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Abstract—Software is increasingly being developed/maintained by multiple, often geographically distributed developers working

concurrently. Consequently, rapid-feedback-based quality assurance mechanisms such as daily builds and smoke regression tests,

which help to detect and eliminate defects early during software development and maintenance, have become important. This paper

addresses a major weakness of current smoke regression testing techniques, i.e., their inability to automatically (re)test graphical user

interfaces (GUIs). Several contributions are made to the area of GUI smoke testing. First, the requirements for GUI smoke testing are

identified and a GUI smoke test is formally defined as a specialized sequence of events. Second, a GUI smoke regression testing

process called Daily Automated Regression Tester (DART) that automates GUI smoke testing is presented. Third, the interplay

between several characteristics of GUI smoke test suites including their size, fault detection ability, and test oracles is empirically

studied. The results show that: 1) the entire smoke testing process is feasible in terms of execution time, storage space, and manual

effort, 2) smoke tests cannot cover certain parts of the application code, 3) having comprehensive test oracles may make up for not

having long smoke test cases, and 4) using certain oracles can make up for not having large smoke test suites.

Index Terms—Smoke testing, GUI testing, test oracles, empirical studies, regression testing.
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1 INTRODUCTION

MANY of today’s software applications are developed
and maintained by multiple programmers, often

geographically distributed, who work on parts of the
overall application code. While leading to improved code
churn rates, this practice also leads to problems. For
example, developers may not realize that they have
inadvertently broken parts of the code. Consequently,
rapid-feedback-based quality assurance mechanisms are
integrated into the development and maintenance cycle.
One such mechanism requires nightly/daily building of the
software and execution of smoke regression tests. In
recently reported work [1], [2], an important weakness of
current smoke testing techniques, i.e., their inability to
automatically and efficiently smoke test the graphical user
interface (GUI) front-end part of the software, was
addressed. The concept of GUI smoke tests was introduced
and a framework called Daily Automated Regression Tester
(DART) that retests frequent builds of GUI software was
described.

DART has been implemented and successfully deployed.
The key to the success of DART is that developers can work
on the code during the day; DART automatically launches
the GUI application under test (AUT) at night, builds it and
runs GUI smoke test cases. Coverage and bug report
summaries are e-mailed to developers. DART automates
everything required for GUI smoke testing including
structural GUI analysis (called GUI ripping [3]), test case
generation [4], test oracle creation [5], code instrumentation,

test execution, coverage evaluation, regeneration of test

cases and their reexecution, and automated reporting via a

Web-based virtual scoreboard called DART-Board. To-

gether with the operating system’s task scheduler (e.g.,

MS Windows task scheduler, Unix cron job), DART can

execute frequently with little input from the developer/

tester to smoke test the GUI software. DART and its

components were described in a preliminary report of this

research [1]. The fault-detection effectiveness of GUI smoke

tests was also demonstrated.
This paper builds upon the previous research by study-

ing the following important, previously ignored, aspects of

automated GUI smoke testing:

. Size of a smoke test suite: Smoke test suites of various
sizes are created and the impact of size on fault-
detection effectiveness is studied.

. Complexity of test oracles: Five oracles of varying
complexity are developed for GUI smoke tests and
their effectiveness is studied.

. Characteristics of faults that can and cannot be
detected by the GUI smoke test cases are studied.

Most importantly, the interplay between the above

factors is empirically studied. For example, the combined

effect of using different-sized test suites with various test

oracles on faults detected is studied. Finally, guidelines are

presented for practitioners who perform smoke testing of

GUI-based software to help them generate and execute

effective smoke test suites, taking into consideration their

fault-detection ability and size so that they can be executed

in one night.
The specific contributions of this work include:

. identification of requirements for GUI smoke tests,

. formal definition of a GUI smoke test case,
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. study of code that cannot be covered by the smoke
tests, and

. a first empirical study evaluating the strengths and
weaknesses of GUI smoke tests and tradeoffs
between test oracles, test suite size, and faults
detected.

Structure of the paper. Background and related work is
presented in the next section. In Section 3, a brief overview
of the DART process is given. A GUI smoke test case is
formally defined in Section 4. In Section 5, test oracles for
smoke test cases are discussed. Empirical studies are
described in Section 6. Finally, a discussion of limitations,
and ongoing and future work is presented in Section 7.

2 BACKGROUND AND RELATED WORK

Nightly/daily builds and smoke tests [6], [7], [8] have

become widespread [9], [10]. During nightly builds, a

development version of the software is checked out from

the source code repository tree, compiled, linked, and

“smoke tested” (“smoke tests” are also called “sniff tests” or

“build verification suites” [11]). Typically, unit tests [9] and

sometimes acceptance tests [12] are executed during smoke

testing. Such tests are run to (re)validate the basic

functionality of the system [11]. Smoke tests exercise the

entire system; they do not have to be an exhaustive test

suite but they should be capable of raising a “something is

wrong here” alarm. A build that passes the smoke test is

considered to be “a good build.” As is the case with all

testing techniques, it is quite possible that problems are

found in a good build during more comprehensive testing

later or after the software has been fielded.

Daily building and smoke testing have been used for a

number of large-scale commercial and open-source projects.

For example, Microsoft used daily builds extensively for the

development of its Windows NT operating system [7]. By

the time it was released, Windows NT 3.0 consisted of

5.6 million lines of code spread across 40,000 source files.

The NT team attributed much of the project’s success to

their daily build process. The GNU project continues to use

daily builds for most of its projects. For example, during the

development of the Ghostscript software, daily builds were

used widely. The steps for daily builds involved compiling

the source, executing smoke tests, and updating the

CVS repository. Similarly, WINE [13], Mozilla [14], AceDB

[14], and openwebmail [15] use nightly/daily builds.
Although there is no prior work that directly addresses

the research presented in this paper, except our own work
[1], [2], several researchers and practitioners have discussed
the following concepts that are relevant to its specific parts:

Daily Build Tool Support. There are several tools that
may be used to setup and perform smoke testing of
software applications. Popular examples include CruiseCon-
trol [16], IncrediBuild [17], Daily Build [18], and Visual Build
[19]. Most of these tools provide more or less identical
functionality. CruiseControl, Daily Build, and Visual Build
are frameworks for setting up and running continuous
build processes. They include plug-ins for tools, e.g., for
e-mail notification and source control. Web interfaces

provide views to details of the current and previous builds.
IncrediBuild speeds up daily building and smoke testing by
performing distributed compilation of source; it distributes
the compilation task across several available machines in an
organizational network. It has been found to be effective for
nightly/daily builds of Miscrosoft Visual C++ (6.0, 7.0, and
7.1) applications. While there are tools that support daily
building and smoke testing of conventional software, there
is no literature on techniques and tools for daily building
and smoke testing of GUI software.

