effects:

Definition: An operator is a 3-tuple <Name, Preconditions, Effects> where:

• Name identifies an event and its parameters.

• Preconditions is a set of positive ground literals3 p(arg1, . . . , argn), where p is

an n-ary property (i.e., p ∈ P ). Pre(Op) represents the set of preconditions for

operator Op. An operator is applicable in any state Si in which all the literals

in Pre(Op) are true.

• Effects is also a set of positive or negative ground literals p(arg1, . . . , argn),

where p is an n-ary property (i.e., p ∈ P ). Eff (Op) represents the set of effects

for operator Op. In the resulting state Sj, all of the positive literals in Eff (Op)

will be true, as will all the literals that were true in Si except for those that

appear as negative literals in Eff (Op). 2

For example, the following operator represents the set-background-color event

discussed earlier:

Name: set-background-color(wX: window, Col: Color)

Preconditions: is-current(wX), background-color(wX, oldCol), oldCol 	= Col

Effects: background-color(wX, Col)

Going back to the example of the GUI in Figure 3.4 in which the following prop-

erties are true before the event is performed: window(w19), background-color(w19,

blue), is-current(w19). Application of the above operator, with variables bound as

set-background-color( w19, yellow ), would lead to the following state: window(w19),

background-color(w19, yellow), is-current(w19), i.e., the background color of win-

dow w19 would change from blue to yellow.

2Of course in practice, there are memory limits on the machine on which the GUI is running, and hence
only finitely many states are actually possible, but the number of possible states will be extremely large.

3A literal is a sentence without conjunction, disjunction or implication; a literal is ground when all of its
arguments are bound; and a positive literal is one that is not negated. It is straightforward to generalize
the account given here to handle partially instantiated literals. However, it needlessly complicates the
presentation.
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The above scheme for encoding operators is the same as what is standardly used

in the AI planning literature [62, 86, 87]; the persistence assumption built into the method

for computing the result state is called the “STRIPS assumption”. A complete formal

semantics for operators making the STRIPS assumption has been developed by Lifschitz

[48].

One final point to note about the representation of effects is the inability to effi-

ciently express complex events when restricted to using only sets of literals. Although in

principle, multiple operators could be used to represent almost any event, complex events

may require the definition of an exponential number of operators, making planning ineffi-

cient. In practice, a more powerful representation that allows conditional and universally

quantified effects is employed. For example, the operator for the Paste event would have

different effects depending on whether the clipboard was empty or full. Instead of defining

two operators for these two scenarios, a conditional effect could be used instead. In cases

where even conditional and quantified effects are inefficient, procedural attachments, i.e.,

arbitrary pieces of code that perform the computation, are embedded in the effects of the

operator [37]. One common example is the representation of computations. A calculator

GUI that takes as input two numbers, performs computations (such as addition, subtrac-

tion) on the numbers, and displays the results in a text field will need to be represented

using different operators, one for each distinct pair of numbers. By using a procedural at-

tachment, the entire computation may be handled by a piece of code, embedded in a single

operator.

3.4 Representing Executable Event Sequences

In this section, the representation of an event in terms of its preconditions and

effects is used to develop a formal representation of an executable event sequence. The

function notation Sj = e(Si) is used to denote that Sj is the state resulting from the

execution of event e in state Si. Events can be strung together into sequences.

Definition: e1 ◦ e2 ◦ . . . ◦ en is an executable event sequence for a state S0 iff there exists a

sequence of states S0;S1; . . . ;Sn such that Si = ei(Si−1), for i = 1, . . . , n. 2

Figure 3.5 shows MS WordPad in a state S0 and an executable event sequence

corresponding to S0. Extending the function notation above, Sj = (e1 ◦ e2 ◦ . . . ◦ en)(Si),

where e1 ◦ e2 ◦ . . . ◦ en is an executable event sequence, denotes that Sj is the state that

results from executing the specified sequence of events starting in state Si.
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Figure 3.5: (a) A State S0 for MS WordPad, and (b) an Executable Event Sequence for S0.

As mentioned earlier in Section 1.2, the controllability problem in GUIs requires

that the GUI be brought into a valid state before performing events on it. With each GUI

is associated a distinguished set of states called its valid initial states.

Definition: A set of states SI is called the valid initial state set for a particular GUI iff

the GUI may be in any state Si ∈ SI when it is first invoked. 2

Given a GUI in state Si ∈ SI , i.e., in a valid initial state of the GUI, new states

may be obtained by performing events on Si. These states are called the reachable states

of the GUI. Formally, a reachable state is defined as follows.

Definition: The state Sj is a reachable state iff either Sj ∈ SI or there exists an executable

event sequence ex ◦ ey ◦ . . . ◦ ez such that Sj = (ex ◦ ey ◦ . . . ◦ ez)(Si), for any Si ∈ SI.

2

3.5 GUI Components and Event Classification

Since today’s GUIs are large and contain a large number of events, any scalable

representation must decompose a GUI into manageable parts. As mentioned previously,

GUIs are hierarchical, and this hierarchy may be exploited to identify groups of GUI events
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Figure 3.6: The Event Set Language Opens a Modal Window.

that can be analyzed in isolation. One hierarchy of the GUI and the one used in this

research is obtained by examining the structure of modal windows in the GUI.

Definition: A modal window is a GUI window that, once invoked, monopolizes the GUI

interaction, restricting the focus of the user to a specific range of events within the

window, until the window is explicitly terminated. 2

The language selection window is an example of a modal window in MS Word.

As Figure 3.6 shows, when the user performs the event Set Language, a window entitled

Language opens and the user spends time selecting the language, and finally explicitly

terminates the interaction by either performing OK or Cancel.

Other windows in the GUI are called modeless windows that do not restrict the

user’s focus; they merely expand the set of GUI events available to the user. For example,

in the MS Word software, performing the event Replace opens a modeless window entitled

Replace (Figure 3.7).

At all times during interaction with the GUI, the user interacts with events within

a modal dialog. This modal dialog consists of a modal window X and a set of modeless

windows that have been invoked, either directly or indirectly by X . The modal dialog

remains in place until X is explicitly terminated. Intuitively, the events within the modal

dialog form a GUI component.

Definition: A GUI component C is an ordered pair (RF, UF), where RF represents a

modal window in terms of its events and UF is a set whose elements represent modeless

windows also in terms of their events. Each element of UF is invoked either by an

event in UF or RF. 2

Note that, by definition, events within a component do not interleave with events

in other components without the components being explicitly invoked or terminated.
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Figure 3.7: The Event Replace Opens a Modeless Window.

Since components are defined in terms of modal windows, a classification of GUI

events is used to identify components. The classification of GUI events is as follows:

Restricted-focus events open modal windows. Set Language in Figure 3.6 is a restricted-

focus event.

Unrestricted-focus events open modeless windows. For example, Replace in Figure 3.7

is an unrestricted-focus event.

Termination events close modal windows; common examples include Ok and Cancel

(Figure 3.6).

The GUI contains other types of events that do not open or close windows but

make other GUI events available. These events are used to open menus that contain several

events.

Menu-open events are used to open menus. They expand the set of GUI events available

to the user. Menu-open events do not interact with the underlying software. Note

that the only difference between menu-open events and unrestricted-focus events is

that the latter open windows that must be explicitly terminated. The most common

example of menu-open events are generated by buttons that open pull-down menus.

For example, in Figure 3.8, File and SentTo are menu-open events.
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Figure 3.8: Menu-open Events: File and Send To.
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Figure 3.9: A System-interaction Event: Copy.

Finally, the remaining events in the GUI are used to interact with the underlying

software.

System-interaction events interact with the underlying software to perform some ac-

tion; common examples include the Copy event used for copying objects to the clip-

board (see Figure 3.9).

Table 3.1 lists some of the components of WordPad. Each row represents a compo-

nent and each column shows the different types of events available within each component.
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Component
Name

Menu
Open

System
Interaction

Restricted
Focus

Unrestricted
Focus Termination Sum

Main 7 27 19 2 1 56
FileOpen 0 8 0 0 2 10
FileSave 0 8 0 0 2 10
Print 0 9 1 0 2 12
Properties 0 11 0 0 2 13
PageSetup 0 8 1 0 2 11
FormatFont 0 7 0 0 2 9
Sum 7 78 21 2 13 121

Event Type

Table 3.1: Types of Events in Some Components of MS WordPad.

Main is the component that is available when WordPad is invoked. Other components’

names indicate their functionality. For example, FileOpen is the component of WordPad

used to open files.

3.6 Event-flow Graphs

A GUI component may be represented as a flow graph. Intuitively, an event-flow

graph represents all possible interactions among the events in a component.

Definition: An event-flow graph for a component C is a 4-tuple <V, E, B, I> where:

1. V is a set of vertices representing all the events in the component. Each v ∈V

represents an event in C.

2. E ⊆ V × V is a set of directed edges between vertices. Event ei follows ej iff

ej may be performed immediately after ei. An edge (vx, vy) ∈ E iff the event

represented by vy follows the event represented by vx.

3. B ⊆ V is a set of vertices representing those events of C that are available to

the user when the component is first invoked.

4. I ⊆ V is the set of restricted-focus events of the component.

2

An example of an event-flow graph for the Main component of MS WordPad is

shown in Figure 3.10. To increase readability of the event-flow graph, all of the edges have

not been shown. Instead, labeled circles have been used as connectors to sets of events.

The legend shows the set of events represented by each circle. For example, an edge from

Save to 11 represent an edge from the event Save to each element of the set represented by

11 . At the top of the figure are the vertices, File, Edit, View, Insert, Format, and Help,
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Figure 3.10: Event-flow Graph for the Main Component of MS WordPad.

that represent the pull-down menu of MS WordPad. They are menu-open events that are

available when the Main component is first invoked; they form the set B. Once File has

been performed in WordPad any of the events in 11 may be performed; there are edges in

the event-flow graph from File to each of these events. Note that Open is shown as a dashed

oval. This notation is used for restricted-focus events. Similarly, About and Contents are

also restricted-focus events. Hence, for this component I = {all events shown with dashed

ovals}. Other events such as Save, Cut, Copy, and Paste are all system-interaction events.

The next section presents an algorithm to construct an event-flow graph for a given

GUI.

3.6.1 Construction of Event-flow Graphs

The construction of event-flow graphs is based on the structure of the GUI. The

classification of events in the previous section is used by an algorithm that constructs event-
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ALGORITHM : GetFollows(

v: Vertex or Event){ 1

IF EventType(v) = menu-open 2

IF v ∈ B of the component that contains v 3

return(MenuChoices(v) ∪ {v}) ∪ B) 4

ELSE 5

return(MenuChoices(v) ∪ {v}

∪ follows(parent(v))); 6

IF EventType(v) = system-interaction 7

return(B); 8

IF EventType(v) = termination 9

return(B of Invoking component); 10

IF EventType(v) = unrestricted-focus 11

return(B ∪ B of Invoked component); 12

IF EventType(v) = restricted-focus 13

return(B of Invoked component); 14

}

Figure 3.11: Computing follows(v) for a Vertex v.

flow graphs for a GUI. Intuitively, the algorithm computes the set of follows for each event.

These sets are then used to create the edges of the event-flow graph.

The set of follows(v) can be determined using the algorithm in Figure 3.11 for

each vertex v. The recursive algorithm contains a switch structure that assigns follows(v)

according to the type of each event. If the type of the event v is a menu-open event (line

2) and v ∈ B (recall that B represents events that are available when a component is

invoked) then the user may either perform v again, its sub-menu choices, or any event in

B (line 4). However, if v 	∈ B then the user may either perform all sub-menu choices

of v, v itself, or all events in follows(parent(v)) (line 6); parent(v) is defined as any

event that makes v available. If v is a system-interaction event, then after performing v,

the GUI reverts back to the events in B (line 8). If v is a termination event, i.e., an event

that terminates a component, then follows(v) consists of all the top-level events of the

invoking component (line 10). If the event type of v is an unrestricted-focus event then

the available events are all top-level events of the invoked component available as well as all

events of the invoking component (line 12). Lastly, if v is a restricted-focus event, then

only the events of the invoked component are available.
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FileNew FileOpen Print FormatFontFileSave PageSetup ViewOptions

Figure 3.12: An Integration Tree for a Part of MS WordPad.

3.7 Integration Tree

Once all the components of the GUI have been represented as event-flow graphs,

the remaining step is to identify interactions among components. A structure called an

integration tree is constructed to identify interactions (invocations) among components.

Definition: Component Cx invokes component Cy if Cx contains a restricted-focus event

ex that invokes Cy . 2

Intuitively, the integration tree shows the invokes relationship among all the com-

ponents in a GUI. Formally, an integration tree is defined as:

Definition: An integration tree is a 3-tuple < N ,R,B >, where N is the set of components

in the GUI and R ∈ N is a designated component called the Main component. B

is the set of directed edges showing the invokes relation between components, i.e.,

(Cx, Cy) ∈ B iff Cx invokes Cy. 2

Figure 3.12 shows an example of an integration tree representing a part of the MS

WordPad’s GUI. The nodes represent the components of the MS WordPad GUI and the

edges represent the invokes relationship between the components. The tree in Figure 3.12

has an edge from Main to FileOpen showing that Main contains an event, namely Open (see

Figure 3.10) that invokes FileOpen.

It is relatively straightforward to obtain the integration tree from the computation

of follows. Modifying Lines 13..14 of the algorithm shown in Figure 3.11, one can keep

track of the components invoked. Once all the components in the GUI have been identified,

the integration tree may be constructed by adding, for each restricted-focus event ex, the

element (Cx, Cy) to B where Cx is the component that contains ex and Cy is the component

that it invokes.
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Visible events = {“TV”, “LCD”, 
“Default Resolution”, “800 x 600”, “Cancel”, “OK”}

TV OK

LCD Default Resolution

TV Default Resolution
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Figure 3.13: (a) A Snap-shot of the GUI at Implementation Time, (b) the Set of Visible
Events, (c) a Few Legal Event-sequences, and (d) the GUI at Run-time.

3.8 Representing GUI Test Cases

The GUI representation presented in this chapter is used in this dissertation for

GUI testing. To test a GUI, event sequences for the GUI must be executed.

Definition: A legal event sequence of a GUI is e1; e2; e3; ...; en where either (ei, ei+1) ∈

E, for some component of the GUI, or ei is a restricted-focus event that invokes

component Cx and ei+1 is an event in Cx, for 1 ≤ i ≤ n− 1. 2

Note that a legal event sequence is less restricted than an executable event se-

quence. Hence the set of all legal event sequences also contains all executable event se-

quences. Consider the example of a GUI used to select the output of a DVD player shown

in Figure 3.13. A snap-shot of the GUI during implementation is shown in Figure 3.13(a).

The GUI contains six events, namely “TV”, “LCD”, “Default Resolution”, “800 × 600”,

“Cancel”, and “OK” ( Figure 3.13(b)). Note that all these events are visible to the GUI
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user. Since the event-flow graph is developed using the visibility information, the three

event sequences shown in Figure 3.13(c) are legal. However, note that during execution,

if the event “TV” is performed, the two events “Default Resolution” and “800 × 600”

are greyed-out, i.e., their Enabled properties are False. Hence, event sequence 3, although

legal, is not executable. During testing, it is important to test legal sequences, even though

they may not all be executable.

A formal representation of a GUI test case is as follows:

Definition: A GUI test case T is a triple < S0, e1; e2; . . . ; en, S1;S2; . . . ;Sn >, consisting

of a reachable state S0, called the initial state for T, a legal event sequence e1; e2; . . . ; en

for S0, and expected states S1;S2; . . . ;Sn, where Si = ei(Si−1) for i = 1, . . . , n. 2

For compactness, a test case may be represented by the pair < S0, e1; e2; . . . ; en >,

since the expected-state sequence may be obtained from S0 whenever needed.

3.9 Conclusions

This chapter presented the GUI representation that is the central component of

the GUI testing framework developed in this dissertation. The representation models the

state of the GUI in terms of the objects the GUI contains and their properties. Events

and their interactions are captured at a conceptually high level of abstraction. Scalability

is achieved by decomposing the GUI into manageable components, each of which can be

used as a unit of testing. The developed representation is used by all the other components

of the GUI testing framework. The next chapter shows how the representation is used to

develop coverage criteria for GUIs.



Chapter 4

Coverage Evaluator

The coverage evaluator is an important component of the GUI testing framework

and plays two roles during GUI testing. First, it employs coverage criteria to specify what

to test in a GUI by analyzing the representation of the GUI. Second, given a generated test

suite, the coverage evaluator employs coverage criteria to determine whether the test suite

has adequately tested the implemented GUI. Although at first glance it may seem that one of

these roles of the coverage evaluator is redundant, both roles are equally important because

(1) the GUI representation derived from its specifications may not accurately represent the

implementation, (2) infeasibility may prevent certain parts of the GUI from being tested,

and (3) testing may depend on certain resources, such as time, and it may be terminated

when these resources are exhausted. Consequently, it may not always be possible to test

in a GUI implementation what is recommended by the coverage criteria. Also, note that

in certain testing problems, the coverage evaluator may not necessarily be automated for

both tasks. For example, specifying what to test in a GUI may be done manually whereas

evaluating the coverage of the test suite may be done automatically.

The central mechanism of the coverage evaluator for testing software is a set of

coverage criteria, which are rules used to help determine what to test in a software and

whether a test suite has adequately tested a program. Common examples of coverage criteria

for conventional software are structural, and include statement coverage, branch coverage,

and path coverage, which require that every statement, branch and path in the program’s

code be executed by the test suite respectively. Existing coverage criteria developed for

traditional software do not address the adequacy of GUI test cases. GUIs are typically

developed using instances of precompiled elements stored in a library. The source code of

these elements may not always be available to be used for coverage evaluation based on

code. Moreover, the event sequences that the GUI must be tested for are conceptually at

a much higher level of abstraction than the code and hence cannot be obtained from the

43
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code. For the same reason, the code cannot be used to determine whether an adequate

number of these sequences have been tested on the GUI.

