
GUI Ripping: Reverse Engineering of Graphical User Interfaces for Testing

Atif Memon
Department of Computer Science

and Fraunhofer Center for
Experimental Software Engineering

University of Maryland
College Park, Maryland, USA

atif@cs.umd.edu

Ishan Banerjee, Adithya Nagarajan
Department of Computer Science

University of Maryland
College Park, Maryland, USA
{ishan, sadithya}@cs.umd.edu

Abstract

Graphical user interfaces (GUIs) are important parts of
today’s software and their correct execution is required to
ensure the correctness of the overall software. A popular
technique to detect defects in GUIs is to test them by exe-
cuting test cases and checking the execution results. Test
cases may either be created manually or generated auto-
matically from a model of the GUI. While manual testing
is unacceptably slow for many applications, our experience
with GUI testing has shown that creating a model that can
be used for automated test case generation is difficult.

We describe a new approach to reverse engineer a model
represented as structures called a GUI forest, event-flow
graphs and an integration tree directly from the executable
GUI. We describe “GUI Ripping”, a dynamic process in
which the software’s GUI is automatically “traversed” by
opening all its windows and extracting all their widgets
(GUI objects), properties, and values. The extracted infor-
mation is then verified by the test designer and used to auto-
matically generate test cases. We present algorithms for the
ripping process and describe their implementation in a tool
suite that operates on Java and Microsoft Windows’ GUIs.

We present results of case studies which show that our
approach requires very little human intervention and is es-
pecially useful for regression testing of software that is mod-
ified frequently. We have successfully used the “GUI Rip-
per” in several large experiments and have made it avail-
able as a downloadable tool.

1 Introduction

Graphical user interfaces (GUIs) are one of the most im-
portant parts of today’s software [13]. They make software
easy to use by providing the user with highly visual con-

trols that represent everyday objects such as menus, but-
tons, lists, and windows. Recognizing the importance of
GUIs, software developers are dedicating large parts of the
code to implementing GUIs [12]. The correctness of this
code is essential to the correct execution of the overall soft-
ware. A popular technique to detect defects in software is
testing[3, 2, 23]. During testing,test casesare created and
executed on the software. Test cases may either be created
manually by a tester [10, 27, 8] or automatically by using a
model of the software derived from its specifications [20].
In all our work to date [20, 17, 21, 16, 18, 19, 15, 12, 14],
we have observed that software specifications are rarely in
a form to be used for automated GUI testing.

GUI testing requires that test cases (sequences of GUI
eventsthat exercise GUIwidgets) be generated and exe-
cuted on the GUI [13]. However, currently available tech-
niques for obtaining GUI test cases are resource intensive,
requiring significant human intervention. The most popular
technique to test GUIs is by usingcapture/replay tools[10].
When using a capture/replay tool, a human tester interacts
with theapplication under test(AUT); the capture compo-
nent of the tool stores this interaction in a file that can be re-
played later using the replay component of the tool. Our ex-
perience has shown that generating a typical test case with
50 events for different widgets takes 20-30 minutes using
capture-replay tools.

A few automated GUI test case generation techniques
have been proposed [20]. However, they all require cre-
ating a model of the GUI – a significant resource intensive
step that intimidates many practitioners and prevents the ap-
plication of the techniques. In this paper, we present a tech-
nique, calledGUI Ripping to reverse engineer the GUI’s
model directly from theexecutingGUI. Once verified by
the test designer, this model is then used to automatically
generate test cases. GUI ripping has numerous other ap-
plications such as reverse engineering of COTS GUI prod-
ucts to test them within the context of their use, porting and

controlling legacy applications to new platforms [22], and
developing model checking tools for GUIs [6]. For space
reasons, in this paper, we will provide details relevant to the
testing process.

GUI ripping is a dynamic process that is applied to
an executing software’s GUI. Starting from the software’s
first window (or set of windows), the GUI is “traversed”
by opening all child windows. All the window’swidgets
(building blocks of the GUI, e.g., buttons, text-boxes), their
properties(e.g., background-color, font), andvalues(e.g.,
red, Times New Roman, 18pt) are extracted. Developing
this process has several challenges that required us to de-
velop novel solutions. First, the source code of the software
may not always be available; we had to develop techniques
to extract information from the executable files. Second,
there are no GUI standards across different platforms and
implementations; we had to extract all the information via
low-level implementation-dependent system calls, which
we have found are not always well-documented. Third,
some implementations may provide less information than
necessary to perform automated testing; we had to rely
on heuristics and human intervention to determine missing
parts. Finally, the presence ofinfeasible pathsin GUIs pre-
vents full automation. For example, some windows may
be available only after a valid password has been provided.
Since the GUI Ripper may not have access to the password,
it may not be able to extract information from such win-
dows. We had to provide another process and tool support
to visually add parts to the extracted GUI model.