Web Testing. Web user interfaces share several char-
acteristics with GUIs. Event sequences performed by users
are captured by a browser and sent to a Web server. There
have been a number of efforts aimed at automating Web
testing. The most popular is to simulate sequences of HTTP
requests by using one of several HTTP torture machines [20].
The response to each request is then analyzed and its
correctness in the context of the single request determined.
The disadvantage of this approach is that the tester lacks a
global perspective of a typical users’ interactions and the
collective effect of a sequence of events as seen in a
browser’s window. Because of this limitation, this testing is
restricted to: 1) load testing [20], [21] of the servers to
determine the number of requests they can handle
simultaneously, 2) performing restricted forms of checking
such as the validity of links [22], or 3) the client’s
compliance to HTML requests [23].

GUI Testing Tools. Three different approaches are used
to handle GUI software when performing testing. First, and
most popular, is to perform no GUI testing at all [11], which
leads to compromised software quality. Second is to use test
harnesses that “bypass” the GUI and invoke methods of the
underlying business logic as if initiated by a GUI. This
approach not only requires major changes to the software
architecture (e.g., keep the GUI software “light” and code
all “important” decisions in the business logic [24]), it also
does not perform testing of the end-user software. Third is
to use manual GUI testing tools to do limited testing [25],
[26]. Examples of some tools include extensions of JUnit

such as JFCUnit, Abbot, Pounder, and Jemmy Module [27] and
capture/replay tools [28] that provide very little automa-
tion, especially for creating smoke tests.

Capture/replay tools (also called record/playback tools)
operate in two modes: Record and Playback. In the Record

mode, tools such as CAPBAK and TestWorks [29] record
mouse coordinates of the user actions as test cases. In the
Playback mode, the recorded test cases are replayed
automatically. The problem with such tools is that, since
they store mouse coordinates, test cases break even with the
slightest changes to the GUI layout. Tools such as
Winrunner [30], Abbot [31], and Rational Robot [32] avoid
this problem by capturing GUI widgets rather than mouse
coordinates. Although playback is automated, significant
effort is involved in creating the test scripts, detecting
failures, and editing the tests to make them work on the
modified version of software. Developers/testers who
employ these tools typically come up with a small number
of smoke tests [33]. Moreover, the tools do not support
smoke testing of GUI software.

MEMON AND XIE: STUDYING THE FAULT-DETECTION EFFECTIVENESS OF GUI TEST CASES FOR RAPIDLY EVOLVING SOFTWARE 885



The most comprehensive and complete solution is
provided by DART [1], [2] that addresses the needs of
smoke testing of software applications that have a GUI.
DART automates smoke testing of GUIs by using model-
based testing techniques. An overview of DART is pre-
sented next.

3 THE DART PROCESS

The main design goal of DART is to automate GUI smoke
testing. A test designer uses a process called the “DART
process” to realize this automation. This process is outlined
next; the goal is to provide the reader with a high-level
picture of the operation of DART. Note that the names of
the modules of DART are in boldface font and described
later in Section 6.

1. The developer (or test designer) identifies the AUT.
This essentially means that the developer identifies
the locations of source files and any library modules
needed to compile/build the AUT. DART maintains
an internal identifier for these AUT artifacts. This
version of the AUT used for DART setup is called
the “baseline AUT.”

2. DART analyzes the (baseline) AUT’s GUI structure
(using a module called the GUI ripper) by auto-
matically traversing all the windows of the GUI and
extracting all the GUI objects (widgets) and their
properties. The internal AUT representation is a set
of triples, each of the form (widget, property, value)
and event-interaction graphs (discussed in Section 4).

3. DART computes the total number of possible smoke
test cases (event sequences) that may be executed on
the AUT. An example of the total number of smoke
test cases that may be executed on the subject
applications used in the empirical studies is shown
in Table 2. The test designer then specifies the
number of test cases that should be executed. The
numbers specified by the test designer in the
empirical study are shown in Table 3. Note that this
type of specification does not give the test designer
low-level control of exactly what test cases to
generate and execute; however, it is very quick and
effective. By default, all length 1 and length 2 test
cases (where length is the number of events) are
executed.

4. DART’s automated test case generator generates the
smoke test cases (Section 4).

5. A test oracle generator automatically creates, for
each test case, an expected output that is used to
verify the correctness of the next version of the AUT
(Section 5). The smoke test suite for subsequent
versions is now ready.

6. The development team uses change requests and
bug reports to modify the AUT.

7. The operating system’s task scheduler launches
DART, which in turn launches the AUT. DART
automatically instruments the AUT’s source code
using a code instrumenter (e.g., JCover [34]).

8. Test cases are executed (using a test case executor)
on the instrumented modified AUT automatically

and the output is compared to the stored expected
output (from Step 5). An execution report is
generated in which the executed test cases are
classified as successful or unsuccessful. A coverage
report is also generated, which indicates what
statements and branches have been executed. These
results are e-mailed to the developers. A Web-based
virtual scoreboard called the DART-Board is auto-
matically created. The DART-Board provides a
summary of the results with links to test cases and
detailed test results.

9. The next morning, the developers examine the
reports. They also examine the unsuccessful test
cases. Note that a test case may be unsuccessful
because 1) it crashed the software, 2) the expected
output did not match the actual output, or 3) an
event in the test case had been modified (e.g.,
deleted) preventing the test case from executing.