The above challenges suggest the need to develop coverage criteria based on events

in a GUI. The development of such coverage criteria has certain requirements. First, since

the GUI consists of components, coverage criteria must be developed for events within a

component. Second, coverage criteria must be developed for interactions among compo-

nents. Third, it should be possible to satisfy a coverage criterion by a finite-sized test suite.

The finite applicability [96] requirement holds if a coverage criterion can always be satisfied

by a finite-sized test suite. Finally, the test designer should recognize whether a coverage

criterion can be fully satisfied [88, 89]. For example, it may not always be possible to

satisfy path coverage because of the presence of infeasible paths, which are not executable

because of the context of some instructions. No test case can execute along an infeasible

path, perhaps resulting in loss of coverage. Detecting infeasible paths in general is a NP

complete problem. Infeasibility can also occur in GUIs. Similar to infeasible paths in code,

static analysis of the GUI may not reveal infeasible sequences of events. For example, by

performing static analysis of the menu structure of MS Wordpad, one may construct a test

case with Paste as the first event. However, experience of using the software shows that

such a test case will not execute since Paste is highlighted only after a Cut or Copy.1

In this chapter, a new class of coverage criteria called event-based coverage criteria

is defined. The key idea is to define the coverage of a test suite in terms of GUI events

and their interactions. Since the GUI is composed of components, two kinds of coverage

criteria are developed – intra-component coverage criteria for events within a component and

inter-component coverage criteria for events among components. Intra-component criteria

include event coverage, event-interaction coverage, and length-n event-sequence coverage.

The length-n event-sequence coverage is also used for inter-component testing in addition

to invocation coverage and invocation-termination coverage. Algorithms are provided to

evaluate intra- and inter-component coverage of a given test suite. Experiments demonstrate

the usefulness of the coverage criteria and a correlation between event-based coverage of

the WordPad’s GUI and the statement coverage of its underlying code.

The next section presents coverage criteria for event interactions within a com-

ponent. Section 4.2 presents coverage criteria for events among components. Section 4.3

presents algorithms to evaluate intra- and inter-component coverage of the GUI for a given

test suite. In Section 4.4, the results of experiments conducted on a version of the WordPad

software are presented.

1Note that Pastewill be available if the ClipBoard is not empty, perhaps because of an external software.
External software is ignored in this simplified example.
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4.1 Intra-component Coverage

In this section, several coverage criteria for events and their interactions within a

component are defined. Recall from Section 3.6 that each GUI component is represented

as an event-flow graph in which V is a set of vertices representing all the events in the

component and E⊆V×V is a set of directed edges between vertices. The intra-component

coverage criteria are based on legal event sequences. In the remainder of this chapter, the

term event sequence will be used to mean a legal event sequence.

4.1.1 Event Coverage

Intuitively, event coverage requires each event in the component to be performed

at least once. Such a requirement is necessary to check whether each event executes as

expected.

Definition: A set P of event-sequences satisfies the event coverage criterion if and only if

for all events v ∈ V, there is at least one event-sequence p ∈ P such that event v is in

p. 2

For example, in the event-flow graph of Figure 3.10, event-coverage would require

that all the events in the event-flow graph be executed by a test case at least once. Since

there are 56 events in the event-flow graph, 56 test cases of length 1 would suffice.

4.1.2 Event-interaction Coverage

Another important aspect of GUI testing is to check the interactions among all

possible pairs of events in the component. However, these checks should be restricted to

pairs of events that may be performed in a sequence.

Definition: The event-interactions for an event e is the set {ej | (e, ej) ∈ E}. 2

This criterion requires that after an event e has been performed, all the events

that can interact with e should be executed at least once. Note that this requirement is

equivalent to requiring that each element in E be covered by at least one test case.

Definition: A set P of event-sequences satisfies the event-interaction coverage criterion if

and only if for all elements (ex, ey) ∈ E, there is at least one event-sequence p ∈ P

such that p contains (ex, ey). 2

For example, the event-flow graph of Figure 3.10 contains 791 edges. All length 2

test cases that cover these 791 edges would satisfy event-interaction coverage.
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Figure 4.1: The Subsume Relation between Event-based Coverage Criteria.

4.1.3 Length-n Event-sequence Coverage

In certain cases, the behavior of events may change when performed in different

contexts. In such cases, event coverage and event-interaction coverage on their own are

weak requirements for sufficient testing. A criterion that captures the contextual impact

is defined next. Intuitively, the context for an event e is the sequence of events performed

before e. Formally, context is defined as:

Definition: The context of an event en in the event-sequence < e1, e2, e3, . . . , en, . . . > is

< e1, e2, e3, ..., en−1 >. 2

An event may be performed in an infinite number of contexts. For finite ap-

plicability, a limit is imposed on the length of the event-sequence. Hence, the length-n

event-sequence criterion is defined as:

Definition: A set P of event-sequences satisfies the length-n event-sequence coverage cri-

terion if and only if P contains all event-sequences of length equal to n. 2

This criterion to similar to the length-n path coverage criterion defined by Gourlay

for conventional software [29], which requires coverage of all subpaths in the program’s

flow-graph of length less than or equal to n. As the length of the event-sequence increases,

the number of possible contexts also increases.

4.1.4 Subsumption

A coverage criterion C∞ subsumes criterion C∈ if every test suite that satisfies C∞

also satisfies C∈ [68]. Since event coverage and event-interaction coverage are special cases of

length-n event-sequence coverage, i.e., length 1 event-sequence and length 2 event-sequence

coverage respectively, it follows that length-n event-sequence coverage subsumes event and
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event-interaction coverage. Moreover, if a test suite satisfies event-interaction coverage, it

must also satisfy event coverage. Hence, event-interaction subsumes event coverage. The

subsume relationship between the coverage criteria is summarized in Figure 4.1. The

nodes represent the criteria whereas the edges represent the subsume relation. Note that

the figure also shows inter-component coverage criteria (in reverse color). The relationships

among these criteria is presented in the next section.

4.2 Inter-component Criteria

The goal of inter-component coverage criteria is to ensure that all interactions

among components are tested. In GUIs, the interactions take the form of invocation of

components, termination of components, and more generally, event-sequences that start

with an event in one component and end with an event in another component.

4.2.1 Invocation Coverage

Intuitively, invocation coverage requires that each restricted-focus event in the

GUI be performed at least once. Such a requirement is necessary to check whether each

component can be invoked.

Definition: A set P of event-sequences satisfies the invocation coverage criterion if and

only if for all restricted-focus events i ∈ I, where I is the set of all restricted-focus

events in the GUI, there is at least one event-sequence p ∈ P such that event i is in

p. 2

Note that event coverage subsumes invocation coverage (Figure 4.1) since it re-

quires that all events be performed at least once, including restricted-focus events.

4.2.2 Invocation-termination Coverage

It is important to check whether a component can be invoked and terminated.

Definition: The invocation-termination set IT of a GUI is the set of all possible length

2 event sequences < ei, ej >, where ei invokes component Cx and ej terminates

component Cx, for all components Cx ∈ N . 2

Intuitively, the invocation-termination coverage requires that all length 2 event

sequences consisting of a restricted-focus event followed by the invoked component’s termi-

nation events be tested.
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Definition: A set P of event-sequences satisfies the invocation-termination coverage crite-

rion if and only if for all i ∈ IT , there is at least one event-sequence p ∈ P such that

i is in p. 2

Satisfying the invocation-termination coverage criterion assures that each compo-

nent is invoked at least once and then terminated immediately, if allowed by the GUI’s

specifications. For example, in WordPad, the component FileOpen is invoked by the event

Open and terminated by either Open or Cancel. Note that WordPad’s specification do not

allow Open to terminate the component unless a file has been selected. On the other hand,

Cancel can always be used to terminate the component.

4.2.3 Inter-component Length-n Event-sequence Coverage

Finally, the inter-component length-n event-sequence coverage criterion requires

testing all event-sequences that start with an event in one component and end with an

event in another component. Note that such an event-sequence may use events from a

number of components. A criterion is defined to cover all such interactions.

Definition: A set P of event-sequences satisfies the inter-component length-n event-sequence

coverage criterion for components C1 and C2 if and only if P contains all length-n

event-sequences v1; v2; v3; . . . ; vn such that v1 ∈ V ertices(C1) and vn ∈ V ertices(C2).

Events v2, v3, ..., vn−1 may belong to C1 or C2 or any other component Ci. 2

Note that the inter-component length-n event-sequence coverage subsumes invocation-

termination coverage (Figure 4.1) since length-n event sequences also include length 2 se-

quences.

4.3 Evaluating Coverage

Now that intra- and inter-component coverage criteria have been formally defined,

the remaining question is how to evaluate the coverage of a test suite using these criteria.

In this section, algorithms to evaluate the coverage of the GUI for a given test suite are

presented.

4.3.1 Evaluating Intra-component Coverage

Given an event-flow graph for a component, the intra-component coverage of a

given test suite may be evaluated using the elements of this graph. Figure 4.2 shows

a dynamic programming algorithm to compute the percentage of length-n event-sequences
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ALGORITHM : ComputePercentageTested( 1
S: Set of Components; 2
T: Test Suite; 3
M: Maximum Event-sequence Length) 4
{count←− ComputeCounts(T, S,M); 5,6
/* counti,j is the tested number
of length-j event-sequences in component i */
total ←− ComputeTotals(S,M); 7
/* totali,j is the total number
of length-j event-sequences in component i */
FOREACH i ∈ S DO 8
FOR j ←− 1 TO M DO 9
Matrixi,j ←− (counti,j/totali,j) × 100; 10

return(Matrix)} 11
SUBROUTINE : ComputeCounts( 12
T: Test Suite; S: Set of Components; 13
M: Maximum Event-sequence Length) 14
{ 15
FOREACH i ∈ S DO 16
A ←− {}; /* Empty Set */ 17
FOREACH t ∈ T DO 18
FOR k ←− 1 TO |t| DO 19
FOR j ←− k TO |t| DO 20
A ←− A ∪ {< tk...tj >} 21

FOR j ←− 1 TO M DO 22
/* count number of sets of length j */
counti,j ←− NumberOfSetsOfLength(S, j); 23

return(count)} 24
SUBROUTINE : ComputeTotals( 25
S: Set of Components; 26
M: Maximum Event-sequence Length) 27
{FOREACH j ∈ S DO 28
E ←− Edges(j); 29
V ←− Vertices(j); 30
FOREACH i ∈ V DO 31
freqi ←− 1; 32
total1,j ←− |V|; 33
FOREACH i ∈ V DO 34
newfreqi ←− 0; 35

FOR k ←− 2 TOM DO 36
FOREACH i ∈ V DO 37
x ←− follows(i); 38
totalj,k ←− totalj,k + |x| × freqi; 39
FOREACH l ∈ x DO 40
newfreqj ++; 41

freq ←− newfreq; 42
FOREACH i ∈ V DO 43
newfreqi ←− 0; 44

return(total)} 45

Figure 4.2: Computing Percentage of Tested Length-n Event-sequences of All Components.
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tested. The final result of the above algorithm isMatrix, whereMatrixi,j is the percentage

of length-j event-sequences tested on component i. Intuitively, the algorithm breaks a test

case of length-n into all possible test cases of length n − 1, n − 2, n − 3, and so on, and

counts them. It stores this result in a matrix count, where counti,j is the tested number of

length-j event-sequences in component i. The algorithm also computes the total number of

length-j event-sequences in component i and stores it in a matrix totali,j. It uses follows

to count the paths in the event-flow graph starting from each vertex.

The main algorithm is ComputePercentageTested. In this algorithm, two ma-

trices are computed (line 6,7). Counti,j is the number of length-j event-sequences in

component i that have been covered by the test suite T (line 6). Totali,j is the total

number of all possible length-j event-sequences in component i (line 7). The subrou-

tine ComputeCounts calculates the elements in count matrix. For each test case in T,

ComputeCounts finds all possible event-sequences of different lengths (line 19..21). The

number of event-sequences of each length are counted (lines 22, 23). Note that since

ComputeCounts takes a union of the event sequences, there is no danger of counting the

same event sequence twice. Intuitively, the ComputeTotals subroutine starts with single-

length event-sequences, i.e., individual events in the GUI (lines 31..33). Using follows

(line 38), the event-sequences are lengthened one event at each step. A counter keeps track

of the number of event-sequences created (line 39). For every element in the follow set

of i, the frequency counter newfreq is incremented (lines 40..41), hence counting the

total number of outgoing edges in the event-flow graph.

The result of the algorithm isMatrix, the entries of which can be interpreted as

follows:

Event Coverage requires that individual events in the GUI be exercised. These individual

events correspond to length 1 event-sequences in the GUI.Matrixj,1 j ∈ S represents

the percentage of individual events covered in each component.

Event-interaction Coverage requires that all the edges of the event-flow graph be cov-

ered by at least one test case. Each edge is effectively captured as a length 2 event-

sequence. Matrixj,2 j ∈ S represents the percentage of branches covered in each

component j.

Length-n Event-sequence Coverage is available directly fromMatrix. Each column i

ofMatrix represents the number of length-i event-sequence in the GUI.
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4.3.2 Evaluating Inter-component Coverage

The integration tree may be used in several ways to identify interactions among

components. For example, in Figure 3.12 a subset of all possible pairs of components that in-

teract would be { (Main, FileNew), (Main, FileOpen), (Main, Print), (Main, FormatFont),

(Print, Properties) }. To identify sequences such as the ones from Main to Properties,

the integration tree is traversed in a bottom-up manner, identifying interactions among

Print and Properties. Then Print and Properties are merged to form a super-component

called PrintProperties. Then interactions among Main and PrintProperties are checked.

This process continues until all components have been merged into a single super-component.

Evaluating the inter-component coverage of a given test suite requires computing the (1)

invocation coverage, (2) invocation-termination coverage, and (3) length-n event sequence

coverage.

The total number of length 1 event sequences required to satisfy the invocation

coverage criterion is equal to the number of restricted-focus events available in the GUI.

The percentage of restricted-focus events actually covered by the test cases is (x/I)× 100,

where x is the number of restricted-focus events in the test cases, and I is the total number

of restricted-focus events available in the GUI. Similarly, the total number of length 2 event

sequences required to satisfy the invocation-termination criterion is
∑
(Ii × Ti), where Ii

and Ti are the number of restricted-focus and termination events that invoke and terminate

component Ci respectively. The percentage of invocation-termination pairs actually covered

by the test cases is (x/
∑
(Ii × Ti))× 100, where x is the number of invocation-termination

pairs in the test cases.

Computing the percentage of length-n event sequences is slightly more complex.

The algorithm shown in Figure 4.3 computes the percentage of length-n event sequences

tested among GUI components. Intuitively, the algorithm obtains the number of event

sequences that end at a certain restricted-focus event. It then counts the number of event

sequences that can be extended from these sequences into the invoked component. The

main algorithm called Integrate is recursive and performs a bottom-up traversal of the

integration tree T (line 2). Other than the recursive call (line 8), Integrate makes

a call to ComputeTotalInteractions that takes two components as parameters (lines

13,14). It initializes the vector Total for all path lengths i (1 ≤ i ≤ M) (line 16,17).

Assuming that a freq matrix has been stored for each component from the freq vector of

the algorithm in Figure 4.2, i.e., freqi,j is the number of event-sequences that start with

event i and end with event j. After obtaining both frequency matrices for both C1 and

C2, for all path lengths (lines 21,26), the new vector Total is obtained by adding the
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ALGORITHM : Integrate( 1
T: Integration Tree) 2
{ 3
IF Leaf(T) 4
return(T); 5

newT ←− T; 6
FORALL c ∈ Children(T) DO 7
Integrate(c); 8
ComputeTotalInteractions(newT, c); 9
MatrixnewT+c ←− TestedEventSeqnewT+c/Total; 10
} 11
SUBROUTINE : ComputeTotalInteractions( 12
C1: Component 1; 13
C2: Component 2) 14
{ 15
FOR i ←− 1 TOM DO 16
Totali ←− 0; 17

x ←− GetCallingEvent(C1, C2); 18
FOR i ←− 1 TOM DO 19

/* get freq table of C1 for event-seq of length i */ 20
F1 ←− GetFreqTable(C1, i); 21
/* Add all values in column x */ 22
p ←− addColumn(x, F1); 23
FOR j ←− 1 TO M DO 24
/* get freq table of C2 for event-seq of length j */ 25
F2 ←− GetFreqTable(C2, j); 26
q ←− 0; 27
FOREACH k ∈ B of C2 DO 28
q ←− q + addRow(k, F2); 29
Totali+j ←− Totali+j + p × q; 30

ComputeFreqMatrix(C1, C2); 31
return(Total); 32
}

Figure 4.3: Computing Percentage of Tested Length-n Event-sequences of All Components.

frequency entries from F1 and F2 (lines 28..30). A new frequency matrix is computed

for the super-component “C1C2” (line 31). This new frequency matrix will be utilized by

the same algorithm to integrate “C1C2” to other components.

The results of the above algorithm are summarized in Matrix. Matrixi,j is

the percentage of length-j event-sequences that have been tested in the super-component

represented by the label i.

4.4 Implementation and Experiments

Two experiments were performed on the example WordPad to determine the (1)

total number of event sequences required to test the GUI and hence enable a test designer to
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compute the percentage of event sequences tested, and (2) correlation between event-based

coverage of the GUI and statement coverage of the underlying code.

The coverage evaluation algorithms were implemented in C. They were executed on

a 300MHz Pentium-based computer with 256MB of RAM. In this experiment, specifications

and a new implementation of the WordPad software was used. The software consists of 36

modal windows, and 362 events (not counting short-cuts).

4.4.1 Computing Total Number of Event-sequences for WordPad

The purpose of the first experiment was to determine the total number of event

sequences required to test WordPad with respect to the new coverage criteria. The following

steps were performed:

Identifying Components and Events: Individual WordPad components and events within

each component were identified. Table 3.1 shown earlier lists some of the components

of WordPad that were used in this experiment.

Creating Event-flow Graphs: The next step was to construct event-flow graphs for the

GUI. Figure 3.10 shows the event-flow graph of the Main component of WordPad.