We use GUI ripping to extract both the structure and ex-
ecution behavior of the GUI – both essential for automated
testing. We represent the GUI’s structure as aGUI forest
and its execution behavior asevent-flow graphs, and anin-
tegration tree[21]. Each node of the GUI forest represents
a window and encapsulates all the widgets, properties and
values in that window; there is an edge from nodex to node
y if the window represented byy is opened by perform-
ing an event in the window represented by nodex, e.g., by
clicking on a button. Intuitively, event-flow graphs and the
integration tree show theflow of eventsin the GUI. We pro-
vide details of these structures in Section 2.

We have implemented our algorithm in a software called
the GUI Ripper. We use the GUI Ripper as a central part
of two large software systems called GUITAR1 and DART
(Daily Automated Regression Tester) to generate, execute,
verify GUI test cases, and perform regression testing [15].
We provide details of two instances of the GUI Ripper, one
for Microsoft Windows and the other for Java Swing ap-
plications. We then empirically evaluate the performance
of the ripper on four Java applications with complex GUIs,
Microsoft’s WordPad, Yahoo Messenger, and Winzip. The
results of our empirical studies show that the ripping pro-

1http://guitar.cs.umd.edu

cess is efficient, in that it is very fast and requires little hu-
man intervention. We also show that relative to other testing
activities, ripping consumes very little resources. We also
observe that automated testing would not be possible with-
out the help of the GUI Ripper.

The specific contributions of our work include the fol-
lowing.

• We provide an efficient algorithm to extract a soft-
ware’s GUI model without the need for its source code.

• We describe a new structure called aGUI forest.
• We provide implementation details of a new tool that

can be applied to a large number of MS Windows and
Java Swing GUIs.

In the next section, we present a formal model of the
GUI specifications that are obtained by the GUI Ripper. In
Section 3, we present the design of the ripper and provide
an algorithm that can be used to implement the ripper. In
Section 4 we discuss the MS Windows and Java implemen-
tations of the GUI Ripper. In Section 5, we empirically
evaluate our algorithms on several large and popular soft-
ware. We then conclude with a discussion of related work
in Section 6, and ongoing and future work in Section 7.

2 GUI Model

During GUI ripping, a representation of the GUI that
models its structure and execution behavior is created from
the executing GUI. In this section, we describe this repre-
sentation and formally describe the models used for testing.
Since developing general reverse engineering solutions for
all types of GUIs is difficult, we focus on an important sub-
class of GUIs described next.

2.1 What is a “GUI”?

GUIs, by their very nature, are hierarchical. This hier-
archy is reflected in the grouping of events in windows, di-
alogs, and hierarchical menus. A typical GUI user focuses
on events related by their functionality by opening a partic-
ular window or clicking on a pull-down menu. For example,
all the “options” in MS Internet Explorer can be set by in-
teracting with events in one window of the software’s GUI.

The important characteristics of GUIs include their
graphical orientation, event-driven input, hierarchicalstruc-
ture, the widgets they contain, and the properties (attributes)
of those widgets. Formally, the class of GUIs of interest
may be defined as follows:

Definition: A Graphical User Interface (GUI)is a hi-
erarchical, graphical front-end to a software system that ac-
cepts as input user-generated and system-generated events,
from a fixed set of events and produces deterministic graph-
ical output. A GUI contains graphicalwidgets; each widget

has a fixed set ofproperties. At any time during the execu-
tion of the GUI, these properties have discrete values, the
set of which constitutes the state of the GUI. 2

The above definition specifies a class of GUIs that have
a fixed set of events with deterministic outcome that can
be performed on widgets with discrete valued properties.
This definition would need to be extended for other GUI
classes such as web-user interfaces that have synchroniza-
tion/timing constraints among objects, movie players that
show a continuous stream of video rather than a sequence of
discrete frames, and non-deterministic GUIs in which it is
not possible to model the state of the software in its entirety
and hence the effect of an event cannot be predicted. This
paper focuses on techniques to reverse engineer the class of
GUIs defined above.

2.2 GUI Forest

The first GUI representation that we obtain during the
ripping process is called the GUI forest. Intuitively, the
GUI forest represents the structure of the GUI’s windows
(as nodes of the forest), and the hierarchical relationship
between windows (as edges). Each node encapsulates the
state of a window that constitutes the window’s widgets,
their properties, and values.

We model a GUI window as a set ofwidgets(e.g., but-
tons, labels, text fields) that constitute the window, a set of
properties(e.g., background color, size, font) of these wid-
gets, and a set ofvalues(e.g., red, bold, 16pt) associated
with the properties. Each window will contain certain types
of widgets with associated properties. At any point during
its execution, the window can be described in terms of the
specific widgets that it currently contains and the values of
their properties. More formally, we model a window at a
particular timet in terms of:

• widgetsW = {w1, w2, ..., wl}, i.e., the widgets that
the window currently contains,

• propertiesP = {p1, p2..., pm} of the widgets, and
• valuesV = {v1, v2..., vn} of the properties.