10. The developers submit the bug reports.

The smoke testing process restarts as Steps 3 through 10
are repeated throughout the development cycle of the AUT.

If needed, the developer may also include code-based
smoke test cases in the above cycle.

The above (numbered) steps are also shown in Fig. 1. The
figure contains four main parts: DART artifacts, DART

activities, software artifacts, and developer/tester activities.
As the names suggest, the DART activities are done
automatically whereas the developer/tester activities are

done manually. DART encapsulates all the DART artifacts.
The numbered (the numbers correspond to the above steps)
ovals represent activities and the boxes represent artifacts.

Directed edges to and from activities represent the con-
sumption and production of artifacts, respectively.

Subsequent sections provide details of smoke test cases
and test oracles.

4 GUI SMOKE TEST CASES

Users interact with a GUI by performing events on some
widgets, such as clicking on a button, opening a menu, and
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dragging an icon. During GUI testing, test cases, consisting
of sequences of events, are executed on the GUI.1 For GUI
smoke testing, a tester has to produce test cases that satisfy
the following requirements:

. The smoke test cases should be generated and
executed quickly, i.e., in one night.

. The test cases should provide adequate coverage of
the GUI’s functionality. As is the case with smoke
test cases of conventional software, the goal is to
raise a “something is wrong here” alarm by checking
that GUI events and event-interactions execute
correctly.

. As the GUI is modified, many of the test cases
should remain usable. Earlier work showed that GUI
test cases are very sensitive to GUI changes [33]. The
goal here is to design test cases that are robust, in
that a majority of them remain unaffected by
changes to the GUI.

. The smoke test suite should be divisible into parts
that can be run (in parallel) on different machines.

These requirements naturally follow from those of smoke
tests for conventional software, i.e., the need for speed [12],
breadth of coverage, and low overhead and maintenance.
This research uses a specialized GUI model to automatically
generate smoke test cases that satisfy the above require-
ments. This model is called the event-interaction graph, which
is based on a structure called the event-flow graph (EFG)
[33]. These models are described next.

4.1 Event-Flow Graphs

Since GUIs may be used as a front-end to many different
types of software applications, the space of all possible
GUIs is enormous. It would be extremely difficult to create
one model for all possible types of GUIs. Hence, to
provide focus, this research models a subclass of GUIs.
Specifically, the GUIs in this subclass react to events
performed only by a single user and the events are
deterministic, i.e., their outcomes are completely predict-
able. Testing GUIs that react to temporal and nondetermi-
nistic events and those generated by other applications is
beyond the scope of this work.

Intuitively, an EFG models all possible event sequences
that may be executed on a GUI. An EFG contains nodes
(that represent events) and edges. An edge from node nx to
ny means that the event represented by ny may be
performed immediately after the event represented by node
nx. An example of an EFG for the Main and Replace

windows of the MS NotePad software is shown in Fig. 2.
Events (corresponding to each widget) are shown as labeled
boxes. The labels show a meaningful unique identifier for
each event. Directed edges show the event-flow relationship
between events. For increased readability, only some of the
edges are shown. Sets of events are defined and listed in a
Legend. For example TopLevel is a set containing the
events File, Edit, Format, View, and Help. Similarly, �1
is a set containing all the events in TopLevel and
ReplaceSet. An edge from Copy to �1 represents a

number of edges, from Copy to each event in �1 . According
to this EFG, the event Cancel can be executed immediately
after the event Find Next; event Match case can be
executed after itself; however, event Replace cannot be
executed immediately after event Cancel.

4.2 Event-Interaction Graphs

Since an EFG models all possible (an extremely large number
of) event interactions, it cannot be used directly for rapid
testing; abstractions are used to model only specialized
(and, hence, a smaller number of) event sequences. In a
typical GUI, 20-25 percent of the events are used to
manipulate the structure of the GUI; examples include
events that open/close windows/menus. For example, in
Microsoft Word, of the total 4,210 events, 80 events open
menus, 346 events open windows, and 196 events close
windows; the remaining 3,588 events interact with the
underlying code. The code for events that open menus and
windows is straightforward, usually generated automati-
cally by visual GUI-building tools. This code is very
unlikely to interact with code for other events; hence, very
few errors are revealed by executing interactions between
these events. The remaining events in the GUI are
nonstructural events that do not cause structural changes to
the GUI; rather, they are used to perform some action;
common examples include the Copy event used for copying
objects to the clipboard.

Events that interact with the underlying software include
nonstructural events and those that close windows. These
events are called system-interaction events. Intuitively, the
GUI smoke test cases are composed only of these events
(and any other events necessary to “reach” the system-
interaction events). Once these events have been identified
in a GUI, the EFGs are transformed to event-interaction
graphs, which are used to generate smoke tests. We now
define some terms that help in this transformation.

Intuitively, an event-flow path represents a sequence of
events that can be executed on the GUI. Formally, an event-
flow-path is defined as follows:

Definition. There is an event-flow-path from node nx to node

ny iff there exists a (possibly empty) sequence of nodes
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nj;njþ1;njþ2; . . . ;njþk in the event-flow graph E such that
fðnx; njÞ; ðnjþk; nyÞg � edgesðEÞ and

fðnjþi; njþiþ1Þfor 0 � i � ðk� 1Þg � edgesðEÞ:

In the above definition, the function edges takes an
event-flow graph as an input and returns a set of ordered-
pairs, each representing an edge in the event-flow graph.
The notation < n1;n2; . . . ;nk > is used for an event-flow
path. Several examples of event-flow paths from the EFG
of Fig. 2 are:

< File;Edit;Undo >;< File;MatchCase;Cancel >;

< MatchCase;Editbox 1;Replace >; and

< MatchCase;FindNext;Replace > :

Smoke test cases consist of those event-flow-paths that start
and end with system-interaction events, without any
intermediate system-interaction events.

Definition. An event-flow-path < n1;n2; . . . ;nk > is interac-
tion-free iff none of n2; . . . ; nk�1 represent system-interaction
events.