Recall that each node in the event-flow graph represents an event.

Computing Event-sequences: Once the event-flow graphs were available, the total num-

ber of possible event-sequences of different lengths in each component were computed

using the computeTotals subroutine in Figure 4.2. Note that these event-sequences

may also include infeasible event-sequences. The total number of event-sequences is

shown in Table 4.1. The rows represent the components and the shaded rows repre-

sent the inter-component interactions. The columns represent different event-sequence

lengths. Recall that an event-sequence of length 1 represents event coverage whereas

an event-sequence of length 2 represents event-interaction coverage. The columns 1’

and 2’ represent invocation and invocation-termination coverage respectively.

The results of the first experiment show that, not surprisingly, the total number of

event sequences grows with increasing length. Note that longer sequences subsume shorter

sequences; e.g., if all event sequences of length 5 are tested, then so are all sequences of

length-i, where i ≤ 4. It is difficult to determine the maximum length of event sequences

needed to test a GUI. The large number of event sequences show that it is impractical to

test a GUI for all possible event sequences. Rather, depending on the resources, a subset

of “important” event sequences should be identified, generated and executed. Identifying

such important sequences requires that they be ordered by assigning a priority to each

event sequence. For example, event sequences that are performed in the Main component
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Component Name 1’ 2’ 1 2 3 4 5 6
Main 56 791 14354 255720 4490626 78385288
FileOpen 10 80 640 5120 40960 327680
FileSave 10 80 640 5120 40960 327680
Print 12 108 972 8748 78732 708588
Properties 13 143 1573 17303 190333 2093663
PageSetup 11 88 704 5632 45056 360448
FormatFont 9 63 441 3087 21609 151263
Print+Properties 1 2 13 260 3913 52520 663013
Main+FileOpen 1 2 10 100 1180 17160 278760
Main+FileSave 1 2 10 100 1180 17160 278760
Main+PageSetup 1 2 11 110 1298 18876 306636
Main+FormatFont 1 2 9 81 909 13311 220509
Main+Print+Properties 12 145 1930 28987 466578

Event-sequence Length

Table 4.1: Total Number of Event-sequences for Selected Components of WordPad. Shaded
Rows Show Number of Interactions Among Components.

may be given higher priority since they will be used more frequently; all the users start

interacting with the GUI using the Main component. The components that are deepest

in the integration tree may be used the least. This observation leads to a heuristic for

ordering the testing of event sequences within components of the GUI. The structure of the

integration tree may be used to assign priorities to components; Main will have the highest

priority, decreasing for components at the second level, with the deepest components having

the lowest priority. A large number of event sequences in the high priority components may

be tested first; the number will decrease for low priority components.

4.4.2 Correlation Between Event-based Coverage and Statement Cover-

age

The second experiment was performed to determine exactly what percentage of

the underlying code is executed when event-sequences of increasing length are executed

on the GUI, and how code coverage relates to event coverage. The following steps were

performed:

Code Instrumentation: The underlying code of WordPad was instrumented to produce a

statement trace, i.e., a sequence of statements in the order in which they are executed.

Examining such a trace allowed determining which statements are executed by a test

case.

Event-sequence Generation: All event-sequences up to a specific length were generated.

ComputeTotals in Figure 4.2 was modified to output the event sequences as they

were obtained. This change resulted in an event-sequence generation algorithm that

constructs event sequences of increasing length. The dynamic programming algorithm
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constructs all event sequences of length 1. It then uses follows to extend each event

sequence by one event, hence creating all length 2 event-sequences. All event-sequences

up to length 3 were obtained; in all, 21659 event-sequences were obtained.

Controlling GUI’s State: As mentioned earlier in Section 1.2, the controllability prob-

lem also occurs in GUIs, and for each test case, appropriate events may need to be

performed on the GUI to bring it to a desired state Si. This sequence of events is

called the prefix, Pi, of the test case. Although generating the prefix in general may

require the development of expensive solutions, a heuristic was used for this exper-

iment. Each test case was executed in a fixed state S0 in which WordPad contains

text, part of the text was highlighted, the clipboard contains a text object, and the

file system contains two text files. The event-flow graphs and the integration tree were

traversed to produce the prefix of each test case. Note that using this heuristic may

render some of the event sequences non-executable because of infeasibility. However,

the results of this experiment will show that although infeasible sequences do exist,

they are of no consequence to the results of this experiment. WordPad was modified

so that no statement trace was produced for Pi.

Test-case Execution: After all the event-sequences up to length 3 were obtained, they

were executed on the GUI using the automated test executor. Execution traces were

collected during the test runs. The test case executor executed without any interven-

tion for 30 hours. Note that 4189 (or 19.3%) of the test cases could not be executed

because of infeasibility. These infeasible sequences were detected during test case

execution.

Analysis: The traces were analyzed to determine the number of statements that were

executed by event-sequences of length 1, 2, and 3. The graph in Figure 4.4 shows that

almost 92% of the statements were executed by just individual events. As the length

of the event sequences increased, very few new statements were executed (5%). Hence,

a high statement coverage of the underlying code may be obtained by executing short

event sequences.

The relationship between event sequences and code, obtained from this experiment,

can be explained in terms of the design of the WordPad GUI. Since the GUI is an event-

driven software, a method called an event handler is implemented for each event. Executing

an event caused the execution of its corresponding event handler. Code inspection of the

WordPad implementation revealed that there were few or no branch statements in the code

of the event handler. Consequently, when an event was performed, most of the statements

in the event-handler were executed. Hence high statement coverage was obtained by just
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Figure 4.4: The Correlation Between Event-based Coverage and Statement Coverage of
WordPad.

performing individual events. Whether other GUIs exhibit similar behavior requires a

detailed analysis of a number of GUIs and their underlying code.

The result shows that statement coverage of the underlying code can be a mislead-

ing coverage criterion for GUI testing. A test designer who relies on statement coverage of

the underlying code for GUI testing may test only short event sequences. However, test-

ing only short sequences is not enough. Longer event sequences lead to different states of

the GUI and that testing these sequences may help detect a larger number of faults than

short event sequences. For example, in WordPad, the event Find Next (obtained by click-

ing on the Edit menu) can only be executed after at least 6 events have been performed;

the shortest sequence of events needed to execute Find Next is Edit; Find; TypeInText;

FindNext2; OK; Edit; Find Next, which has 7 events. If only short sequences (< 3) are

executed on the GUI, a bug in Find next may not be detected. Extensive studies of the

fault-detection capabilities of executing short and long event sequences for GUI testing are

needed and are targeted for future work. Another possible extension to this experiment is

to determine the correlation between event-based coverage and other code-based coverage,

e.g., branch coverage.
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4.5 Conclusions

In this chapter, new coverage criteria for GUI testing based on GUI events and their

interactions were presented. Three new coverage criteria for events within a component were

defined: event coverage, event-interaction coverage, and length-n event-sequence coverage.

Invocation coverage, invocation-termination coverage, and inter-component length-n event-

sequence coverage were defined for events among components. Algorithms were provided

to evaluate the coverage of a given test suite. Experiments were performed on the example

Wordpad showing the number of event sequences required to test a part of Wordpad and

to demonstrate the correlation between event coverage and code coverage.



Chapter 5

Test Case Generator

The test case generator provides input to test the GUI. As described in Section 3.8,

the input is in the form of test cases consisting of a legal sequence of events e1; e2; e3; . . . ; en

executed on the GUI starting in a specific reachable state S0, called the initial state for the

test case. This chapter presents the design of a test case generator.

Designing the test case generator requires that it should exploit the component

hierarchy of the GUI to generate test cases so that the test case generation process is scalable

and that the test cases generated for a specific component are usable across multiple GUIs

that employ the same component. Moreover, it should employ the high-level representation

of events so that the generated test cases are free from platform-specific details, making

them portable across platforms.

In principle, an infinite number of event sequences may be performed on a GUI.

Depending on the resources available, a manageable number of these event sequences should

be generated as test cases and tested on the GUI. There are various possible approaches to

automatically generate test cases for GUIs, including the following:

1. Random:

This approach randomly generates sequences of GUI events. Although straightforward

to implement, this approach may yield a large number of event sequences that are not

legal and hence not executable, wasting valuable resources. Moreover, since the test

designer has no control over choice of event sequences, they may not have acceptable

test coverage.

2. Structural:

This approach generates legal event sequences by employing the structure of the GUI,

represented by event-flow graphs and an integration tree. Recall that this approach

was used in an experiment in Section 4.4.2 to generate short event sequences. Even

in this controlled experiment, almost 20% of the event-sequences were not executable

58
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because of infeasibility. As the length of the event sequences increases, the number of

infeasible event sequences may become unacceptably large.

3. Commonly-used Tasks:

In this approach, the test designer identifies commonly used tasks for the GUI; these

are then input to the test case generator. The generator employs the GUI repre-

sentation and specifications to generate event sequences to achieve the tasks. The

motivating idea behind this approach is that GUI test designers will often find it eas-

ier to specify typical user goals than to specify sequences of GUI events that users

might perform to achieve those goals. The software underlying any GUI is designed

with certain intended uses in mind; thus the test designer can describe those intended

uses. Note that a similar approach is used to manually perform usability testing of

the GUI [94]. However, it is difficult to manually obtain different ways in which a user

might interact with the GUI to achieve typical goals. Users may interact in idiosyn-

cratic ways, which the test designer might not anticipate. Additionally, there can be

a large number of ways to achieve any given goal, and it would be very tedious for

the GUI tester to specify even those event sequences that s/he can anticipate. The

test case generator described in this chapter uses an automated technique to generate

GUI test cases for commonly used tasks.

Note that test cases generated for commonly used tasks may not satisfy any of the

structural coverage criteria defined in Chapter 4. In fact, the underlying philosophies

of testing software using its structure vs. commonly used tasks are fundamentally

different. The former tests software for event sequences as dictated by the software’s

structure whereas the latter determines whether the software executes correctly for

commonly used tasks. Both testing methods are valuable and may be used to uncover

different types of errors. The structural coverage criteria may be used to determine

the structural coverage of test cases generated for commonly used tasks; missing event

sequences may then be generated using a structural test case generation technique.

This chapter presents details of an approach that uses AI planning to generate

test cases for GUIs. The test designer provides a specification of initial and goal states for

commonly used tasks. An automated planning system generates plans for each specified

task. Each generated plan represents a test case that is a reasonable candidate for helping

test the GUI, because it reflects an intended use of the system.

This technique of using planning for test case generation is called Planning Assisted

Testing (PAT). The test case generator is called Planning Assisted Tester for grapHical

user interface Systems (PATHS). The test case generation process is partitioned into two
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Phase Step Test Designer PATHS

Setup 1 Derive Planning Op-
erators from the GUI
representation

2 Define Preconditions and Ef-
fects of Operators

Plan

Generation

3 Identify a Task T

4 Generate Test Cases
for T

Iterate 3 and 4 for Multiple Scenarios

Table 5.1: Roles of the Test Designer and PATHS During Test Case Generation.

phases, the setup phase and plan-generation phase. In the first step of the setup phase,

the GUI representation is employed to identify planning operators, which are used by the

planner to generate test cases. By using knowledge of the GUI, the test designer defines the

preconditions and effects of these operators. During the second or plan-generation phase,

the test designer describes scenarios (tasks) by defining a set of initial and goal states for test

case generation. Finally, PATHS generates a test suite for the tasks using the plans. The

test designer can iterate through the plan-generation phase any number of times, defining

more scenarios and generating more test cases. Table 5.1 summarizes the tasks assigned to

the test designer and those performed by PATHS.

The remainder of this chapter presents the design of PATHS. In particular, the

derivation of planning operators and how AI planning techniques are used to generate test

cases is described. An algorithm that performs a restricted form of hierarchical planning is

presented that employs new hierarchical operators and leads to an improvement in planning

efficiency and to the generation of multiple alternative test cases. The algorithm has been

implemented in PATHS, and Section 5.4 presents the results of experiments in which test

cases for the example WordPad system were generated.

5.1 Setting up the Planning Problem

As described in Section 2.6, setting up a planning problem requires performing

two related activities: (1) defining planning operators in terms of preconditions and effects,

and (2) describing tasks in the form of initial and goal states. This section provides details

of these two activities in the context of using planning for test case generation.
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5.1.1 Modeling Planning Operators

For a given GUI, the simplest approach to obtain planning operators would be to

identify one operator for each GUI event (Open, File, Cut, Paste, etc.) directly from the

GUI representation, ignoring the GUI’s component hierarchy. For the remainder of this

chapter, these operators, presented earlier in Section 3.3, are called primitive operators.

When developing the GUI representation, the test designer defines the preconditions and

effects for all these operators. Although conceptually simple, this approach is inefficient for

generating test cases for GUIs as it results in a large number of operators.

An alternative modeling scheme, and the one used in this test case generator,

uses the component hierarchy and creates high-level operators that are decomposable into

sequences of lower level ones. These high-level operators are called system-interaction oper-

ators and component operators. The goal of creating these high-level operators is to control

the size of the planning problem by dividing it into several smaller planning problems. Intu-

itively, the system-interaction operators fold a sequence of menu-open or unrestricted-focus

events and a system-interaction event into a single operator, whereas component operators

encapsulate the events of the component by treating the interaction within that component

as a separate planning problem. Component operators need to be decomposed into low-level

plans by an explicit call to the planner. Details of these operators are presented next.

The first type of high-level operators are called system-interaction operators.

Definition: A system-interaction operator is a single operator that represents a sequence of

zero or more menu-open and unrestricted-focus events followed by a system-interaction

event. 2

Consider a small part of the WordPad GUI: one pull-down menu with one option

(Edit) which can be opened to give more options, i.e., Cut and Paste. The events available

to the user are Edit, Cut and Paste. Edit is a menu-open event, and Cut and Paste

are system-interaction events. Using this information the following two system-interaction

operators are obtained.

EDIT_CUT = <Edit, Cut>

EDIT_PASTE = <Edit, Paste>

The above is an example of an operator-event mapping that relates system-interaction

operators to GUI events. The operator-event mappings fold the menu-open and unrestricted

focus events into the system-interaction operator, thereby reducing the total number of op-

erators made available to the planner, resulting in planning efficiency. These mappings are



62

used to replace the system-interaction operators by their corresponding GUI events when

generating the final test case.

In the above example, the events Edit, Cut and Paste are hidden from the planner,

and only the system-interaction operators, namely, EDIT CUT and EDIT PASTE, are made

available to the planner. This abstraction prevents generation of test cases in which Edit

is used in isolation, i.e., the model forces the use of Edit either with Cut or with Paste,

thereby restricting attention to meaningful interactions with the underlying software.1

The second type of high-level operators are called component operators.

Definition: A component operator encapsulates the events of the underlying component by

creating a new planning problem and its solution represents the events a user might

generate during the focused interaction. 2

The component operators employ the component hierarchy of the GUI so that

test cases can be generated for each component, thereby resulting in greater efficiency. For

example, consider a small part of the WordPad’s GUI shown in Figure 5.1(a): a File menu

with two restricted-focus events, namely Open and SaveAs. Both these events invoke two

components called Open and SaveAs respectively. The events in both windows are quite sim-

ilar. For Open the user can exit after pressing Open or Cancel; for SaveAs the user can exit

after pressing Save or Cancel. For simplicity, assume that the complete set of events avail-

able is Open, SaveAs, Open.Select, Open.Up, Open.Cancel, Open.Open, SaveAs.Select,

SaveAs.Up, SaveAs.Cancel and SaveAs.Save. (Note that the component name is used to

disambiguate events.) Once the user selects Open, the focus is restricted to Open.Select,

Open.Up, Open.Cancel and Open.Open. Similarly, when the user selects SaveAs, the fo-

cus is restricted to SaveAs.Select, SaveAs.Up, SaveAs.Cancel and SaveAs.Save. Two

component operators called File Open and File SaveAs are obtained.

The component operator is a complex structure since it contains all the necessary

elements of a planning problem, including the initial and goal states, the set of objects,

and the set of operators. The prefix of the component operator is the sequence of menu-

open and unrestricted-focus events that lead to the restricted-focus event, which invokes the

component in question. This sequence of events is stored in the operator-event mappings.

For the example of Figure 5.1(a), the following two operator-event mappings are obtained,

one for each component operator:

File Open = <File, Open>, and

File SaveAs = <File, SaveAs>.

1Test cases in which Edit stands in isolation can be created by (1) testing Edit separately, or (2) inserting
Edit at random places in the generated test cases.
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SaveAs

Save

File_Open

File_SaveAs
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Define Abstraction

Define Abstraction
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(c)
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Component Operator Template
Operator Name: File_Open
Initial State: determined at run time

Goal State: determined at run time

Operator List:
{Up, Select, Open, Cancel}

Component Operator Template
Operator Name: File_SaveAs
Initial State: determined at run time

Goal State: determined at run time

Operator List:
{Up, Select, Save, Cancel}

(b)

Figure 5.1: (a) Open and SaveAs Windows as Component Operators, (b) Component Oper-
ator Templates, and (c) Decomposition of the Component Operator Using Operator-event
Mappings and Making a Separate Call to the Planner to Yield a Sub-plan.

The suffix of the component operator represents the modal dialog. A component

operator definition template is created for each component operator. This template

contains all the essential elements of the planning problem, i.e., the set of operators that

are available during the interaction with the component and initial and goal states, both

determined dynamically at the point before the call. The component operator definition

template created for each operator is shown in Figure 5.1(b).
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The component operator is decomposed in two steps: (1) using the operator-events

mappings to obtain the component operator prefix, and (2) explicitly calling the planner

to obtain the component operator suffix. Both the prefix and suffix are then substituted

back into the high-level plan. At the highest level of abstraction, the planner will use

the component operators, i.e., File Open and File SaveAs, to construct plans. For ex-

ample, in Figure 5.1(c), the high-level plan contains File Open. Decomposing File Open

requires (1) retrieving the corresponding GUI events from the stored operator-event map-

pings (File, Open), and (2) invoking the planner, which returns the sub-plan (Up, Select,

Open). File Open is then replaced by the sequence (File, Open, Up, Select, Open). Since

the higher-level planning problem has already been solved before invoking the planner for

the component operator, the preconditions and effects of the high-level component operator

are used to determine the initial and goal states of the sub-plan.

5.1.2 Modeling the Initial and Goal State and Generating Test Cases

Once all the operators have been identified and defined, the test designer begins

the generation of particular test cases by identifying a task, consisting of an initial state

and a goal state. The test designer then codes these initial and goal states. Recall that

GUI states are represented by a set of properties of GUI objects. Figure 5.2 shows an

example of a task for WordPad. Figure 5.2(a) shows the initial state: a collection of

files stored in a directory hierarchy. The contents of the files are shown in boxes, and the

directory structure is shown in an Exploringwindow. Assume that the initial state contains

a description of the directory structure, the location of the files, and the contents of each

file. Using these files and WordPad’s GUI, a goal of creating the new document shown in

Figure 5.2(b) and then storing it in file new.doc in the /root/public directory is defined.

Figure 5.2(b) shows this goal state that contains, in addition to the old files, a new file

stored in /root/public directory. Note that new.doc can be obtained in numerous ways,

e.g., by loading file Document.doc, deleting the extra text and typing in the word final,

by loading file doc2.doc and inserting text, or by creating the document from scratch by

typing in the text. The code for the initial state and the changes needed to achieve the goal

states is shown in Figure 5.3. Once the task has been specified, the system automatically

generates a set of test cases that achieve the goal.
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(a)

This is the text that must be modified.
This is the text that must be modified.

This needs to be modified.
This needs to be modified.

This is the text.
This is the text.

(b)

This is the text that must be modified.
This is the text that must be modified.

This needs to be modified.
This needs to be modified.

This is the text.
This is the text.

This is the final text.
This is the final text.

new.doc

Figure 5.2: A Task for the Planning System; (a) the Initial State, and (b) the Goal State.

5.2 Generating Plans

The test designer begins the generation of particular test cases by inputing the

defined operators into PATHS and then identifying a task, such as the one shown in Fig-

ure 5.2, that is defined in terms of an initial state and a goal state. PATHS automatically

generates a set of test cases that achieve the goal. An example of a plan is shown in Fig-

ure 5.4. (Note that TypeInText() is a keyboard event.) This plan is a high-level plan that

must be translated into primitive GUI events. The translation process makes use of the
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Initial State:
isCurrent(root)
contains(root private)
contains(private Figures)
contains(private Latex)
contains(Latex Samples)
contains(private Courses)
contains(private Thesis)
contains(root public)
contains(public html)
contains(html gif)
containsfile(gif doc2.doc)
containsfile(private 

Document.doc)
containsfile(Samples 
report.doc)
currentFont(Times Normal 

12pt)
in(doc2.doc This)
in(doc2.doc is)
in(doc2.doc the)
in(doc2.doc text.)
isText(This)
isText(is)
isText(the)
isText(text)
after(This is)
after(is the)
after(the text.)

font(This Times Normal 12pt)
font(is Times Normal 12pt)
font(the Times Normal 12pt)
font(text. Times Normal 

12pt)
…………….
Similar descriptions for 
Document.doc and report.doc

Goal State:
containsfile(public new.doc)
in(new.doc This)
in(new.doc is)
in(new.doc the)
in(new.doc final)
in(new.doc text.)
after(This is)
after(is the)
after(the final)
after(final text.)
font(This Times Normal 12pt)
font(is Times Normal 12pt)
font(the Times Normal 12pt)
font(final Times Normal 

12pt)
font(text. Times Normal 

12pt)
……………….

Figure 5.3: Initial State and the changes needed to reach the Goal State.

operator-event mappings stored during the modeling process. One such translation is shown

in Figure 5.5. This figure shows the component operators contained in the high-level plan

are decomposed by (1) inserting the expansion from the operator-event mappings, and (2)

making an additional call to the planner. Since the maximum time is spent in generating

the high-level plan, it is desirable to generate a family of test cases from this single plan.

This goal is achieved by generating alternative sub-plans at lower levels. One of the main

advantages of using the planner in this application is to automatically generate alternative

plans (or sub-plans) for the same goal (or sub-goal). Generating alternative plans is impor-

tant to model the various ways in which different users might interact with the GUI, even if

they are all trying to achieve the same goal. AI planning systems typically generate only a

single plan; the assumption made there is that the heuristic search control rules will ensure
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Figure 5.4: A Plan Consisting of Component Operators and a GUI Event.

that the first plan found is a high quality plan. PATHS generates alternative plans in the

following two ways.

1. Generating multiple linearizations of the partial-order plans. Recall from an earlier

discussion (Section 2.6) that the ordering constraints O only induce a partial ordering,

so the set of solutions are all linearizations of S (plan steps) consistent with O. Any

linear order consistent with the partial order is a test case. All possible linear orders

of a partial-order plan result in a family of test cases. Multiple linearizations for a

partial-order plan were shown earlier in Figure 2.3.

2. Repeating the planning process, forcing the planner to generate a different test case

at each iteration.

The sub-plans are generated much faster than generating the high-level plan and

can be substituted into the high-level plan to obtain alternative test cases. One such

alternative low-level test case generated for the same task is shown in Figure 5.6. Note the

use of nested invocations to the planner during component-operator decomposition.

5.3 Algorithm for Generating Test Cases

The test case generation algorithm is shown in Figure 5.7. The operators are

assumed to be available before making a call to this algorithm, i.e., steps 1-3 of the test

case generation process shown in Table 5.1 must be completed before making a call to this

algorithm. The parameters (lines 1..5) include all the components of a planning problem

and a threshold (T) that controls the looping in the algorithm. The loop (lines 8..12)

contains the explicit call to the planner (Φ). The returned plan p is recorded with the

operator set, so that the planner can return an alternative plan in the next iteration (line

11). At the end of this loop, planList contains all the partial-order plans. Each partial-

order plan is then linearized (lines 13..16), leading to multiple linear plans. Initially the
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Figure 5.5: Expanding the Higher Level Plan.

test cases are high-level linear plans (line 17). The decomposition process leads to lower

level test cases. The high-level operators in the plan need to be expanded/decomposed to

get lower level test cases. If the step is a system-interaction operator, then the operator-

event mappings are used to expand it (lines 20..22). However, if the step is a component

operator, then it is decomposed to a lower level test case by (1) obtaining the GUI events

from the operator-event mappings, (2) calling the planner to obtain the sub-plan, and (3)

substituting both these results into the higher level plan. Extraction functions are used

to access the planning problem’s components (lines 24..27). The lowest level test cases,

consisting of GUI events, are returned as a result of the algorithm (line 33).
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Figure 5.6: An Alternative Expansion Leads to a New Test Case.

5.4 Experiments

A prototype of PATHS was developed and several sets of experiments were con-

ducted to determine whether PATHS is practical and useful. A summary of the results of

these experiments is given in the following sections.

5.4.1 Generating Test Cases for Multiple Tasks

In this first experiment, PATHS was used to generate test cases for WordPad.

This experiment was executed on a Pentium-based computer with 200MB RAM running

Linux OS. Examples of the generated high-level test cases are shown in Table 5.2. The

total number of GUI events in WordPad was determined to be approximately 362. Since
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Lines
Algorithm :: GenTestCases(
Λ = Operator Set; 1
D = Set of Objects; 2
I = Initial State; 3
G = Goal State; 4
T = Threshold) { 5

planList ← {}; 6
c← 0; 7
/* Successive calls to the planner (Φ),
modifying the operators before each call */
WHILE ((p == Φ(Λ, D, I, G)) ! = NO PLAN) 8

&& (c < T ) DO { 9
InsertInList(p, planList); 10
Λ ← RecordPlan(Λ, p); 11
c++} 12

linearPlans ← {};/* No linear Plans yet */ 13
/* Linearize all partial order plans */
FORALL e ∈ planList DO { 14
L ← Linearize(e); 15
InsertInList(L, linearPlans)} 16

testCases ← linearPlans; 17
/* decomposing the testCases */
FORALL tc ∈ testCases DO { 18
FORALL C ∈ Steps(tc) DO { 19
IF (C == systemInteractionOperator) THEN { 20
newC ← lookup(Mappings, C); 21
REPLACE C WITH newC IN tc} 22

ELSEIF (C == componentOperator) THEN { 23
ΛC ← OperatorSet(C); 24
GC ← Goal(C); 25
IC ← Initial(C); 26
DC ← ObjectSet(C); 27
/* Generate the lower level test cases */
newC ← APPEND(lookup(Mappings, C),
GenTestCases(ΛC,DC, IC,GC, T)); 28

FORALL nc ∈ newC DO { 29
copyOftc← tc; 30
REPLACE C WITH nc IN copyOftc; 31
APPEND copyOftc TO testCases}}}} 32

RETURN(testCases)} 33

Figure 5.7: The Complete Algorithm for Generating Test Cases

mouse and keyboard events are part of the GUI, three operators for mouse and keyboard

events were defined in addition to the primitive and high-level operators. After analysis
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Plan Plan Plan
No. Step Action

1 1 FILE-OPEN(“private”, “Document.doc”)
2 DELETE-TEXT(“that”)
2 DELETE-TEXT(“must”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)

2 1 FILE-OPEN(“public”, “doc2.doc”)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 DELETE-TEXT(“needs”)
2 DELETE-TEXT(“to”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)

3 1 FILE-OPEN(“public”, “doc2.doc”)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 DELETE-TEXT(“to”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
2 SELECT-TEXT(“needs”)
3 EDIT-CUT(“needs”)
4 FILE-SAVEAS(“public”, “new.doc”)

4 1 FILE-NEW(“public”, “new.doc”)
2 TYPE-IN-TEXT(“This”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)

Table 5.2: Some WordPad Plans Generated for the Task of Figure 5.2.

of the hierarchical structure of WordPad, 36 system-interaction and component operators

were obtained, i.e., roughly a ratio of 10 : 1. This reduction in the number of operators is

impressive and helps speed up the plan generation process, as will be shown in Section 5.4.2.
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Task Plan Sub Total
No. Time Plan Time

(sec) Time (sec)

1 0.40 0.04 0.44
2 3.16 0.00 3.16
3 3.17 0.00 3.17
4 3.20 0.01 3.21
5 3.38 0.01 3.39
6 3.44 0.02 3.46
7 4.09 0.04 4.13
8 8.88 0.02 8.90
9 40.47 0.04 40.51

Table 5.3: Time Taken to Generate Test Cases for WordPad.

Defining preconditions and effects for the 36 operators was fairly straightforward.

The average operator definition required 5 preconditions and effects, with the most complex

operator requiring 10 preconditions and effects. Although operator definition is currently

done by the test designer, this taskmay be simplified by maintaining definitions of commonly

used operators in libraries, allowing operator reuse. It is anticipated that the primitive

operators will be widely reusable, whereas the GUI dependent system-interaction operators

may not be reusable because they are based on the structure of a specific GUI. However,

component operators that are associated with a GUI component may be reused to test GUIs

that employ the component. Another technique to obtain these operators is to automatically

generate the preconditions and effects of the operators from formal GUI specifications.

Table 5.3 presents the CPU time taken to generate test cases for WordPad. Each

row in the table represents a different planning task. The first column shows the task

number; the second column shows the time needed to generate the highest-level plan; the

third column shows the average time spent to decompose all sub-plans; the fourth column

shows the total time needed to generate the test case (i.e., the sum of the two previous

columns). These results demonstrate that the maximum time is spent in generating the

high-level plan (column 2). This high-level plan is then used to generate a family of test cases

by substituting alternative low-level sub-plans. These sub-plans are generated relatively

faster (average shown in column 3), amortizing the cost of plan generation over multiple

test cases. Plan 9, which took the longest time to generate, was linearized to obtain 2 high-

level plans, each of which was decomposed to give several low-level test cases, the shortest

of which consisted of 25 GUI events.
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An automated test execution system was implemented, so that all the test cases

could be automatically executed without human intervention. Automatically executing the

test cases involved generating the physical mouse/keyboard events. Since the test cases are

represented at a high level of abstraction, the high-level events were translated into physical

events. The actual screen coordinates of the buttons, menus, etc. were derived from the

layout information.

5.4.2 Hierarchical vs. Single-level Test Case Generation

In the second experiment, the single-level test case generation was compared to

the hierarchical test case generation technique. Recall that in the single-level test case

generation technique, planning is done at a single level of abstraction, without using any

component hierarchy. The primitive operators are used, which have a one-to-one corre-

spondence with the GUI events. On the other hand, in the hierarchical test case generation

approach, the hierarchical model of the GUI is used.

Results of this experiment are summarized in Table 5.4. The table shows CPU

times for 6 different tasks. Column 1 shows the task number; Column 2 shows the length

of the test case generated by using the single-level approach and Column 3 gives its cor-

responding CPU time (‘-’ indicates that no plan was found in 1 hour.). The same task

was then used to generate another test case but this time using the system-interaction and

component operators. Column 4 shows the length of the high-level plans and Column 5

displays the time needed to generate this high-level plan and then decompose it. The timing

results show the hierarchical approach is more efficient than the single-level approach. For

example, plan 1 obtained from the hierarchical algorithm expands to give a plan of length

18, i.e., exactly the same plan obtained by running its corresponding single-level algorithm.

The efficiency results from the smaller number of operators used in the planning problem.

This experiment demonstrates the importance of the hierarchical modeling process.

The key to efficient test case generation is to have a small number of planning operators at

each level of planning. As GUIs become more complex, the modeling algorithm is able to

obtain increasing number of levels of abstraction. Exploratory analysis for the much larger

GUI of Microsoft Word was also performed. The automatic modeling process reduced the

number of operators by a ratio of 20 : 1. The results of this analysis show that even

though Microsoft Word has a larger GUI, it can be decomposed to obtain a small number

of operators at each level of planning, a key to efficient test case generation.
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Single level Hierarchical

Task Plan Time Plan Time
No. Length (sec.) Length (sec.)

1 18 8.93 3 0.11
2 20 47.62 4 0.18
3 24 189.87 5 0.14
4 26 3312.72 6 7.18
5 - - 3 0.1
6 - - 4 13.01

Table 5.4: Comparing the single level with the hierarchical approach. ‘-’ indicates that no
plan was found in 1 hour.

Component Name 1’ 2’ 1 2 3 4 5 6
Main 49 321 1567 915 1231 1987
FileOpen 9 45 112 37 23 179
FileSave 9 33 132 65 193 67
Print 11 37 313 787 3085 1314
Properties 12 65 434 312 1848 1235
PageSetup 10 43 179 144 298 233
FormatFont 8 23 172 422 142 84
Print+Properties 1 0 6 133 320 2032 326
Main+FileOpen 1 0 4 11 120 223 453
Main+FileSave 1 0 2 13 102 217 769
Main+PageSetup 1 0 5 67 56 367 233
Main+FormatFont 1 0 3 23 47 129 227
Main+Print+Properties 6 56 123 189 423

Event-sequence Length

Table 5.5: The Number of Event-sequences for Selected Components of WordPad Covered
by the Test Cases.

5.4.3 Evaluating the Coverage of a Test Suite

The third experiment was performed to determine the time taken to evaluate the

coverage of a given test suite and how the resulting coverage report could guide further

testing. The following steps were performed:

Identifying Tasks: 72 different tasks were carefully identified, making sure that each task

exercised at least one unique feature of WordPad. For example, one task modified the

font of text, and another printed the document on A4 size paper.

Generating Test Cases: Test cases were generated to achieve these 72 tasks. In all, 500

test cases were generated (multiple test cases for each task).

Coverage Evaluation: After the 500 test cases were available, the coverage evaluation

algorithms of Figures 4.2 and 4.3 were executed. The coverage evaluation algorithms
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Component Name 1’ 2’ 1 2 3 4 5 6
Main 88 41 10.92 0.36 0.03 0.00
FileOpen 90 56 17.50 0.72 0.06 0.05
FileSave 90 41 20.63 1.27 0.47 0.02
Print 92 34 32.20 9.00 3.92 0.19
Properties 92 45 27.59 1.80 0.97 0.06
PageSetup 91 49 25.43 2.56 0.66 0.06
FormatFont 89 37 39.00 13.67 0.66 0.06
Print+Properties 100 0 46 51.15 8.18 3.87 0.05
Main+FileOpen 100 0 40 11.00 10.17 1.30 0.16
Main+FileSave 100 0 20 13.00 8.64 1.26 0.28
Main+PageSetup 100 0 45 60.91 4.31 1.94 0.08
Main+FormatFont 100 0 33 28.40 5.17 0.97 0.10
Main+Print+Properties 50 38.62 6.37 0.65 0.09

Event-sequence Length

Table 5.6: The Percentage of Total Event-sequences for Selected Components of WordPad
Covered by the Test Cases.

were implemented using Perl and Mathematica [93] and were executed on a Sun Ultra

SPARC workstation (SPARC Ultra 4) running Sun OS 5.5.1. Even with the ineffi-

ciencies inherent in the Perl and Mathematica implementation, the algorithms could

process the 500 test cases in 47 minutes (clock time). The results of applying the

algorithms are summarized as coverage reports in Tables 5.5 and 5.6. Table 5.5 shows

the actual number of event-sequences that the test cases covered. Table 5.6 presents

the same data, but as a percentage of the total number of event sequences. Column 1

in Table 5.6 shows close to 90% coverage for single events. The remaining 10% of the

events (such as Cancel) were never used by the planner since they did not contribute

to a goal. Column 2 shows that the test cases achieved 40-55% event-interaction cov-

erage. Note that since all the components were invoked at least once, 100% invocation

coverage (column 1’) was obtained. However, none of the components were terminated

immediately after being invoked. Hence, no invocation-termination coverage (column

2’) was obtained.

This result shows that the coverage of a large test suite can be evaluated in a

reasonable amount of time. Columns 4, 5, and 6 of Table 5.6 show that only a small

percentage of length 4, 5, and 6 event sequences were tested. The test designer can evaluate

the importance of testing these longer sequences and perform additional testing. Also, the

two-dimensional structure of Table 5.6 helps target specific components and component-

interactions. For example, 60% of length 2 interactions among Main and PageSetup have

been tested whereas only 11% of the interactions among Main and FileOpen have been
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tested. Depending on the relative importance of these components and their interactions,

the test designer can focus on testing these specific parts of the GUI.