Of the examples of event-flow paths presented above,
< File;Edit;Undo > are interaction-free (since Edit is not a
system-interaction event) whereas

< MatchCase;Editbox 1;Replace >

is not (since Editbox 1 is a system-interaction event).
Intuitively, two system-interaction events may interact if

a GUI user may execute them in an event sequence without
executing any other intermediate system-interaction event.

Definition. A system-interaction event ex interacts-with
system-interaction event ey iff there is at least one interac-
tion-free event-flow-path from the node nx (that represents ex)
to the node ny (that represents ey).

For the EFG of Fig. 2, the above relation holds for the
following pairs of system-interaction events:

fðNew;Date=TimeÞ; ðFindNext 1;WordWrapÞ;
ðEditbox 0; Editbox 1Þ; and ðDelete; CancelÞg:

The interaction-free event-flow-paths for these pairs are

< New;Edit;Date=Time >;

< FindNext 1;Format;WordWrap >;

< Editbox 0;Edibox 1 >; and < Delete;Cancel >;

respectively. Note that an event may interact-with itself. For
example, the event MatchCase interacts with itself. Also
note that “ex interacts-with ey” does not necessarily imply
that “ey interacts-with ex.” In the EFG example, even though
Replace interacts-with Cancel, the event Cancel does not
interact-with Replace.

The interacts-with relationship is used to create the
event-interaction graph. This graph contains nodes, one for
each system-interaction event in the GUI. An edge from
node nx (that represents ex) to node ny (that represents ey)
means that ex interacts-with ey. The algorithm to convert an
EFG to an event-interaction graph is shown in Fig. 3. The

procedure GenerateEIG takes as input an EFG, repre-
sented as a set of nodes N and a set of edges E. It removes
all nonsystem-interaction event nodes and their associated
edges from the given EFG. At the termination of the
procedure, the event-interaction graph is obtained, repre-
sented as a set of nodes N and a set of edges E. N and E are
initialized to N and E (lines 2-3). When traversing all edges
of the EFG, a list of nodes startðnÞ on the edges that start
from the node n (except itself) is obtained for all nodes.
Similarly, a list of nodes endðnÞ that end with the node n
(except itself) for all nodes (lines 4-6) is computed. For each
node n of the EFG (line 7), all new edges (nx, ny) are added
to E if there is an interaction-free path < nx;n;ny > in the
EFG (lines 8-11); startðnxÞ and endðnyÞ are updated to add
ny and nx in the lists, respectively, if nx and ny are not the
same node (lines 12-14). Accordingly, n is removed from the
start and end lists (lines 15-18). Finally, n is removed from
N (line 19); all edges associated with n are removed from E
(lines 20-21). The event-interaction graph for the EFG of
Fig. 2 is shown in Fig. 4. Note that the space of event-
sequences has reduced considerably since only the system-
interaction event interactions are modeled in this graph.

An event-interaction graph may be traversed in a number
of ways to generate sequences of system-interaction events,
which form the GUI smoke test cases. For example, all
length 1 event sequences may be generated by simply
enumerating all the nodes in the graph. All length 2 event
sequences may be generated by enumerating each node
with its adjacent node. The number of lengths 1 and 2
system-interaction event sequences represented by the
event-interaction graph may be larger than the number of
event sequences of lengths 1 and 2, respectively, represented

888 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

Fig. 3. Generate event-inteaction graph from event-flow graph.



by the corresponding event-flow graph. This is not surpris-
ing since the system-interaction event sequences repre-
sented by the event-interaction graph are a compact form of
longer, and, hence, a larger number of, event sequences
represented by the event-flow graph.

The remaining question is how to execute the generated
system-interaction event sequences. At execution time,
other events needed to “reach” the system-interaction
events are generated on-the-fly. A simple graph traversal
algorithm is used on the EFGs to obtain these events. For
example, the system-interaction sequence < New;Undo >

will expand to < File;New;Edit;Undo > during test-case
execution.

The smoke test cases exhibit the following properties:

1. The test cases are short; they can be generated and
executed very quickly.

2. The smoke test case only consists of system-interac-
tion events; changes to the GUI layout, such as
moving events from one window to another and
changing the menu structure, leave most of the test
cases unaffected. Other events are generated on-the-
fly during test execution.

3. The expected state is stored only for system-
interaction events; it will become obsolete only if a
system-interaction event is modified.

4. All system-interaction events are executed; most of
the GUI’s functionality is covered.

5. Each test case is independent and the suite can be
distributed.

The most important property of smoke tests is that they
can be generated and executed automatically using DART.

5 GUI TEST ORACLE

Since the goal of smoke testing is to ensure that the software
has not “broken” during modifications, automated GUI test
oracles check that the “software does what it was doing
before modifications” were made. An automated test oracle

contains three parts. First, the oracle information generator
automatically derives the oracle information (expected state)
using either a formal specification of the GUI as described
in earlier work [5] or by using a “baseline” version of the
software [35], [36] (as described later in this section).
Second, the actual state is obtained from an execution monitor,
which may use any of the techniques described in [5], such
as screen scraping, querying, and reverse engineering [3].
Finally, an oracle procedure automatically compares the two
states and reports GUI errors.

For any smoke test case e1; e2; . . . en, where each ei is a
system-interaction event, the oracle information is repre-
sented as a sequence of states S1;S2; . . .Sn that capture
the complete (or partial) state of the GUI after each event.
The GUI state is represented as a set of widgets W ¼
fw1; w2; . . . ; wlg (e.g., buttons, panels, text fields) that
constitute the GUI, a set of properties P ¼ fp1; p2; . . . ; pmg
(e.g., background color, size, font) of these widgets, and a
set of values V ¼ fv1; v2; . . . ; vng (e.g., red, bold, 16pt)
associated with the properties. More specifically, the state
of a GUI at a particular time is the set S of triples
fðwi; pj; vkÞg, where wi 2 W , pj 2 P , and vk 2 V . The tools
in DART are able to capture the state of a GUI at any
instant during its execution. Platform-specific technology
such as Java API is used to capture this information.
Details of the technique are beyond the scope of this
work; the interested reader is referred to previously
published work [3]. For the purpose of this work, it is
sufficient to understand that a snapshot of the GUI’s state
can be captured fully automatically.