The coverage report produced from this experiment shows two important weak-

nesses of PATHS. First, PATHS did not use events such as Cancel since they did not

contribute to the planning goal, resulting in loss of coverage as seen in column 1 of Ta-

ble 5.6. Second, PATHS did not generate event sequences that invoke a component and

terminate it immediately since such preemptive termination did not contribute to the final

goal. This behavior of the planning-based test-case generator resulted in loss of coverage

as seen in column 2’ of Table 5.6. Note that, in practice, GUI users can, and do terminate

components without interacting with other events in the component. It is important to

test the GUI for such event sequences, perhaps by employing other testing techniques. The

important lesson learned from this experiment is that it is necessary to combine several

techniques to test a software, so that weaknesses of one technique do not have too much

impact on the overall testing results. Rather, the combined strengths of several testing

techniques will result in better testing of the software.

5.5 Conclusions

This chapter presented the design of the test case generator, an essential compo-

nent of the GUI testing framework. The test case generator employs tasks, consisting of

initial and goal states, to generate test cases. The key idea of using tasks to guide test

case generation is that the test designer is likely to have a good idea of the possible goals

of a GUI user, and it is simpler and more effective to specify these goals than to specify

sequences of events that achieve them. This test case generation technique is unique in that

it employs an automatic planning system to generate test cases from GUI events and their

interactions.

Experiments have demonstrated that the planning technique is both practical and

useful by generating test cases for the WordPad software’s GUI. The experiments showed

that the planning approach was successful in generating test cases for different scenar-

ios. The GUI representation was used extensively during the test case generation process.

Experiments showed that the hierarchical component model of the GUI was necessary to

efficiently generate test cases. Representing the test cases at a high level of abstraction

makes it possible to fine-tune the test cases to each implementation platform, making the

test suite more portable. A mapping is used to translate the low-level test cases to sequences

of physical actions. Such platform-dependent mappings can be maintained in libraries to

customize the generated test cases to low-level, platform-specific test cases.
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Test Oracles

Once test cases have been generated by the test case generator, they are executed

on the GUI by the test executor. The question now is to automatically determine whether

a GUI behaves correctly when a test case is executed on it. This question is answered by

using a test oracle.

The characteristics of GUIs present special challenges when designing a test oracle.

These challenges stem from the fact that GUIs are event-based systems. The GUI test case

consists of an event sequence, where the effect of each event may depend upon the effects

of its previous events. There is no specific output: rather, each event affects the state of

the GUI. Moreover, comparison of the expected and actual GUI states cannot wait until

the entire event sequence has been executed. Instead, it is necessary to verify the state of

the GUI after the execution of each event; otherwise, incorrect GUI behavior for one event

may result in a state in which future events in the sequence cannot be executed at all.

The above challenges suggest the need to develop an automated oracle that answers

the question of whether a GUI executing under a test case behaves as expected. The

automation should occur both in the derivation of the expected state and the comparison

of the expected and actual states. Developing an automated test oracle for GUIs has a

number of requirements. First, the GUI representation should be used to model the GUI’s

intended behavior so that its expected state can be automatically derived for each test case.

Second, the actual state of the executing GUI needs to be captured and represented in

a form that is suitable for comparison with the expected state. Finally, a mechanism to

automatically compare the expected state with the actual state of the executing GUI needs

to be developed.

This chapter presents techniques for an automated GUI test oracle. An overview of

the oracle is shown in Figure 6.1. An expected-state generator uses the GUI representation

presented in Chapter 3 to automatically derive the GUI’s expected state for each test case.

The oracle obtains the GUI’s actual state from an execution monitor. A verifier in the

77
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Figure 6.1: An Overview of the GUI Oracle.

oracle then automatically compares the two states and determines if the GUI is executing as

expected. The oracle was implemented as part of the GUI testing framework. Experiments

evaluated the oracle on WordPad and provide timing results that establish the feasibility

of this approach.

The remainder of this chapter presents the components of the test oracle and their

functionality. Section 6.1 presents the design of the expected-state generator. Section 6.2

describes techniques to design the execution monitor. Details of the verifier is discussed

in Section 6.3. The algorithm for the complete oracle is described in Section 6.4. Finally,

experimental results are presented in Section 6.5.

6.1 Expected State Generator

The expected-state generator uses the GUI representation to determine the ex-

pected state of a GUI after the complete or partial execution of any test case. Recall that

events are modeled as state transducers. For any test case< S0, e1; e2; . . . ; en, S1;S2; . . .Sn >,

the legal sequence of states S1;S2; . . .Sn such that Si = ei(Si−1) for i = 1, . . . , n represent

the expected state of the GUI after each event is executed, starting in S0. The question is

how, in practice, to compute these expected states.

The next state is obtained from the current state Sc and the event e’s operator’s

effects, represented by Eff (e) (see Section 3.3), as follows:

1. Delete all literals in Sc that unify with a negated literal in Eff (e), and
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Event XEvent X

Align(Label1, alNone)
Caption(Label1, “Files of type:”)
Color(Label1, clBtnFace)
Font(Label1, (tfont))
WState(Form1, wsNormal)
Width(Form1, 1088) 
Scroll(Form1, TRUE)
Caption(Button1, Cancel)
Enabled(Button1, TRUE) 
Visible(Button1, TRUE)
Height(Button1, 65)
Window(w19)
Background-color(w19, blue)
Is-current(w19)

Align(Label1, alNone)
Caption(Label1, “Files of type:”)
Color(Label1, clBtnFace)
Font(Label1, (tfont))
WState(Form1, wsNormal)
Width(Form1, 1088) 
Scroll(Form1, TRUE)
Caption(Button1, Cancel)
Enabled(Button1, TRUE) 
Visible(Button1, TRUE)
Height(Button1, 65)
Window(w19)
Background-color(w19, yellow)
Is-current(w19)

set-background-color
(w19, yellow) 

set-background-color
(w19, yellow) Event ZEvent Z

S4 S5

e4 e5 e6

Figure 6.2: A Few Test-Case Events with Expected State Information.

2. add all positive literals in Eff (e).

Thus, using the GUI representation, the expected state can be derived from the

initial state and the sequence of events in the test case. The expected state S1 is derived

from S0 by using the effects of e1’s operator, i.e., S1 = e1(S0). The process is repeated until

the entire expected state sequence has been derived. For example, consider the expected

state shown in terms of properties for events e4 and e5 in Figure 6.2. The expected state

of the GUI after e4 is performed is represented as S4. The GUI’s state changes after event

e5 (set-background-color(w19, yellow)) is executed. The new state obtained is S5.

The changes are highlighted using bold font. As mentioned earlier in the description of

the set-background-color operator (Section 3.3), the background-color of the window

changes.

The test case and expected state sequence shown in Figure 6.2 have all the neces-

sary components to carry out a successful test run and can be used for manual testing. One

manually executes a test case, and after each step, manually compares the appearance of the

GUI with the expected state at that time. Manual verification has at least two problems:

(1) it is labor intensive, and (2) often the GUI state includes “hidden” properties that are

not visually accessible. Hence, test execution and the oracle have been fully automated by

implementing the execution monitor and the verifier, which are described next.
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6.2 Execution Monitor

The execution monitor is a process that, given an executing GUI, returns the

current values of all the properties in the complete set for the GUI. There are several

different approaches that can be used to automate the process of extracting actual GUI state

information in a form that is suitable for comparison with the expected state description.

Two possible approaches are as follows:

1. Screen scraping

Screen scraping is a technique used to selectively remove information from an ap-

plication’s screen/terminal interface for reuse. Typically, the information is accessed

by using low-level, terminal-specific system calls. The bitmaps/text obtained are

analyzed to determine the correctness of the executing GUI. Although useful for de-

termining exactly what is visible to the user, non-visible properties cannot be verified

using screen scraping.

2. Querying

Querying the GUI’s software is a technique to determine the values of all the properties

present in the GUI, including non-visible and visible properties. Although the results

of the querying technique are more complete than screen scraping, querying requires

access to the GUI’s code, possibly modifying the code to access the values of properties.

In a typical testing scenario, both the above techniques may be used to obtain the

values of properties. Once the actual values of properties for an element or elements are

known, the verifier can compare them against the expected values, to determine if they are

equal. The details of the verifier are presented next.

6.3 Verifier

The verifier is a process that compares the expected state of the GUI with the

actual state and returns a verdict of equal or not equal. The question, then, is what

properties should be compared during the verification process. Several possible approaches

can be used to select the properties to be compared. The differences among these approaches

establishes the level of testing performed:

Changed-Properties Verification: Here, comparison is made only for those properties

that were expected to change as a result of the immediately preceding event. That

is, if event e was just executed, only the properties that are included in Eff (e) are

compared against their expected values. Although efficient, this level of testing will
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fail to detect changes to properties that change when they are not expected to change.

For example, if the background color of a window changes, but it was not expected

to change, the error would go unnoticed.

Relevant-Properties Verification: Here, all the properties in the reduced property set

are checked. Recall from Section 3.2 that the reduced property set includes all the

properties that the current GUI can have. This is a more extensive level of testing

than changed-properties verification, but it may still fail when some GUI property P

changed in the executing GUI, but P was not a part of the GUI specification. For

example, consider a GUI for a plain-text editor, e.g., MS NotePad in which users

cannot change the text color. If some event in the test case has the unintended

effect of changing the text color, then this error would go unnoticed, since the color

information was not encoded in the expected state.

Complete-Properties Verification: Here, a check is made for all the properties that

a language or toolkit provides for a GUI. Recall that the verifier has access to the

complete set of properties. The only problem is the absence of an expected state

to compare against all these additional properties. The currently available expected

state encodes only the reduced property set. To address this problem, before the test

case is executed, a baseline complete expected state of the GUI is created. During

test-case execution, the comparisons are done between the GUI’s actual state and the

updated complete expected state.

In practice, the test designer can choose a combination of the above levels of

testing. For example, the verifier can perform changed-properties verification after each

test event and complete-properties verification after every 10 events.

At each step in the test case, the verifier uses the values of all these properties

to check them for correctness. Thus, in the example in Figure 6.2, the expected state

shown in S4 and S5 will be automatically compared with the actual GUI state when the

test case is executed. In case the properties in the actual state do not match with those in

the expected state, an error is reported to the test designer. In addition, the mismatched

property, the complete set of expected properties, and the actual properties are also returned

to the test designer to help pinpoint the source of the error during debugging. An error

detected during testing may be due to a problem in the (1) implementation or (2) operator

definition. If the test designer determines that the error occurred because of an incorrect

operator definition, then the operator is debugged and fixed. Testing is then resumed. If,

however, the implementation is found to be faulty, then the problem is reported to the GUI

development team.
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6.4 GUI Testing Algorithm

In this section, an algorithm is presented that shows how the components of the

test oracle are used when testing the GUI. It also shows the details of how the expected

state is derived from the current state.

Figure 6.3 gives a high-level view of the main testing algorithm (TestGUI) and a

procedure ExpStateGen, invoked by TestGUI. The algorithm TestGUI executes a test case

automatically on the GUI, examining its actual state and comparing it with the expected

state. The algorithm takes three parameters: (1) the levelOfTesting, which determines

what properties are to be compared by the verifier, (2) the test case T to be executed on the

GUI (T contains the expected initial state and a sequence of events), and (3) the operators

(GUI Operators) representing the abstract model of the GUI. Note that each event in

the test case has a corresponding definition in GUI Operators. The algorithm returns a

verdict, depending on the outcome of the test case execution. For each event in the test

case, TestGUI calls the procedure ExpStateGen (line 9) to determine the expected state

of the GUI. If ExpStateGen is successful, then the event in the test case is automatically

executed (line 12) on the GUI and its actual state is determined by invoking the execution

monitor ExecMonitor (line 13). Both the expected and actual state are compared by the

verifier (line 15) that performs comparisons based on the current level of testing. TestGUI

returns the verdict (line 30), i.e., the outcome of the execution of the test case.

The procedure ExpStateGen takes three inputs: (1) the current state of the GUI

(currentState), (2) the event to be executed on the GUI, and (3) the GUI operators

(operators). Every event in the test case has a corresponding operator definition (line

35). The event contains the actual parameters of the operator definition, which are sub-

stituted for the formal parameters (line 36). ExpStateGen performs an extra check to

determine if the preconditions of the operator are satisfied in the current state (lines

37..39). If they are not satisfied, then there is an error in the test case, and this result

is propagated to the calling procedure. If the preconditions are satisfied, the new state is

computed by applying the effects of the operator. If the effects contain a negated property,

then it is deleted from the new state (lines 42..43) and if it contains a positive property,

it is inserted (lines 44..45) in the new state. The result newState is returned to the

calling algorithm.
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ALGORITHM: TestGUI( 1
levelOfTesting, /* changed, relevant, or complete property 2

verification */ 3
T, /* test case S0, e1; e2; e3; . . . ; en */ 4
GUI operators /* {Op1, Op2, Op3, ..., Opn}. Each Opi = 5

<Name, Preconditions, Effects>*/ ) { 6
State ←− S0; 7
foreach event e ∈ < e1; e2; e3; . . . ; en > { 8
expState←− ExpStateGen(State, e, GUI operators); 9
if (expState == TEST CASE INVALID) 10

break; 11
ExecuteEvent(e, GUI); /* Automatically execute event on GUI */ 12
actualState←− ExecMonitor(GUI); 13
/* check actual State and expected for this LEVEL OF TESTING. */ 14
if (Verifier(expState, actualState, 15
levelOfTesting) == FALSE) 16

break; 17
State←− expState;} 18

if (TEST CASE INVALID) { 19
error(”Invalid Test Case”); 20
debugInfo(”Actual GUI State = ”, actualState); 21
debugInfo(”Expected GUI State = ”, expState); 22
Verdict ←− INVALID;} 23

if (FALSE) { /* if verifier reported FALSE, then GUI is incorrect*/ 24
report(”GUI failed the test case”); 25
debugInfo(”Actual GUI State = ”, actualState); 26
debugInfo(”Expected GUI State = ”, expState); 27
Verdict ←− INCORRECT;} 28

else Verdict ←− CORRECT; 29
return(Verdict);} 30

PROCEDURE: ExpStateGen( 31
currentState, /* properties, {p1, p2, p3, ..., pn} - the State of the GUI*/ 32
event, /* step of the test case – eventName(parameters)*/ 33
operators /* {Op1, Op2, Op3, ..., Opn}. */) { 34
opDef ←− Lookup(event, operators); /* get operator for event */ 35
op ←− Bind(opDef, event); /* bind all variables in op def. */ 36
p ←− preconditions(op); /* extract the preconditions of the operator */ 37
if(Satisfied(p, currentState) == FAILED) 38
return(TEST CASE INVALID); 39

eff ←− effects(op); /*extract the effects of the operator*/ 40
newState ←− currentState; 41
foreach (f ∈ eff) {/*delete all properties that are negated in effects*/ 42
if (negated(f)) delete f from newState; 43

foreach (f ∈ eff) {/*insert all properties that are positive in effects*/ 44
if (positive(f)) insert f in newState; 45

return(newState);} 46

Figure 6.3: The GUI Testing Algorithm.

6.5 Experiments

To explore the practicality of this approach, the performance of the oracle was

evaluated on the example WordPad GUI. More specifically, the goals of the experiment
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Figure 6.4: Number of Test Cases Generated and their Lengths.

were to determine (1) the execution time to derive the expected state information, and (2)

the time to execute the verifier and the execution monitor. In both cases, the times were

compared with test case generation and execution time to determine the extra time needed

to derive the expected state and execute the verifier and the execution monitor.

These experiments were designed to help determine the scalability of the expected-

state generator and test-oracle executor. In all, 290 test cases of lengths varying from 6

to 56 events were generated. Figure 6.4 shows the number of test cases generated for each

length.

For the first experiment, the expected-state generator was implemented in C and

executed on a Pentium-based computer (350MHz, 256MB RAM) running Linux. The

expected-state generator produced the expected states of all the test cases off-line, dur-

ing test case generation. As each test case was generated, the expected state generator used

the operators to produce the corresponding expected state.

The results of this experiment are summarized in Figure 6.5. The x-axis shows

the test case length, and the y-axis shows the average time (in seconds) to generate a test

case. Note that the time shown is the average of multiple test cases. As the graph shows,

the significant portion of the time was spent in generating the test cases. The expected

state was derived much faster. Note that the total time needed to generate the test cases
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Figure 6.5: Time needed to Generate the Test Cases and Expected-State Information.

and expected state was very small. In fact, all of the 290 test cases and their corresponding

expected states were generated in a total of 75.84 sec. CPU time.

For the second experiment, to determine the time to execute the verifier and the

execution monitor, the execution monitor and verifier were implemented in Borland’s C++

Builder, running under Windows NT. The execution monitor maintained a list of all the

properties of the executing GUI and extracted the values after each event. Some properties

were visible, e.g., open menus, that could be retrieved directly from the screen by using

screen scraping whereas other properties required getting values from the executing GUI

by using queries, implemented through a socket connection.

Implementing the verifier was straightforward. The relevant properties verification

approach was performed. Note that this more expensive level of testing was deliberately

chosen to determine the worst-case time for oracle execution. During comparison, the

expected and actual states were compared for equivalence.

As seen in Figure 6.6, the total time needed to execute the verifier and the exe-

cution monitor was very small. All 290 test cases required less than a total of 10 minutes

clock time to execute without any intervention.

These experiments demonstrate that the GUI representation can be used to de-

velop an oracle that is both efficient and useful for GUI testing.
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6.6 Conclusions

This chapter presented the design of the automated GUI test oracle. The test

oracle automatically derives the expected state sequences and compares the actual and

expected states after each event in the test case. The oracle generates the expected state

from the GUI representation. The oracle obtains the actual state from an execution monitor.

The actual state is represented as a set of objects and properties. The oracle then compares

the two states and determines if the GUI is performing as expected.

Two experiments have demonstrated that the oracle is both practical and useful by

deriving expected state sequences for the example WordPad software’s GUI and using them

to test the software’s GUI. The experiments have also demonstrated that a large number of

test cases can be executed and the GUI’s execution behavior verified automatically in very

little time.



Chapter 7

Regression Tester

The regression tester is the only component of the GUI testing framework that is

not used during first-time testing of a GUI; it is invoked by the test designer to retest a

modified GUI. Instead of re-testing the modified GUI in its entirety, the regression tester

reuses results from previous test runs to conserve resources and speed up the re-testing

process while still maintaining the same quality of testing. The goal of regression testing is

to help ensure the correctness of the new/modified parts of the GUI as well as to establish

confidence that the modifications have not adversely affected previously tested parts.

Regression testing of conventional software typically involves performing three

tasks. First, parts of the original software that may have been affected by the modifications

are identified. Then, a subset of the original test cases is selected to retest these parts.

Third, new test cases are generated to test affected parts of the software, not tested by

the selected test cases. This model of regression testing of conventional software can be

extended for regression testing of GUIs.

Recall (from Section 3.8) that a GUI test case consists of three parts – a reachable

initial state S0, a legal event sequence e1; e2; . . . ; en for S0, and expected states S1;S2; . . . ;Sn.

A modification in the GUI may affect any of these parts of a test case. For example, a mod-

ification to the event-flow of the GUI may cause a test case’s event sequence to become

illegal. Another modification, such as a change to the background color of a window in a

GUI in which no event can modify the background color, may make the initial state of a test

case unreachable. Such test cases cannot be executed on the modified GUI. Table 7.1 shows

all the possible ways in which modifications made to the GUI may affect the three parts

of a test case. The columns show the effects of the modifications to the initial state, event

sequence, expected state, and test case respectively. The first row shows the case where a

test case was not affected by the GUI modifications, since its initial state is reachable, it

has a legal event sequence and a corresponding correct expected state. Such a test case

is called a valid test case. A valid test case need not be run on the modified GUI since

87
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Initial State Event Sequence Expected State Test Case
S0 e1; e2; . . . ; en S1;S2; . . . ;Sn Status

reachable legal correct valid
reachable legal incorrect invalid
reachable illegal × invalid

unreachable × × invalid

Table 7.1: All Possible Effects of GUI Modifications on the Parts of a Test Case.

it will re-execute a sequence of unmodified events that have already been tested on the

original GUI. The second row shows that a modification caused the expected state part

of the test case to become incorrect, perhaps because the effects of one of the events in

the test case’s event sequence changed. Although the event sequence of this test case is

legal and can be executed on the GUI, its corresponding expected state cannot be used to

verify the correctness of the GUI. Executing such a test case is not useful since the tester

cannot determine whether or not the GUI executed correctly. The third row shows that

the GUI modification altered the event-flow of the GUI, causing the event sequence part of

the test case to become illegal. The fourth row shows that the initial state of the test case

became unreachable. Test cases of rows 3 and 4 cannot be executed on the GUI. Entries

marked with “×” indicate “don’t care” conditions, i.e., if the initial state of a test case is

unreachable, it does not matter if the event sequence is legal and expected state is incorrect

– the test case cannot be executed. As the table shows, test cases represented by rows 2,

3, and 4 are called invalid test cases. Note that a test case may become invalid because

of a number of modifications made to the GUI. Although an invalid test case cannot be

executed on the GUI, it contains valuable information about how the modifications have

affected the execution behavior of the GUI and hence can be used to produce test cases

that target these modifications.

The regression tester developed in this research is based on a new approach for

regression testing that repairs some of the invalid test cases. The technique is targeted to

GUI regression testing. Compared to new test cases generated from scratch, the repaired

test cases are more likely to reveal faults introduced by modifications made to the GUI since

they target sequences of events that were modified in the GUI. The next section presents

a GUI regression testing example and shows test cases that may be repaired and executed

on a modified GUI.
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(a) The Original GUI. (b) The Modified GUI.

Cut Copy

PrintPaste

Cut Copy

EditPaste

(c) The Original GUI’s Event-flow Graph. (d) The Modified GUI’s Event-flow Graph.

Figure 7.1: A Regression Testing Example.

7.1 A GUI Regression Testing Example

This section presents a GUI regression testing example by showing (1) an example

of a GUI modification, (2) examples of test cases that have become invalid for the modified

GUI, (3) an intuitive idea of how analysis of the GUI can help identify the invalid test cases,

and (4) how invalid test cases may be repaired to obtain valid test cases.

Figure 7.1 presents a GUI, its modified version, and their corresponding event-flow

graphs. The original GUI consists of 4 events, Cut, Copy, Paste, and Print, all directly

accessible when the GUI is invoked. The modified GUI contains 3 of the 4 original events;

Print has been deleted and the remaining 3 events have been grouped into a pull-down

menu, which is opened by clicking on Edit. Figures 7.1(c) and (d) show the event-flow

graphs of the original and modified GUIs respectively. The original GUI’s event-flow graph

is fully connected with 4 vertices representing the 4 events. The modified GUI’s event-flow

graph is quite different from that of the original GUI; it is no longer fully connected and
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# Event Sequence Events Used Edges Covered

1 Copy; Print; Cut {Copy, Cut, Print} {(Copy, Print), (Print, Cut)}
2 Cut {Cut} {}
3 Cut; Paste {Cut, Paste} {(Cut, Paste)}
4 Copy; Cut; Paste {Cut, Copy, Paste} {(Copy, Cut), (Cut, Paste)}

Table 7.2: Four Event Sequences for the Original GUI.

Editmust be performed before any other event can be performed. The following four sets of

changes may be obtained, summarizing the differences between the two event-flow graphs:

1. events deleted = {Print}.

2. events added = {Edit}.

3. efg edges deleted= {(Cut, Cut), (Copy, Copy), (Paste, Paste), (Print, Print),

(Cut, Copy), (Cut, Paste), (Cut, Print), (Copy, Cut), (Copy, Paste), (Copy,

Print), (Print, Cut), (Print, Copy), (Print, Paste), (Paste, Cut), (Paste,

Copy), (Paste, Print)}.

4. efg edges added = {(Edit, Edit), (Edit, Cut), (Edit, Copy), (Edit, Paste),

(Cut, Edit), (Copy, Edit), (Paste, Edit)}.

Four event sequences used to test the original GUI are shown in Table 7.2. Column

1 shows the test case number, column 2 shows the event sequence of the test case, column

3 shows the events in the event-flow graph used by the test case, and column 4 shows the

edges of the event-flow graph covered by the test case. The following observations can be

made by examining these test cases and the 4 sets above:

1. Since Print was deleted from the GUI (events deleted), event sequence 1 is invalid.

2. Since (Cut, Paste) and (Copy, Cut) have been deleted from the GUI (efg edges deleted),

event sequences 3 and 4 have become invalid.

3. Event sequence 2 is still valid since Cut is available in the modified GUI (starting in

an initial state in which Edit has been performed).

Intuitively, looking at the original and modified GUIs, event sequences 3 and 4 may

be modified (or repaired) to obtain legal event sequences. Repairing event sequence 3 yields

<Cut; Edit; Paste> and event sequence 4 yields <Copy; Edit; Cut; Edit; Paste>.

These two repaired event sequences are legal and may be used to test the modified GUI. It is

not obvious how event sequence 1 may be repaired since it contains an event, namely Print,

that is no longer available in the modified GUI. In this example, this event sequence may
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be discarded and not used for regression testing. This example shows that some invalid test

cases may not be repairable. After repairing, the test designer can choose from a total of

three event sequences and use them for regression testing. Note that since event sequence 2

has already been executed on the original GUI, and none of the events in this event sequence

have been modified, it need not be rerun. The remaining two event sequences, 3 and 4, can

be used for regression testing. Since these event sequences were repaired from the original

test suite, they are able to test whether modifications have adversely affected the previously

tested parts of the GUI.

Note that a test case may become invalid because of several modifications made

to the GUI. Consequently, such a test case may need to be repaired several times before

it becomes valid. This example did not present details of modification of the initial state

and expected states of the four test cases. As shown in Table 7.1, the initial state and

the expected states also play important roles in determining the validity of the test case.

For example, if the specifications of the Cut event were modified, then the expected state

corresponding to event sequence 2 would become incorrect, making test case 2 also invalid.

The expected state can also be repaired as will be described in Section 7.5. Note that new

events and edges added to an event-flow graph cannot result in illegal event sequences. The

event sequences from the original test suite neither use any of the new events nor do they

cover any of the new edges.

The remainder of this chapter presents the design of the regression tester that

repairs invalid test cases for regression testing. In performing regression testing, the regres-

sion tester partitions the original test suite into valid and invalid test cases. Of the invalid

test cases, the repaired test cases form a part of the regression test suite whereas the non-

repairable ones are discarded. The new GUI testing method is summarized in Figure 7.2.

Note that new test cases, generated to test affected parts of the GUI not tested by the

repaired test cases, are also a part of the regression test suite. The next section presents an

overview of the design of the regression tester.

7.2 Overview of Regression Tester

The regression tester, based on the new repairing method, contains the following

components.

• Test case checker partitions the original test suite into (1) valid test cases, (2) test

cases that are invalid because they specify incorrect expected state for the modified

GUI, (3) test cases that are invalid because they specify an illegal event sequence for
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original test suite

valid test cases invalid test cases

not repairable repaired new test cases
regression test suitediscard

Figure 7.2: The New Regression Testing Method.

the modified GUI, and (4) test cases that contain an unreachable initial state and

hence cannot be repaired.

• Test case repairer repairs the invalid test cases. The test case repairer consists of

two parts – an event-sequence repairer that repairs illegal event sequences, and an

expected-state repairer that repairs incorrect expected states.

Figure 7.3 shows the components of the regression tester and their interactions

with other components of the GUI testing framework. The figure shows, in addition to the

components discussed above, the test case generator that interacts with the coverage

evaluator to generate new test cases to test the new parts of the GUI. Together, the re-

paired and new test cases form the regression test suite. The remainder of this chapter

presents techniques to repair invalid test cases. The next section describes how GUI modifi-

cations are identified by analyzing the GUI’s model. Section 7.4 and 7.5 present details and

algorithms for the test case checker and repairer respectively. Finally, Section 7.6 presents

results of an experiment performed to determine whether the test case repairing technique

could be used to produce valid test cases and the time taken to make the repairs.

7.3 Analyzing GUI Modifications

The first step to performing automated regression testing is to identify the modifi-

cations made to the GUI and their effects. Since the GUI is composed of components, these

modifications are classified as either event-level or component-level, and intra- and inter-

component analyses are used respectively to identify them. The key idea is to compute the

additions and deletions made to the event-flow graphs and integration tree of the original

GUI to obtain the modified GUI. The assumption made here is that events and components

have unique names. Moreover, they are not renamed across versions of the GUI unless they

are modified. For example, if the event File is not modified, then it is called File in the
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Figure 7.3: The Regression Tester’s Components and their Interactions with other Compo-
nents of the GUI Testing Framework.

modified GUI. In case some events or components are renamed, then the test designer is

made aware of these changes by the GUI developer who must maintain a log of all such

changes.

The analysis used to identify GUI modifications is straightforward and efficient,

involving the computation of simple additions and deletions to the event-flow graphs and

integration trees. Because of the simplicity, there are restrictions on the types of GUI

modifications that may be detected. For example, if an event e is moved from one component

Cx to another component Cy, then it will be analyzed as a deletion of e from component
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Cx and an addition of e to component Cy. Consequently, the test case repairer is unable to

detect the movement of e, and hence repair the test cases made invalid by the modification by

invoking Cy instead of Cx and executing e. However, as will be seen in subsequent sections,

not being able to analyze such modifications is a small price to pay for the simplicity of the

analysis and the efficiency with which a number of invalid test cases can be repaired.

7.3.1 Intra-component Analysis

The goal of intra-component analysis is to determine changes made to events

within a component. The results of this analysis are used by the test case checker to

identify invalid test cases. The following modifications may be made to events within a

component, represented by an event-flow graph:

1. a vertex may be deleted,

2. a vertex may be added,

3. an edge may be deleted, and

4. an edge may be added.

If EFGo and EFGm are the event-flow graphs of a component that exists in both

the original GUI and the modified GUI respectively, then the following sets of modifications

are obtained by performing set subtraction. Note that the functions V ertices and Edges

return the sets V (the set of vertices) and E (the set of edges) for the event-flow graph in

question.

1. The set of all new vertices in the event-flow graph:

vertices added ← V ertices(EFGm)− V ertices(EFGo);

2. The set of all vertices deleted from the original event-flow graph:

vertices deleted ← V ertices(EFGo)− V ertices(EFGm);

3. The set of all new edges added to the event-flow graph:

efg edges added ← Edges(EFGm)−Edges(EFGo);

4. The set of edges deleted from the original event-flow graph:

efg edges deleted ← Edges(EFGo)−Edges(EFGm);

As illustrated earlier in Section 7.1, the above sets can be used to identify invalid

test cases. Details of how these sets of modifications are used by the event-sequence checker

to identify invalid test cases are presented in Section 7.4.
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7.3.2 Inter-component Analysis

Intra-component analysis is used to detect changes made to events within com-

ponents. Similarly, changes may also be made at the component level in the GUI. Such

modifications are reflected by a change in the structure of the GUI’s integration tree. The

following changes may be made to an integration tree:

1. a component may be added,

2. a component may be deleted,

3. an edge may be added, and

4. an edge may be deleted.

Let To and Tm be the integration trees of the original and modified GUI respec-

tively. The following sets of modifications may be obtained from these two integration

trees. Note that Nodes and CompEdges return the sets N and B for the integration tree

respectively.

1. The set of components added to the integration tree:

components added ← Nodes(Tm)−Nodes(To);

2. The set of components deleted from the integration tree:

components deleted ← Nodes(To)−Nodes(Tm);

3. The set of edges added to the integration tree:

comp edges added ← CompEdges(Tm)− CompEdges(To);

4. The set of edges deleted from the integration tree:

comp edges deleted ← CompEdges(To)− CompEdges(Tm);

Note the difference between the edges of an event-flow graph and integration tree.

Edges of an event-flow graph are ordered pairs of the form (ex, ey), where ex and ey are

events, whereas edges of the integration tree are ordered pairs of the form Cx, Cy, where

Cx and Cy are components. Each edge of the integration tree represents a set of edges with

events. An edge (Cx, Cy) represents the set of all edges (ey, ez), where ey is a restricted-focus

event in component Cx that invokes Cy , and ez ∈ follows(ey) (computed in Figure 3.11,

Lines 13, 14). Assume the existence of a new function EventEdges that takes a set of

integration-tree edges and returns its corresponding set of edges in terms of events.

The set of modifications obtained by the intra- and inter-component analyses are

used to classify modifications made to the GUI. Such a classification helps the test case

checker identify invalid test cases. Its operation is described next.
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Figure 7.4: Parts of the Test Case Checker.

7.4 Determining Affected Test Cases

The test case checker’s primary function is to identify invalid test cases. In addi-

tion, it performs preliminary identification of non-repairable test cases. The logical func-

tionality of the test case checker is summarized as a graph in Figure 7.4. The nodes in the

graph correspond to three parts of the test case checker that check the validity of a test

case. The components are:

Initial State Checker determines whether the initial state S0 associated with the test

case is reachable. A test case with an unreachable initial state is useless since the

GUI cannot be brought into the state to execute the test case. If S0 ∈ SI (the set

of valid initial states of the GUI), then it is reachable; otherwise the checker reduces

the problem of checking the initial state to one of plan generation. Following are the

elements of the planning problem:

Initial State for the planning problem is a state Sx ∈ SI ,

Goal State is S0, and

Operators are the planning operators of the GUI.

If, for at least one Sx ∈ SI, a plan is found, i.e., a sequence of events exists in the GUI

to transform Sx to S0 then S0 is a reachable initial state; otherwise it is unreachable.

In case the initial state is unreachable, the test case is not repairable.

Event-Sequence Checker determines whether the event sequence in the test case is a

legal event sequence for S0. It uses the sets of modifications obtained from the GUI
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modification analysis to identify test cases that were made invalid. Specifically, the

following two sets are used to identify invalid test cases:

1. vertices deleted, and

2. edges deleted←− efg edges deleted ∪ EventEdges(comp edges deleted).

As noted earlier, new vertices and edges cannot make test cases invalid. To aid

in the identification of invalid test cases, the event-sequence checker uses bit vectors

associated with each test case. These bit vectors contain information about the events

and edges used by each test case. If a test case uses an event (or edge), then the event’s

(or edge’s) bit is set in the bit vector for that test case. The following bit vectors are

associated with each test case T :

EVENTS-USED represent the events used by T . Its length is |E|, where E is the

set of events in the GUI.

EDGES-USED represent the edges covered by T . Its length is |D|, where D is the

set of all the edges in the event-flow graphs and integration tree of the GUI.

Examining the above bit vectors for each modification, the event-sequence checker

identifies test cases that were made invalid by each modification. For example, if

an event e is deleted from the GUI, then all test cases whose EVENTS-USED bit

vector’s eth bit is set are invalid. Note that one GUI modification may be reflected in

more that one set of modifications, and a test case may be marked as invalid several

times because of the same modification. As will be seen later, being marked as invalid

several times has no effect on the repairability of the test case.

Expected State Checker determines whether the expected state sequence associated

with each test case is valid. If the initial state and event sequence of a test case

are valid, then the test case can be executed on the GUI. However, if the precon-

ditions/effects of an event have been modified in the GUI then the expected state

sequence associated with this test case may be incorrect. Such modifications are de-

tected statically by comparing the modified and the original operator for each event.

Once the invalid test cases have been identified, they are repaired by the test case

repairer, which is described next.