During smoke testing, the modified GUI version is
compared with the original version and changes are
reported. The steps involved are: 1) execute the test case
on the original GUI and collect state information, 2) execute
the same test cases on the modified version, and 3) compare
the GUI’s state with the stored information and report any
changes. There are several ways to use the above technique
in a test oracle. For example, the complete GUI state (i.e., the
state of all windows and widgets) may be collected, stored,
and compared after each event in the test case, or the
complete state may be collected, stored, and compared only
after the last event.

Depending on the resources available, DART can collect
and compare oracle information at different levels of detail:2

. Widget: all the properties of the object on which the
current event is being performed. This test oracle,
although simple, may be used to check the correct-
ness of widgets whose state changes when events are
performed on them, e.g., text-boxes, radio-buttons,
check-boxes, etc.

. Active window: all the properties of all the objects of
the active window in the GUI.

. Complete visible: all the properties of all the objects of
all the visiblewindows in the GUI. Note that the term
“visible windows” represents all windows for which
the isVisible property is TRUE. Windows that
are “hidden” behind other overlapping windows are
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also considered visible, if their isVisible property
is TRUE.

. Complete: all the properties of all the objects of all the
windows in the GUI.

In all the above definitions, the properties andGUI objects
include only those that can, in fact, be obtained using
DART’s reverse engineering tools (described in Section 6).

The comparison of the expected and actual states can be
done as frequently as once after each event of the test case
or less frequently, e.g., after the last event. It is expected that
reducing the frequency of comparison will reduce the test
case execution time as well as space required to store the
oracle information (since only the last state of the GUI needs
to be stored). Note that, in the empirical studies presented
in this paper, where all test cases are started in the same
GUI state, efficient storage management may be used to
conserve space. For example, since the first event in the
length 2 event sequence has its own length 1 test case, it is
possible to use a pointer to where the state is stored, rather
than storing duplicate copies. However, in general, if the
test designer starts each test case in a new state, this space-
saving strategy cannot be used since intermediate states will
be different.

Using the combination of oracle information and
frequency of comparison, five oracles of “different levels
of comprehensiveness” are obtained for GUI smoke testing.
Oracle levels L1, L2, L3, and L4 represent comparing the
widget, active window, complete visible, and complete oracle
information after each event of the test case with the actual
GUI, respectively. Oracle level L5 represents comparing the
complete oracle information after the last event of the test
case with the actual GUI.

6 EMPIRICAL STUDIES

DART has been implemented in Java. It contains several
modules:

1. The GUI ripper is the automated module that creates
event-interaction graphs. “GUI Ripping” is a dy-
namic process in which the software’s GUI is
automatically “traversed” by opening all its win-
dows and extracting all their widgets (GUI objects),
properties, and values. An important characteristic
of the GUI ripper that has an impact on DART is its
ability to extract different types of widgets. By
default, the GUI ripper extracts only “known”
widget types, typically those provided by the
implementation platform’s library. Custom widgets
(those developed by the programmer, e.g., cells in
a spreadsheet) need additional specification—the
developer needs to specify the types of events that
may be executed on the custom widgets and
methods to extract their state. As will be seen later,
the capabilities of the GUI ripper have an impact on
the fault-detection effectiveness of DART.

2. The test-case generator uses the event-interaction
graphs to create the smoke tests.

3. The test-oracle generator automatically executes the
generated test cases on the latest GUI version and
stores the captured state.

4. The test executor executes an entire test suite
automatically on the AUT. It performs all the events
in each test case and invokes the test oracle to
compare the actual output with the expected output.
Events are triggered on the AUT using the native
OS API. For example, the windows API SendMessage
is used for windows applications and Java API
doClick for Java applications.

Details of two empirical studies using actual software
subjects to demonstrate important characteristics of GUI
smoke test suites are now presented. First, the faults
found by the smoke test cases and test oracles are
studied. Then, smoke test suites of different sizes are
developed and studied. In particular, the following
questions are addressed:

1 What is the fault detection ability of the GUI tests?
2 What is the impact of using different test oracles?
3 What is the impact of test suite size on test results?
4 What is the relationship between faults, test suite

size, and test oracles?
5 Are GUI smoke tests especially suited to detect

certain classes of faults? What are the characteristics
of faults that cannot be detected by the smoke test
cases?

6 Are there parts of the code that cannot be executed
by the smoke test cases? What are the characteristics
of this code?

6.1 Subject Applications

The subject applications for the studies are part of an open-
source office suite developed in the Department of
Computer Science at the University of Maryland by under-
graduate students in the senior Software Engineering
course. It is called TerpOffice3 Version 2.0 and includes
TerpWord (a small word-processor), TerpSpreadSheet (a
spreadsheet application), TerpPaint (an image editing/
manipulation program), TerpCalc (a scientific calculator
with graphing capability), and TerpPresent (a presentation
tool). They have been implemented using Java. Table 1
summarizes the characteristics of these applications. Note
that these applications are fairly large with complex GUIs.
With the exception of TerpCalc, all the applications are
roughly the size of MS WordPad. The number of widgets
listed in the table are the ones on which system-interaction
events can be executed (i.e., text-labels are not included).
The LOC are the number of statements in the programs. The
Helpmenu is also not included since the help application is
launched in a separate Web browser. Most of the code
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TABLE 1
TerpOffice Applications



written for the implementation of each application is for the
GUI. None of the applications have complex underlying
“business logic.” This property of the subject application is
especially important for seeding GUI faults (discussed later)
since almost the entire code is for the GUI; there is no need
to distinguish between GUI-code and business-logic-code
during fault seeding.

For each application, DART generated the event-inter-
action graphs. The sizes of the event-interaction graphs in
terms of nodes and edges are shown in columns labeled as
“length 1” and “length 2,” respectively, in Table 2.

6.2 Study 1: Fault Detection Effectiveness of Smoke
Tests

The goals of the first study are to determine the number and
types of faults that can be detected by the smoke test cases,
characteristics of code that is missed, and the time/space
required to execute the smoke test cases. The study
involved performing the following steps:

1. For each subject application, generate smoke test
cases and associated oracle information.

2. Use fault seeding techniques to artificially seed
predetermined classes of faults in the subject
applications.

3. Execute all test cases on the subject applications.
During execution, compare the actual GUI state to
the oracle information.