7.5 Test Case Repairer

The test case repairer consists of two parts: the expected-state repairer and the

event-sequence repairer. The expected-state repairer employs the expected-state generator
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ALGORITHM : EventSeqRepairer( 1
S: Invalid event sequence; /* The event sequence to be repaired */ 2
vertices deleted: Set of vertices; /* The set of all the deleted events */ 3
edges deleted: Set of edges; /* The set of all the deleted edges */ 4
EVENTS: Set of events; /* All the events in the modified GUI */ 5
EVENTS-USED: Bit vector; /* The events in the sequence */ 6
EDGES-USED: Bit vector) /* The edges in the sequence */ 7
{ 8
foreach (ei ∈ vertices deleted) do /* Examine each event that was deleted */ 9
while (ethi bit of EVENTS-USED == 1) do /* As long as S uses this event */ 10
repairability ←− repair del event(t, ei); /* repair S */ 11
if (! repairability) then return(FALSE); /* If S is not repairable, then terminate */ 12
update(EVENTS-USED, S); /* Update the changes */ 13

update(EDGES-USED, S); /* Update the edges */ 14
foreach ((ei, ej) ∈ edges deleted) do /* Examine each edge that was deleted */ 15
if ((ei ∈ EVENTS && ej ∈ EVENTS) then /* Events are still available? */ 16
while ((ei, ej)

th bit of EDGES-USED == 1) do /* As long as S uses the edge */ 17
repairability ←− repair del edge(S, (ei, ej)); /* repair S */ 18
if (! repairability) then return(FALSE); /* If S is not repairable, then terminate */ 19
update(EDGES-USED, S); /* Update the changes */ 20

return(TRUE); /* Success!! */ 21
} 22
PROCEDURE : repair del event( 23
S: Event Sequence; /* The event sequence */ 24
e: Event) /* The event that was deleted. At position p in the event sequence */ 25
{ 26
for k ←− p+1 to n do /* start scanning the event sequence */ 27
if ek ∈ follows(ep+1) then /* if Case 1 is solved */ 28
S ←− < e1; . . . ; ep−1; ek; . . . ; en >; /* then update the event sequence */ 29
done1←− TRUE; break; /* event sequence repaired */ 30

else if ∃ ex ((ex ∈ follows(ep−1)) && (ek ∈ follows(ex))) then /* if Case2 is solved */ 31
S ←− < e1; . . . ; ep−1; ex; ek; . . . ; en >; /* then update the event sequence */ 32
done2←− TRUE; break; /* event sequence repaired */ 33

return (done1 || done2); /* In either case’s success, return success */ 34
} 35
PROCEDURE : repair del edge( 36
S: Event Sequence; /* The event sequence */ 37
(ea, eb): Edge) /* The edge that was deleted. eb is at position b in the event sequence */ 38
{ 39
for k ←− b to n do 40
if ek ∈ follows(ea) then 41
S ←− < e1; . . . ; ea; ek; . . . ; en >; 42
done1←− TRUE; break; 43

else if ∃ ex ((ex ∈ follows(ea)) && (ek ∈ follows(ex))) then 44
S ←− < e1; . . . ; ea; ex; ek; . . . ; en >; 45
done2←− TRUE; break; 46

return (done1 || done2); 47
} 48

Figure 7.5: Algorithm for the Event-sequence Repairer.



99

(Section 6.1) to repair the incorrect expected states. Knowing which definition of event ei

was changed, already determined by the expected-state checker, the expected-state repairer

uses the expected state Si−1 of the test case to generate all successive expected states

Si;Si+1;Si+2; . . . by applying the operators corresponding to the events in the test case

iteratively until it reaches a correct expected state or the end of the event sequence. The

repaired test case is valid and may be used for regression testing.

The event-sequence repairer repairs illegal event sequences. The illegal event se-

quences use either a deleted event or a deleted edge. Intuitively, if an event ei, at position

i in an event sequence, is deleted from the GUI, then the event-sequence repairer must

remove ei from the event sequence. However, to obtain a legal resulting event sequence,

the event-sequence repairer scans the event sequence from left to right, starting at position

i+ 1, until it finds an event ej such that either: (1) < ei−1; ej > is a legal event sequence

for the modified GUI, or (2) there is another event ex, from the set of all the events in the

modified GUI, such that < ei−1; ex; ej > is a legal event sequence for the modified GUI.1

Once such an ej is found, then the sub-sequence < ei; . . . ; ej−1 > is deleted from the event

sequence and in case 2, ex is inserted. Figure 7.6(a) shows these two cases. In case 1, the

event-sequence repairer searches for an event ej from ei+1 to en, such that ei−1 follows

ej, and in case 2, it searches for an event ex, from the set of all the events in the modified

GUI, such that ei−1 follows ex and for some ej in the event sequence, ej follows ex.

Similarly, Figure 7.6(b) shows the repairing technique for the deleted edge (ei, ej).

In this technique, the event sequence is scanned from left to right, starting with the event ej,

the second element in the deleted edge. Case 1 tries to find an event ea from the subsequence

< ej; . . . ; en > such that ea follows ei. Case 2 tries to find an event ex, from the set of all

the events in the modified GUI, such that ex follows ei and ej follows ex.

As noted earlier, an event sequence may have become illegal because of several

changes made to the GUI. Each event sequence is checked for all instances of deleted events

and edges that made the event sequence illegal.

The algorithm for the event-sequence repairer is shown in Figure 7.5. The main

algorithm is called EventSeqRepairer that takes a number of parameters: (1) the invalid

event sequence S, (2) the set vertices deleted, (3) the set edges deleted, (4) the set of all the

events available in the modified GUI, (5) the bit vector EVENTS-USED associated with

the event sequence, and (5) the bit vector EDGES-USED. EventSeqRepairer returns

TRUE if the event sequence was repaired successfully, and FALSE otherwise. The algorithm

1In general, this technique may be extended to finding a sequence of events < ep; . . . ; eq > such that
< ei−1; ep; . . . ; eq; ej > is a legal event sequence for the modified GUI. However, computing such a sequence
is expensive.
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starts by examining each event ei that was deleted from the GUI (Line 9). If S uses this event

(Line 10), then it is illegal. The procedure repair del event is invoked to repair S (Line

11). If S is repairable, then repair del event returns TRUE, otherwise EventSeqRepairer

terminates with a FALSE result (Line 12). Since repair del event may have changed

the events used by S, the bit vector EVENTS-USED is updated to reflect the changes

(Line 13). Note that the while loop continues examining the event sequence for the

deleted event ei. After S has been repaired for all deleted events, its EDGES-USED is

updated to reflect all the changes made so far (Line 14). EventSeqRepairer continues by

examining each edge (ei, ej) that was deleted (Line 15). It makes sure that both events ei

and ej are available in the GUI (Line 16). If S uses this edge (Line 17), then it is illegal.

The procedure repair del edge is invoked to repair S (Line 18). If S is repairable, then

repair del edge returns TRUE, otherwise EventSeqRepairer terminates with a FALSE

result (Line 19). EDGES-USED is updated to reflect the changes made to S (Line 20).

If EventSeqRepairer has not terminated using any of the return statements (Lines 12,

19), then the event sequence has been successfully repaired (Line 21).

The procedure repair del event tries to repair the illegal event sequence caused

by deleting an event. It takes two parameters: (1) the event sequence S, and (2) the deleted

event e. It starts scanning the subsequence < ep+1; . . . ; en > from left to right (Line 27)

until one of the cases shown in Figure 7.6(a) is found or the sequence terminates. If case

1 is solved (Line 28), then the sequence is updated (Line 29) and success reported (Line

30). Otherwise if case 2 is solved (Line 31), then the sequence is updated (Line 32, 33).

The procedure repair del edge is similar to repair del event. It scans the subsequence

< eb; . . . ; en > from left to right until one of the cases of Figure 7.6(b) is found.

Note that since the event-sequence repairer employs information from the event-

flow graphs and integration tree (represented by follows), the event sequence repairer is

guaranteed to produce legal event sequences. Once these sequences have been repaired,

their expected states are repaired by the expected-state repairer.

7.6 Experiments

To explore the practicality of the test case repairing technique, the regression

tester was implemented and its performance evaluated on an example GUI. The experiment

consisted of the following steps:

1. Choice of GUI: The experiment was performed on the same version of the WordPad

software used throughout the dissertation as a running example.
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Figure 7.6: Repairing an Event Sequence that Uses a (a) Deleted Event ei, and (b) Deleted
Edge (ei, ej).

2. Generating test cases: All event sequences of length < 4 were generated for the Word-

Pad’s Main component in 120.83 seconds CPU time. In all, 270921 event sequences

were generated.

3. Modifying the GUI: A modified version of the WordPad GUI was created by (1) re-

placing the File event by a new event called NewFile, and (2) modifying the follows

of Cancel to the events of the Find window (see Figure 3.10).

4. Identifying invalid test cases: The test case checker was implemented in Perl. Of the

270921 original test cases, 57100 were found to be invalid.

5. Repairing test cases: The test case repairer was also implemented in Perl. The total

time to repair all invalid test cases was 7.83 seconds CPU time.
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This preliminary experiment showed that the repairing technique is practical. In

future work, more experiments need to be conducted using a real-world regression testing

example.

7.7 Conclusions

This chapter presented the design of the regression tester, which is based on a

new technique that reuses some invalid test cases by repairing them. These test cases

are repaired by employing the specifications of the GUI to make the repairs. Differences

between the event-flow graphs and integration trees of the original and modified GUIs are

obtained to identify invalid test cases. Feasibility experiments show that the regression

testing technique is efficient, in that it is cheaper to repair existing invalid test cases than

to generate new ones.

The modifications discussed in this chapter were complex event-level and component-

level modifications. Other low-level modifications may also be made to a GUI. For example,

new keyboard shortcuts may be introduced in the modified GUI or the physical locations

of buttons/menus may be changed. Such changes do not affect the test cases since all the

events in the test case are represented by logical symbols rather than low-level physical

locations on the screen or keyboard shortcuts used to generate them. A mapping between

logical events and the corresponding physical actions used to generate them is maintained.

At test case execution time, the mapping is used to generate physical actions for each logi-

cal event. When these events/shortcuts are changed from one GUI version to the next, the

mappings are modified without affecting the test cases.

New test cases may be required to test parts of the GUI for which the original test

cases could not be repaired. This problem can be easily solved in the context of PATHS.

The initial and goal states for non-repairable test cases may be reused to generate new test

cases by rerunning PATHS. Note that repairing two different test cases may yield test cases

that are the same. Analysis to remove repeated test cases must be done before they are

executed.



Chapter 8

Testing Web User Interfaces

The recent popularity of the Internet has led to the widespread use of web user

interfaces (WUIs). WUIs present an integrated front-end to software typically consisting

of multiple programs, possibly implemented in different languages, concurrently executing

on several platforms, and connected by the Internet. The user interacts with the WUI,

through a web-browser’s window, without knowledge of the underlying software, topology

of the Internet, or the implementation platforms. The WUI user expects the entire system

to work as if it was executing on the local client.

Similar to GUIs, the input to the WUI is in the form of events and the output

is graphical. In fact, WUIs have all the characteristics of GUIs, including event-driven

input that changes the WUI’s state, graphical output, hierarchical structure, and graphical

objects with properties. Hence, testing WUIs has all the complexities of testing GUIs

discussed in Chapter 1. In addition, WUIs have special characteristics, such as timing and

synchronization constraints and very high portability requirements that makes testing them

even more complex than GUIs.

The important characteristics of WUIs include their graphical orientation, connec-

tivity to the Internet, event-driven input, frames, pages and the constraints among pages,

the objects they contain, constraints among objects, and properties (attributes) of those

objects. Formally, a WUI may be defined as follows:

Definition: A Web User Interface (WUI) is a GUI in which the hierarchical structure con-

sists of frames and pages, with geometric and temporal constraints among pages. Each

page contains objects and constraints among the objects. The WUI provides a graph-

ical front-end to a software consisting of multiple programs, possibly implemented in

different languages, concurrently executing on several platforms, all connected by the

Internet. 2

This chapter presents a cursory exploration of extending the GUI testing frame-

work to include WUIs. Because of the additional complexities of WUIs, testing them has

103



104

certain requirements. A representation of the WUI and its operations should include a rep-

resentation of the multiple programs that determine the state of the WUI. These programs

may execute on the server and produce static output (such as HTML) or dynamic output

(such as DHTML) generated on the fly to be displayed in the browser’s window. Other

programs such as Java Applets may execute on the local client and their interface (usually

a GUI) may be displayed as part of the WUI. Checking the correctness of the WUI should

include checking the correctness of the GUIs of these individual programs. Synchronization

relations may exist between these programs, which should also be checked.

A typical user, interacting with the WUI performs at least three types of events:

(1) those available in the browser (such as cut and copy), (2) those available in the browser’s

window (such as clicking on links, selecting an item from a drop-down list, and clicking on

buttons), and (3) those provided by the multiple programs’ GUIs executing in the browser

(such as Java Applets and plug-ins). Testing the WUI should include performing all these

interleaved events.

The WUI’s state depends largely on the environmental conditions in which it is

executed. These environmental conditions include the state of the server, client and net-

work. Examples of server-specific environmental conditions include its speed and the state

of its file system. Client-specific environmental conditions include display size, security set-

tings, installed components, geographic location, and installed hardware. Network-specific

environmental conditions include its speed and connectivity. When testing the WUI, these

environmental conditions also form a part of the test input. Moreover, coverage evaluation

should also determine the adequacy of the different environmental conditions in which the

WUI was tested.

Currently, there are three different approaches to WUI testing. The automated

approach simulates a web-browser by generating requests, e.g., HTTP requests by using

one of several HTTP torture machines [5]. The response to each request is then analyzed

and its correctness in the context of the single request determined. The disadvantage of

this approach is that the tester lacks a global perspective of a typical users’ interactions and

the collective effect of a sequence of events as seen on a browser’s window. Because of this

limitation, this testing is restricted to load testing [5] of the servers to determine the number

of requests they can handle simultaneously. Another approach, which is semi-automated

and the most popular, is to employ capture/replay tools similar to those used for GUIs

[81]. The test designer captures an interaction with the WUI, edits the captured script to

create slightly different test cases and executes them automatically on the WUI. However,

the capture/reply tools provide limited support for checking the output. Moreover, the



105

overall coverage of the test cases depends largely on the test designer’s first interaction with

the WUI. The last and most expensive is the manual approach, which produces the most

realistic test cases. Human testers interact with the WUI, trying to find errors to help

test the WUI. Since this approach is resource intensive, it is usually performed by a large

number of users on beta-releases of the WUI. For example when Janus (www.janus.com)

was upgrading its WUI in July 2000, they invited customers to use the new WUI and report

any problems before they actually installed it on their web-site.

Subsequent sections present preliminary ideas to explore how to extend the frame-

work to test WUIs. The goal is to combine the benefits of the above three approaches

(automated, semi-automated, and manual) by automatically generating and executing test

cases on the WUI. In particular, the GUI representation may be extended to incorporate

geometric and temporal constraints among WUI objects. Instead of a hierarchy based on

modal windows, a new hierarchy of WUI objects is presented in terms of pages and frames.

Timing information is incorporated into WUI test cases. The test oracle is extended to

include a new component called a timing monitor that checks the correctness of the tempo-

ral and synchronization constraints. An approach that uses the category-partition method

[59] to select environmental conditions is described. Test cases are executed using “impor-

tant” combinations of environmental conditions by assigning priorities to them. Finally, a

technique that employs user profiles for regression testing of WUIs is presented.

8.1 Pages, Frames, and Constraints

A WUI contains objects designed to accept input from a WUI user and present

output to be displayed in the browser. Examples of objects include text items, text boxes,

images, Java Applets, buttons, and links. These WUI objects are logically grouped together

into pages and pages into frames. Note that these groupings increase the usability of the

WUI by displaying related objects together.

Intuitively, a page creates a layout of WUI objects for the browser and establishes

timing and synchronization relationships among them. Formally, a page is defined as follows:

Definition: A page is a pair (O,C), where each o ∈ O is a WUI object and each c ∈ C is

a constraint on the elements of O. 2

Common examples of constraints are geometric constraints that define the layout

of the objects in the WUI and temporal/synchronization constraints. Note that additional

levels of grouping can be similarly represented, e.g., frames can be represented by constraints

on a set of pages. Frames in WUIs force a dialog similar to a modal dialog in GUIs. Events
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Figure 8.1: A WUI as a Hierarchy of Pages, Frames and Objects with Constraints.
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Figure 8.2: A WUI Example.

in two different frames cannot be interleaved. Their respective frames must be invoked

or terminated. For example, Figure 8.1 shows a WUI decomposed into frames, pages and

objects. Each frame (f1 and f2) contains pages (p1, p2, and p3) with several objects (o1,

o2, . . ., o6). Events on o1, o2, and o3 cannot be interleaved with events on o4, o5, and o6.

Note that events performed on o4, o5, and o6 can be interleaved since pages p2 and p3 are

displayed in the same frame (f2) and, hence, are simultaneously visible to the user. These

characteristics of pages and frames may be used to identify WUI components similar to the

ones developed for GUIs.

The simple WUI shown in Figure 8.2 may be modeled in terms of its objects

with properties and the constraints among the objects. The WUI contains four objects,
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name-label, name-field, submit-button, and reset-button. The contents of the WUI

are summarized as follows:

Frames: f1 /* A single frame*/

Pages: p1 /* A single page */

Objects of p1:

name-label: set of properties = {type(“label”), value(“Name”), color(“Black”),

font(“Type Roman”)}.

name-field: set of properties = {type(“text-field”), value(“”), editable(“TRUE”)}.

submit-button: set of properties = {type(“button”), caption(“Submit”), ac-

tion(“POST”)}.

reset-button: set of properties = {type(“button”), caption(“Reset”),

action(“RESET”)}.

Constraints: /* geometric constraints imposed by the HTML code */

{first-object(name-label), after(name-label, name-field),

new-line(submit-button), after(submit-button, reset-button)}

The properties for each WUI object describe the characteristics of that object. The

property “type” describes the type of the object, hence determining its behavior and the

interpretation of its remaining properties. The property “action” associates an executable

program with the object in question. For example, submit-button and reset-button have

the actions POST and RESET associated with them.