The following information is recorded in this study:
number and type of faults detected, code coverage of the
test cases, and the time required to execute the test cases
and space required to store them.

6.2.1 Test Cases

DART’s test-case generator used the event-interaction
graphs to automatically generate 5,000-11,000 smoke test
cases for each application. The exact number of test cases
for each application, specified by the test designer, is shown
in Table 3. The table shows, for each application, the total
number of test cases that were actually generated. Not all
length 3 test cases were generated for some applications
since DART would not be able to run them on one machine
in one night, thus defeating the purpose of smoke testing.
The total number of test cases for all five applications was
833, 30,757, and 6,198 of lengths 1, 2, and 3, respectively.
Note that (compared to Table 2) roughly half of all possible
length 2 test cases were generated for TerpPresent; this
application contains a large number (approximately 50) of
system-interaction events that are used to change the text
font. All but one of these events were eliminated from the
event-interaction graph. In practice, a tester may edit the

event-interaction graph to reduce the number of smoke test
cases, thereby reducing testing cost.

6.2.2 Oracle Information

The automated test-oracle generator obtained the oracle
information. As discussed earlier, this module of DART
automatically executes test cases on the software and
captures its state (widgets, properties, and values) auto-
matically. By running this tool on our five subject
applications for all the smoke test cases, all levels of oracle
information were obtained.

Table 4 shows the space required to store the oracle
information for each application. As noted earlier, a space-
saving strategy may be used to reduce the storage required
in this particular study. However, this strategy does not
apply in all situations, e.g., if the start state for each test case
is different. Hence, the numbers reported here are without
any space-saving. As expected, the size increases from L1 to
L4. Most applications (except TerpCalc) have very few
invisible windows, which is why the numbers for L3 and L4
are very similar. TerpCalc contains many more invisible
windows, which is why the space required for L4 is much
larger than that for L3. L4 is 3-4 times larger than L5 since
for each event, the oracle information is stored several
times, including once before the first event.

6.2.3 Fault Seeding

Fault seeding is a well-known technique used to evaluate
fault detection techniques. During fault seeding, classes of
known faults are identified, and several instances of each
fault class are artificially introduced into the subject
program code at relevant points. Care is taken so that
1) the artificially seeded faults are similar to faults that
naturally occur in real programs due to mistakes made by
developers, 2) faults are seeded in code that is covered by
an adequate number of test cases, e.g., they may be seeded
in code that is executed by more than 20 percent and less
than 80 percent of the test cases, and 3) faults are seeded
“fairly,” i.e., an adequate number of instances of each fault
type is seeded.
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Number of Smoke Tests Generated

TABLE 4
Space Required for Each Oracle

TABLE 2
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Identifying Realistic Fault Classes. To identify realistic
fault types, a history-based approach was adopted, i.e.,
“real” GUI faults in TerpOffice were observed. During the
development of TerpOffice, a bug tracking tool called
Bugzilla4 was used by the developers to report and track
faults in TerpOffice version 1.0 while they were working to
extend its functionality and developing version 2.0. The
reported faults are an excellent representative of faults that
are introduced by developers during implementation.

The following fault classes were chosen for this study:

1. Modify relational operator (> , < , >¼ , <¼ , ==, !=);
2. Invert the condition statement;
3. Modify arithmetic operator (+, -, *, /, =, ++, -, +=, -=,

*=, /=);
4. Modify logical operator (&&, jj);
5. Set/return different Boolean value (true, false);
6. Invoke different (syntactically similar) method;
7. Set/return different attributes;
8. Modify bit operator (&, j, ^, &=, !=, ^¼ );
9. Set/return different variable name;
10. Set/return different integer value;
11. Exchange two parameters in a method; and
12. Set/return different string value.

Seeding via Code Coverage. When test cases were being
executed on the subject applications for oracle-information
collection, the code coverage of the test cases was also
recorded. Blocks of the code that were covered by more
than 20 percent of the test cases and less than 80 percent
were identified. These blocks were candidates for fault
seeding. Roughly 30-40 percent of the total code was
available for fault seeding.

Seeding Faults Fairly. The candidate parts of the code
were examined manually and the number of opportu-
nities that they provided for seeding each type of fault
was obtained. Since a total of 200 faults were to be
seeded in each application, for each fault class i,
(ðfi=FÞ � 200) instances were seeded, where fi is the
number of available opportunities to seed fault class i,
and F is the sum of all opportunities for all fault classes.
This explains why more instances of one fault class than
others were seeded. For example, a total of 485 instances
of fault Type 1, i.e., modify relational operator, were seeded
because of the large number of relational operators in the
subject applications.

Several graduate students were employed to seed the
200 faults in each subject application, thereby creating
200 faulty versions for each application. Exactly one fault
was seeded in each version. This model is useful to avoid
fault-interaction, which can be a challenging problem in
these types of experiments. To determine the number of test
case failures, the number of mismatches between the
executing GUI’s state and the oracle information were
counted. The “number of faults” was determined by tracing
the failures to the seeded faults.

Fig. 6 shows the distribution of the 1,000 faults that were
seeded in the subject applications. The x-axis shows the
type/class of fault, as defined earlier, and the total height of
the columns shows the number of faults seeded.

6.2.4 Test Executor

All the smoke tests were executed on all 200 versions of the
subject applications. When each application was being
tested, its runtime state was extracted and compared with
the stored oracle information. The specific parts of the state
that were compared and the frequency of comparision was
determined by the test oracle. A mismatch was reported as
a failure. Some widget properties, such as positions, width,
and height, were ignored during this process since the
windowing system launches the software in a different
screen location each time it is invoked. A few widgets, such
as the “log window” were also ignored for some applica-
tions; during replay, this log window displays the current
time and system memory usage. Since these values are
dynamic, mismatches were anticipated.

Each test case required approximately 5 seconds to
execute if it did not crash the software. The time varied by
application and the number of GUI events in the test case.
The total execution time for each application is shown in
Table 5. The execution included launching the application
under test, replaying GUI events from a test case on it and
analyzing the resulting GUI states. The analysis consisted of
recording the actual GUI states of the faulty version and
determining the result of the test case execution. The test
cases executed on four machines (Pentium 4, 2.2GHz, each
with 256MB RAM). Although much of the execution was
automated, some machines (and test scripts) had to be
restarted because of problems with the JVM.

Recall from Section 5 that five types of test oracles, i.e., L1
through L5 were used in this study. DART was unable to
accurately measure the time for L1 because the Java Swing
API did not allow direct access to the current widget and its
properties. The artificial implementation of L1 therefore
required accessing the active window, traversing the
internal Swing representation of the active window,
locating the current widget, and then examining its proper-
ties. The time recorded was more than that required for L2,
which is misleading. Hence, the time required for L1 is not
reported here (in any case, it was only slightly larger than
the time needed for L2). The results are summarized in
Table 6. The results clearly show that L2 and L5 were much
cheaper than L3 and L4.

6.2.5 Threats to Validity

Threats to external validity are conditions that limit the ability
to generalize the results of experiments to industrial
practice. Several such threats are identified in this study.
First, five GUI-based Java applications have been used as
subject programs. Although they have different types of
GUIs, this does not reflect a wide spectrum of possible GUIs
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that are available today. Moreover, the applications are
extemely GUI-intensive, i.e., most of the code is written for
the GUI. The results will be different for applications that
have complex underlying business logic and a fairly simple
GUI. Second, all the subject programs were developed in
Java by students, which might be more bug-prone than
software implemented by professionals. Finally, although
the abstraction of the GUI maintains uniformity between
Java and Win32 applications, the results may vary for
Win32 applications.

Threats to internal validity are conditions that can affect
the dependent variables of the experiment without the
researcher’s knowledge. Every effort was made to seed
faults that were as close as possible to naturally occurring
faults. A history-based approach was used for seeding
faults in the GUI applications. This may have affected the
detection of faults by the test cases. Faults that are not
manifested on the GUI will go undetected.

Threats to construct validity arise when measurement
instruments do not adequately capture the concepts they
are supposed to measure. For example, in this experiment,
one of the measures of cost is time. Since GUI programs
interact with the windowing system’s manager, the execu-
tion time of an event varies from one run to another. One
way to minimize the effect of such variations is to run the
experiments multiple number of times and report average
time. Since each event is executed several times (at least
80 times in different test cases), this threat has been
adequately handled.

The results of the study, presented next, should be
interpreted keeping in mind the above threats to validity.
The same threats also apply to the second study.

6.2.6 Results and Discussion

Number of Faults Detected. The column graph in Fig. 5
shows the number of faults detected by the smoke test suite.
The x-axis shows the subject applications and the y-axis
shows the number of faults detected for all the test oracles
combined. The figure shows that, with the exception of
TerpSpreadSheet, the smoke tests detected a large number
of faults.

As noted earlier, spreadsheet cells are a custom-designed
widget class, not a part of Java Swing. The GUI Ripper had
not been extended for the spreadsheet. Consequently, the
test oracle did not examine the attributes (e.g., contents,
style, and font) of the individual cells of the spreadsheet,
thereby leading to missed faults. In the future, specialized
test oracles for TerpSpreadSheet will be developed to detect
these missed faults. These test oracles will be domain
dependent, i.e., they will be designed specifically for the
cells of TerpSpreadSheet.

Result 1. This study showed that the smoke testing
process is practical, both in terms of execution time, space
required, and manual effort. The manual effort involved
selecting the number of smoke test cases to generate and
execute (using Table 3).

Classes of Faults Detected. One of the original goals of
this study was to examine the classes of faults that the
smoke test cases detect. Thus, the number of faults found,
classified by fault type, was computed. Fig. 6 summarizes
the results. The lightly shaded part of each column shows
the number of faults detected; the full column height shows
the total number of faults seeded. This result showed that
the smoke tests were able to detect all types of faults that
were seeded except for fault-type 8 (modify bit operator).
To determine why fault-type 8 was missed, the code was
manually examined. The problem was again with the test
oracle—the seeded faults modified the text font style, which
had not been included in the state information. In the
future, customized test oracles that examine these text
attributes will be developed.

Note that this was an encouraging result since all types
of faults were not expected to be manifested on the GUI. As
the column graph shows, there were instances of certain
types of faults that could not be detected. The missed faults
were in code that was not covered by the test cases.

Parts of Code Missed by the Smoke Tests. The code
coverage report was manually examined to find why some
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TABLE 6
Time Required for Each Oracle

Fig. 5. Number of faults detected.



parts were not covered. First, DART was unable to execute
code related to those widgets that were not ripped by the
GUI Ripper (e.g., the close button in all windows). Second,
the smoke test cases did not cause any exceptions; exception
handlers accounted for a significant percentage of missed
code. For example, there are 44, 69, 73, 74, and 106 exception
handlers in TerpWord, TerpSpreadSheet, TerpCalc, Terp-
Paint, and TerpPresent, respectively, which take around
5-10 percent of the code. Third, since the test cases are
replayed using an API that directly communicates with the
application, mouse and keyboard events are not generated
during replay. Event handlers (e.g., right-click event
handler) for such events are not executed. Since TerpPre-
sent is a presentation tool with many events for releasing
and moving the mouse, the test cases did not execute a
significant part of the code of TerpPresent. Fourth, since the
test cases are executed in a controlled environment, i.e., the
environment variables (e.g., list of recently accessed files)
are reset before executing each test case. Code related to
these variables is never executed. Finally, there are events in
the GUI that are enabled only after some other event
sequence has been executed. If the required event sequence
is longer than three events, the smoke test cases cannot
execute the code associated with the disabled events.

Result 2. This study showed that the smoke tests cannot
cover certain parts of the application code. Future work on
DART will develop techniques to cover this code.