Note that the WUI representation is more complex than that of GUIs. In WUIs,

timing and position constraints play important roles in its execution. The next section

shows how timing and synchronization information are incorporated into WUI test cases.

8.2 Representing Timing Information in WUI Test Cases

Temporal and synchronization constraints are an important part of a WUI’s be-

havior. A common example of a temporal constraint on a WUI event is the maximum

time allowed for that event to execute. Other constraints, such as synchronization con-

straints may require that an object be downloaded completely before the next event is

executed. Such temporal constraints may be defined for each event in the test case by a

timing/synchronization sequence.

Definition: A timing/synchronization sequence T1; T2; T3; . . . ; Tn is associated with each

WUI test case, where each Ti is a set of temporal/synchronization constraints on

event ei. 2
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Figure 8.3: A WUI Event Sequence.
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For example, consider the event sequence shown in Figure 8.3 for the WUI of Fig-

ure 8.2. The test case consists of 5 events – typein-text-field (e1) and click-on-button

(e5) are events available in the browser window whereas select-text (e2), edit-cut (e3),

and edit-paste(e4) are events available in the browser. Event e5 has a temporal constraint

that imposes a limit on the time elapsed between its execution and the display of results.

If this time is longer than 10 seconds, then an error must be reported.

The test designer can define any type of temporal constraint. These constraints

are used by the test executor to control the execution of each event and by the test oracle to

determine the correctness of the timing of the test case. Hence, for each temporal constraint

defined by the test designer, appropriate routines must be developed in the test executor

and test oracle to handle that constraint. Note that some synchronization constraints are

automatically handled by the test executor. For example, the test executor waits for an

object to be loaded before performing an event on that object. The test oracle developed in

Chapter 6 is extended to handle WUIs (see Figure 8.4). A new component, called a timing

monitor uses the timing/synchronization sequence and verifies the correctness of the timing

as defined in the sequence.
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8.3 Environmental Conditions

As mentioned earlier, environmental conditions may affect a WUI’s execution be-

havior. Common examples are the client’s security settings, the browser used, and the speed

of the network. The WUI must be tested on a sufficient number of variations of the envi-

ronmental conditions. The test executor in the testing framework is extended to initialize

the WUI’s execution environment to the environmental conditions on which it is tested.

The behavior of each event may change depending on environmental conditions chosen for

testing the WUI.

There are several possible approaches to handle the effect of environmental condi-

tions on events.

1. Ignore them: Each event’s behavior would be non-deterministic, making it essentially

impossible to validate test results or to re-execute test cases.

2. Explicit encoding: Encode the environmental conditions as parameters to each event’s

operator and modify the operator definition for each environmental condition.

3. Demand driven: Instead of encoding the environment conditions explicitly in each

event’s operator, take each condition’s effect into consideration at test case execution

time.

While approach 1 is clearly unacceptable, 2 and 3 provide similar results. However,

in approach 2, the specification of each operator becomes bulky and non-intuitive. Moreover,

as new environmental conditions are identified and old, less important ones discarded, the

test designer may have to change the operators. On the other hand, approach 3 allows the

test designer to specify and handle important environmental conditions whenever necessary.

An examination of the events of the WUI yields the characteristics of the client,

server, and network’s state that effects the event’s execution behavior. As in the category-

partition method, categories classify these characteristics. Choices are the different signifi-

cant cases that can occur within each category.

Formally, the categories of the environmental conditions of a specific WUI are

C = {c1, c2, . . . , cn}. For each ci, the choices are Hi = {hi1, hi2, . . . , him}.

Definition: The category-choices CC of a WUI is a set of ordered pairs (ci, {hi1, hi2, . . . , him})

where ci ∈ C is a category and each hij is a choice of category ci. 2

Note that each WUI has a unique CC since the categories and choices are obtained

by examining the events of the WUI. However, once the category-choices have been identified



110

for a WUI, they can be reused with very few alterations across WUIs since many categories

and choices are common across WUIs. Web-browsers can also be used to obtain some

of these categories and choices. For example, Internet Options in Microsoft’s Internet

Explorer gives a list of options to set the client’s preferences (environmental conditions).

The choices available in the web-browser can be used to construct the category-choices.

The experience of the test designer plays an important role in selecting the cate-

gories and choices. The test designer (1) examines all the events in the WUI and identifies

the characteristics of the client, server, and network state that effects the event’s execution

behavior (2) classifies the characteristics into categories, and (3) determines the different

significant cases that can occur within each category. These cases become the choices of

the category.

During test case execution, values are chosen for each category from its corre-

sponding choice list. Hence, the input at test execution time consists of CC as well as the

test cases.

Input = {CC} × { Test Cases }

CC is used by the test executor to initialize the environment of the WUI before

executing each test case.

It is impractical to test the WUI for all possible combinations of choices for each

category. Important choices must be identified by the test designer. The test designer

assigns priorities to each choice, creating extended category-choices.

Definition: The extended category-choices CC ′ is a set of ordered pairs of the form

(ci, {(hi1, Ii1), (hi2, Ii2), . . . , (him, Iim)}), where ci is a category and Iij is the priority

assigned to the choice hij . 2

An example of CC ′ is shown in Table 8.1. The table shows 4 categories: the

browser, connection speed, operating system, and the level of security. The columns show

the choices of each category and the priority assigned to each choice. For example, column

1 shows all the choices of the category browser. The priority of the choice “IE” is 0.6 and

that of “Netscape” is 0.4. Using the extended category-choices, the test designer orders the

setting of the environmental conditions by using the choices with highest priority first. For

example, in Table 8.1, the maximum number of test cases will be executed on the WUI

by using the IE browser, low security settings, Linux operating system, and connected by

a 28.8Kbps modem. Then depending on the resources available, some test cases may be

executed with lower priority choices.



111

c1 c2 c3 c4
Browser Cnx. Speed Opr Sys Security

h1,1 I1,1 h1,2 I1,2 h1,3 I1,3 h1,4 I1,4
IE 0.6 T1 0.1 WinNT 0.1 High 0.1

h2,1 I2,1 h2,2 I2,2 h2,3 I2,3 h2,4 I2,4
Netscape 0.4 56 kbps 0.3 Win2000 0.3 Medium 0.4

h3,2 I3,2 h3,3 I3,3 h3,4 I3,4
28.8 kbps 0.6 Linux 0.4 Low 0.5

h4,3 I4,3
IBM 0.1

Table 8.1: An Example of Extended Category-choices.

8.3.1 User Profiles for Regression Testing

Once the WUI has been deployed, valuable information may be collected about

its usage. Although such information is not readily available for conventional software [60],

web-based software already collects this information in log files. These log files may be

data-mined [46] and used in the following ways for regression testing.

1. The log files may be used to identify event-sequences that users employ to interact

with the WUI and extract common patterns. These patterns can then be used to

generate test cases for the modified WUI.

2. The log files may also be used to identify new categories, their choices and assign

priorities to the choices.

Using profile information, the test designer is better informed about the WUI’s

usage and is thus able to perform better regression testing of the WUI.

8.4 Conclusions

This chapter presented some of the important problems of WUI testing and pre-

sented possible extensions to the testing framework to solve them. The GUI representation

was extended to incorporate constraints among WUI objects. A new hierarchy of WUI

objects was presented in terms of pages and frames. Timing information was incorporated

into WUI test cases. A new component called a timing monitor was added to the test

oracle allowing it to check the correctness of the temporal and synchronization constraints.

The category-partition method was used to select environmental conditions for the WUI.

Finally, a technique that employs user profiles for regression testing of WUIs was presented.



Chapter 9

Conclusions and Future Work

The widespread recognition of the usefulness of graphical user interfaces (GUIs)

has established their importance as critical components of today’s software. Although the

use of GUIs continues to grow, GUI testing has remained a neglected research area. Testing

GUIs requires the development of (1) coverage criteria to determine what to test in the

GUI, (2) test cases based on the coverage criteria, (3) test oracles to determine whether the

GUI executed correctly during testing, (4) a regression test suite to test the modified and

affected parts of the GUI by selective test case execution.

Because GUIs have characteristics different from conventional software, such as

event-based input and graphical output, techniques developed to test conventional software

cannot be directly applied to GUI testing. Currently, the most popular tool support for

GUI testing is in the form of record/playback tools, which are largely manual, making GUI

testing resource intensive. Although a few independent tools and techniques to automate

some aspect of GUI testing have been proposed in the published literature, they are rarely

used in practice because a test designer who makes use of these independent tools has

to learn the idiosyncrasies of each tool. A practical solution to the GUI testing problem

must develop automated tools and techniques that are integrated and employ a common

representation so that results of one tool are compatible with the others.

9.1 Summary of Contributions

This thesis develops a unified solution to the GUI testing problem with particular

emphasis on the integration of tools and techniques to be used in the various phases of GUI

testing. The integration goal was accomplished by the development of a framework with

a GUI representation useful for all phases of testing. As the first step of testing, the test

designer creates a model of the GUI that is used as input to all the tools/techniques.
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The main contribution of this thesis is a comprehensive framework for testing

GUIs. The framework consists of several interacting components: a GUI representation, a

test case generator, test coverage evaluator, test oracle, test executor, and regression tester.

The individual contributions of developing each of these tools/techniques are outlined next.

1. Representation: The representation of a GUI is a fundamental component of the

framework. A GUI is represented as a set of objects, (window, menu, button, text,

etc.), a set of properties of those objects (background color, font, is-open, etc.), and a

set of events that change the properties of certain objects (set-background-color, etc.).

Each GUI uses certain types of objects with associated properties; at any specific point

in time, the GUI is described in terms of the specific objects, or GUI elements that

it currently contains, and the current values of their properties. Events that are

performed on the GUI are modeled as state transducers or operators. These operators

are defined in terms of the preconditions and effects of the events. For efficiency and

scalability, events are classified in a hierarchy as restricted-focus events, unrestricted-

focus events, termination events, menu-open events, and system-interaction events.

This classification is used to create a hierarchy of GUI components that is used by

the test case generator, coverage evaluator, test oracle, and regression tester. A GUI

component is defined as the basic unit of testing. A new representation of a GUI

component called the event-flow graph identifies events and their interactions. An

integration tree represents the interactions among components.

2. Coverage Evaluator: The coverage evaluator employs a new class of coverage crite-

ria called event-based coverage criteria. These criteria use events and event sequences

to specify a measure of test adequacy. The coverage evaluator employs (1) intra-

component criteria for events within a component and (2) inter-component criteria

for events across components. Three types of intra-component coverage criteria are

used: event coverage, event-interaction coverage, and length-n event-sequence cover-

age. The coverage evaluator employs invocation coverage, invocation-termination cov-

erage, and inter-component length-n event-sequence coverage criteria for events across

components.

3. Test case generator: The test case generator is based on a new technique that

exploits planning, a well developed and used area of artificial intelligence. Given a set

of operators, an initial state and a goal state, a planner produces a sequence of the

operators that will transform the initial state to the goal state. The test case generator

enables efficient application of planning by using the hierarchical model of the GUI.

High-level planning operators are developed that represent the events in a component.
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The test designer identifies typical tasks (scenarios) represented by initial and goal

states. The planner then generates plans representing sequences of GUI interactions

that a user might employ to reach the goal state from the initial state. These plans

are used as test cases for the GUI.

4. Test oracle: A GUI test oracle determines whether a GUI behaves as expected for

a given test case. The oracle uses the GUI representation and for every test case,

automatically derives the expected state for every event in the test case. The actual

state of an executing GUI is also represented in terms of objects and their properties

derived from the GUI’s execution. Using the actual state acquired from an execution

monitor, the oracle automatically compares the expected and actual states after each

event to verify the correctness of the GUI for the test case.

5. Test executor: Test cases, generated by the test case generator, are input to the

test executor that executes each event in the test case, such as mouse and keyboard

events, thereby mimicking a GUI user.

6. Regression tester: The regression tester partitions the original GUI test cases into

valid test cases that represent correct input/output for the modified GUI and invalid

test cases that no longer represent correct input/output. Valid test cases are not rerun

on the modified GUI since they execute the same sequences of events already tested

on the original GUI. On the other hand, invalid test cases cannot be rerun because

they either specify incorrect input or incorrect expected output. The regression tester

reuses some of the invalid test cases by repairing them. The key idea is that the

repaired test cases are more likely to reveal faults in the modified GUI since they

test specific sequences of events that were modified in the GUI. Invalid test cases are

repaired by the application of repairing transformations that employ the specifications

of the GUI to make the repairs. The regression tester employs the event-flow graphs

and integration tree of the original and the modified GUI to determine the changes

made to the GUI, identify invalid test cases, and repair them.

A cursory exploration of extending the framework to handle the new testing re-

quirements of web-user interfaces (WUIs) was also done. The WUI is modeled in terms

of its constituent objects, properties of these objects, and a set of constraints (geometric,

temporal, etc.) among the objects. Environment conditions represent the characteristics

of the states of the client, server, and network that effect the behavior of the WUI. A

WUI test case is defined as a sequence of events with temporal/synchronization constraints

associated with each event. Test cases can be generated in two phases: (1) a plan gener-

ation technique (similar to the one used for GUIs) generates the event sequences, and (2)
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the test designer annotates the event sequences with temporal/synchronization constraints.

The environment conditions for the WUI are obtained by employing the category-partition

method. The test designer partitions the characteristics of the states of the client, server,

and network into categories (browser, operating system, etc.), which are further partitioned

into choices (e.g., Netscape, Internet explorer for browser and Windows NT, Windows 2000,

Linux for operating system). The test designer assigns a priority, a real number between

0 and 1, to each choice within each category. This priority is then used to order test case

execution with appropriate environmental conditions.

9.2 Future Work

Several new questions were raised while conducting this research and performing

experiments. New problem domains that could benefit from some of the developed tech-

niques were also identified. These questions and identified domains are the basis for future

research that can be conducted using the ideas developed in this dissertation. Some ideas

are outlined below:

1. Relationship between the interface and underlying code: Software contains

both the interface and the underlying code. Yet, different testing paradigms are used

to test the interface and the underlying code. Test cases executed on the interface

cause a path to be executed in the control-flow graph of the underlying code. It may

be redundant and expensive to retest these paths when testing the underlying code.

A unified theory between testing the interface and the underlying code may be useful

in reducing testing costs.

2. Separating the GUI logic from the underlying logic: The running example

used throughout the dissertation was a new implementation of the WordPad software.

WordPad was chosen because it was possible to encode is underlying code’s logic

directly in GUI operators. However, encoding the underlying logic of a more complex

software may make the operator definitions bulky. Techniques need to be developed

that can separate the GUI’s functionality from that of the underlying code.

3. GUI specifications and testing: As is the case with all software, a GUI’s spec-

ifications are developed before it is implemented. The GUI implementer employs

these specifications to implement the GUI. The test designer uses the same specifica-

tions to test the GUI. However, writing the specifications (usually written in natural

language), realizing them as programs and using them to generate test cases is error-

prone. If, however, the GUI specifications were executable, it might be possible for a
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GUI designer to formally specify the design of the GUI as executable specifications,

debug these specifications for logical correctness using automated tools (such as model

checkers), and use a GUI generator to automatically generate the GUI implementa-

tion. The same specifications could then be used to test the GUI. Developing these

GUI specifications remains an open research issue. One promising starting point is to

specify GUIs in terms of operators. Preconditions and effects have been used in the

past to specify GUIs [25].

The same design/implementation/testing paradigm can also be extended to other

software. For example, the paradigm may be applied to developing device drivers.

The device developer may provide formal specifications for the device. Device drivers

may be automatically generated for different operating systems and then tested.

4. Prioritizing GUI test cases: Experiments showed that it is impractical to test

the GUI for all event-sequences. A subset of “important” event sequences needs to be

identified, generated and executed. Identifying such important sequences requires that

they be ordered by assigning a priority to each event sequence. Detailed experiments

need to be conducted to determine the error detection capability of these high-priority

test cases.

5. Non-deterministic GUIs and probabilistic input devices: The output of sev-

eral types of software (such as games) and input devices (such as virtual reality gloves)

is non-deterministic. A probabilistic model of the software/hardware may be created

to generate testing information.

6. Repairing test cases for regression testing of conventional software: This

dissertation presented a new technique to perform regression testing by repairing

invalid test cases. Modification of conventional software also results in invalid test

cases that are simply discarded. Studies need to be conducted to determine whether

the repairing technique developed in this dissertation can be extended to repair invalid

test cases for conventional software.

7. Exploring the correlation between event-based and code-based coverage

criteria: One experiment showed an interesting correlation between event-coverage

and statement coverage of the underlying code. Additional experiments need to be

conducted to determine whether such a correlation exists between event-coverage and

other code-based coverage criteria.

8. Object-oriented and component-based software: Modern software development

is an engineering effort where a software developer composes software by reusing

classes, objects, and components. However, these development paradigms create new
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challenges for testing. Source code from certain classes may not be available to the test

designer. In such cases, code-based testing may not be applicable. An interface-based

technique similar to the one used for GUI testing may be beneficial.

9. Reactive software: Reactive software is finding increasing importance in embed-

ded and safety critical systems. To create an oracle for testing, the test designer

manually specifies a set of conditions that must be met during software execution.

This manual specification is prone to incompleteness. More comprehensive checking

may be achieved if the software’s reactive components are modeled in the form of

preconditions and effects and the test oracle is automatically generated.

10. Networks: A network consists of a collection of heterogenous elements such as links

and switches. Each element is responsible for routing traffic through the network.

Testing a network is a complex process where each element of the network plays an

important role in determining the correctness of its state. A network can be modeled

in terms of its elements (as objects) and their state (as a set of properties). Messages

passing through the network may be modeled as events that change the state of the

network’s elements. Such a model can then be used to test the network.

11. Execution profiles and testing: Conventional testing techniques focus on em-

ploying results of the software’s static analyses and specifications to generate testing

information. However, run-time (dynamic) information in the form of execution pro-

files of the software, may be especially valuable for testing the software. Techniques

have been studied to collect this data [60]. It may be beneficial to use execution pro-

files to generate test cases that test frequently-used paths in the software’s control-flow

graph.
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