Effect of Test Oracle. DART’s inability to automatically
detect the TerpSpreadSheet faults reinforced our original
hypothesis that test oracles have an impact on the overall
effectiveness of the smoke test cases. It is expected that the
test oracles would also have an impact on the number of
faults detected by the test suites. Fig. 7 breaks down Fig. 5
by test oracle type. It shows five columns per application;
each column represents the number of faults found. The
graph indicates that L1 is the least effective, L2 did much
better than L1, and L3, L4, and L5 did equally well.

To determine if the observed difference between test
oracles was statistically significant, a one-way ANOVA
(analysis of variance [37], [38]) with factor being the oracle
level and response being the number of faults was
conducted. The ANOVA test would indicate, with a certain
degree of confidence, that the observed differences were
statistically significant. The observed P-value was less than
0.05, leading to the conclusion that the oracle level has a
statistically significant impact on number of faults found.

The previous results suggested that the length and test
oracle will also have a combined effect on the number of
faults detected. Therefore, the number of faults detected by
different-length test cases using different oracles was
studied. The result for one typical application (TerpWord)
is shown in Fig. 8. The x-axis shows the length of the test
case, and the y-axis shows the number of faults detected.
There are five lines in the graph, one for each oracle. The
figure shows that length 1 test cases, combined with
comprehensive oracles detected more faults than length 2
test cases that used L1. This pattern was seen in three out of
five applications.

Result 3. This study showed that having comprehensive
test oracles may make up for not having long test cases.

6.3 Study 2: Effect of Test Suite Size

In the above study, a fixed test-suite size was used for all
applications. The impact of test-suite size on the number of
faults detected is now studied.

Since a large number of test cases and results of their
execution on fault-seeded versions of the subject applica-
tions were available from the previous study, there was no
need to regenerate and reexecute new test cases for this
study. The effect of different-sized test suites could be
simulated by treating the existing suite as a test pool and
selecting different sized test suites fom them. More
specifically, for each subject application, the test pool was
used to create 800 test suites: 200 of size 100, 200 of size 500,
200 of size 1,000, and 200 of size 2,000. Each suite was
obtained independently using random selection without
replacement.

For each test suite, the value “number of faults detected”
was computed. Also, since one goal of this study was to
study the interplay between test suite size and oracle type,
the fault information for each oracle type was also
computed.

Effect on Number of Faults Detected. Since there are
200 test suites of each size, the results are shown in the form
of boxplots. The boxplots provide a concise display of each
distribution. The black square inside each box marks the
median value. The edges of the box mark the first and third
quartiles. The whiskers extend from the quartiles and cover
the entire distribution. Fig. 9 summarizes the results for one
typical application (TerpPresent). As the boxplots show, the
number of faults detected grows with test suite size
irrespective of oracle. However, the rate of growth slows
from 1,000 test cases to 2,000 test cases. Although the
medians show a clear increase, the overlap in distributions
is significant. Since a finite number of faults (200) have been
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Fig. 8. Fault detection by Test Oracle (TerpWord).



seeded, the number of faults detected will level-off after a
certain test suite size.

Combined Effect of Test Oracles and Size on Number

of Faults Detected. To study the interplay between test
oracles and test suite size, the distributions of Fig. 9 are
split into five parts, corresponding to the five test oracles.
The results for a typical application (TerpPresent) are
shown in Fig. 10.

These results give significant insight into the relationship
between test suite size and test oracles. It is seen that even
large test suites (2,000 test cases) with oracle L1 do much
worse than the smallest suites (100 test cases) with oracle
L2. Oracles L2 through L5 show very similar fault-detection
ability for the same test suite size. Since L2 and L5 are
cheaper than L3 and L4, it is better to use large test suites
with these oracles for effective fault-detection.

Result 4. This study showed that using certain oracles
can make up for not having large smoke test suites.

7 CONCLUSIONS

Previous work had presented the design of DART that
automatically smoke tested GUI event interactions. This
paper extended the previous work and demonstrated, via
two empirical studies, several characteristics of GUI smoke
tests. The results show that:

1. The entire smoke testing process is feasible in terms
of execution time, storage space, and manual effort.

2. Smoke tests cannot cover certain parts of the
application code.

3. Having comprehensive test oracles may make up for
not having long smoke test cases.

4. Using certain oracles can make up for not having
large smoke test suites.

In the empirical studies, all the manual steps required at
most 1-2 minutes. For example, setup required identifying
the Java class files for the subject applications and

selecting a number of smoke tests to generate. During
DART execution, the bug reports were examined. The bug
reports that were produced by DART were extremely easy
to read and understand, in that pinpointing the cause of
the problem by examining the relevant event handler took
1-2 minutes. The coverage reports (not discussed in this
paper due to lack of space) indicated blocks/branches of
the code that needed to be tested using additional test
cases. The test designer may manually create additional
test cases using techniques discussed in Section 2. Overall,
the manual effort required for the complete DART process
is reasonable for frequent execution.

The current DART implementation has several limita-
tions. First, as is the case with all automated regression
testing techniques, some of the bugs reported by DART are
false positives, i.e., they are not real bugs; they are simply a
consequence of modifications made to the software. Second,
the overall effectiveness of DART depends largely on the
capabilities of the GUI ripper to obtain the state.

There are several new directions for this work. A custom
test oracle is being developed for TerpSpreadSheet that will
examine the contents of the individual cells, thereby helping
to improve the fault-detection effectiveness of the smoke
tests for that application. In the future, an interface for DART
that will allow for the definition of such domain-specific test
oracles will be developed. Fault injection techniques for
GUIs will be studied and incorporated into the smoke test
cases. The effects of the execution environment on the fault
detection effectiveness of the smoke test cases will also be
studied. Algorithms will be developed to partition large
smoke test suites into several “nightly run” suites and
rotating through them. False positives reported by GUI
smoke test cases will be studied and techniques will be
developed to identify and eliminate them. The GUI-based
smoke test cases may be used together with code-based
smoke tests; characteristics and strengths/weaknesses of
both these types of test cases will be studied and mechan-
isms to combine them will be devised.
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Fig. 9. Test suite size and faults (TerpPresent).

Fig. 10. Faults detected by Test Suite and Oracle (TerpPresent).
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