For example, consider theOpen window shown in Fig-
ure 1(a). This window contains several widgets, two of
which are explicitly labeled, namelyButton1 andLa-
bel1; for each, a small subset of properties is shown. Note
that all widget types have a designated set of properties and
all properties can take values from a designated set.

The set of widgets and their properties can be used to
create a model of thestateof the window.

Definition: Thestateof a window at a particular timet is
the setS of triples{(wi, pj, vk)}, wherewi ∈ W , pj ∈ P ,
andvk ∈ V . 2

A description of thecomplete statewould contain infor-
mation about the types ofall the widgets currently extant in

�������

��	
��
����

������

�����

����

������

���	�
�

��	�

�
���

����
�

����

����

��

�����

��
� �! �"�
#

��������

$�����%

State = {(Label1, Align, alNone), (Label1, Caption, “Files of type:”),
(Label1, Color, clBtnFace), (Label1, Font, (tfont)),(Form1, WState,
wsNormal), (Form1, Width, 1088), (Form1, Scroll, TRUE), (Button1,
Caption, Cancel), (Button1, Enabled, TRUE), (Button1, Visible, TRUE),
(Button1, Height, 65), …} (b)

(a)

Figure 1. (a) Open window, (b) its Partial State

the window, as well asall of the properties and their values
for each of those widgets. The state of theOpen window,
partially shown in Figure 1(b), contains all the propertiesof
all the widgets inOpen.

The windows of the GUI form a hierarchy – once the
software is invoked, the user is presented with atop-level
window (or set of windows). All other windows of the
GUI are invoked from one of the top-level windows or from
their descendents. In general, the relationships among win-
dows may be represented by a set of directed acyclic graphs
(DAGs), since multiple windows may invoke a window.
However, each DAG can be converted into a tree by copy-
ing nodes. A tree model simplifies our algorithms based on
tree traversals. Note that since most GUIs have a single top-
level window, in most cases, the forest reduces to a single
tree. Formally, we define a GUI forest as:

Definition: A GUI forestis a triple< W , T , E >, where
W is the set of windows in the GUI andT ⊆ W is a des-
ignated set of windows called thetop-level windows.
E is the set of directed edges: there is an edge from node
x to nodey if the window represented byy is opened by
performing an event in the window represented by nodex.
2

Different types of GUI forests may be obtained depend-
ing on the types of windows that the GUI contains. For
the purpose of testing, we distinguish between two different
types of windows:modalwindows andmodelesswindows.

Definition: A modal windowis a GUI window that,
once invoked, monopolizes the GUI interaction, restricting
the focus of the user to a specific range of events within the
window, until the window is explicitly terminated. 2

The language selection window is an example of a modal
window in MS Word – when the user performs the event

1

2 3 4

1

2 3

1 2

3 4 5 6

1 2 3

4 5 6 7 8

(a) (b) (c) (d)

Figure 2. Examples of GUI Forests.

Set Language, a window entitledLanguage opens
and the user spends time selecting the language, and finally
explicitly terminates the interaction by either performing
OK or Cancel.

Other windows in the GUI are calledmodeless windows
that do not restrict the user’s focus; they merely expand the
set of GUI events available to the user. For example, in the
MS Word software, performing the eventReplace opens
a modeless window entitledReplace.

Figure 2 shows some examples of GUI forests. The
shaded nodes represent modal windows and unshaded
nodes represent modeless windows. Dashed boxes group
windows that open simultaneously. Figure 2(a) shows the
simplest case of a GUI in which window 1 is a modal win-
dow; three events in window 1 are used to open three win-
dows 2, 3 and 4, where 2 and 4 are modal, and 3 is mode-
less. Figure 2(b) shows a more complex case of a GUI in
which window 1 contains an event that opens two windows
2 and 3 simultaneously, where 2 is modal and 3 is mode-
less. Figure 2(c) shows a case where the software presents
two top-level windows to the user. Window 1 is modal and
2 is modeless. Figure 2(d) shows another case with multi-
ple top-level windows, i.e., 1, 2 and 3. Windows 1 and 2
contain events that open two windows ({4, 5} and{6, 7}
respectively) simultaneously.

Figure 3 shows the GUI forest (in this case a single tree)
for MS WordPad. Note that the window that is presented
to the user when WordPad is launched is called “top-level”
and forms the root of the tree. All other windows are either
invoked from top-level or from one of the child windows.
For example, the window “connect to printer” is invoked
from “page setup-2” which in turn is invoked from “page
setup-1”.

2.3 Flow of Events

The GUI forest in its raw form is not useful for test case
generation. We collect additional information during rip-
ping to develop new structures that model the GUI’s exe-
cution behavior that we call itsflow of events. Moreover,
for testing, we need to developunits of testing, i.e., parts of

���

���������	

�����������

����

�������

����	

���	���

�������

����������������

���������	�

���������

�����������

����

�����

����

������������

����������

����	�

����

������

Figure 3. GUI Forest (Tree) for MS WordPad.

the GUI that can be tested in isolation. The ripping process
extracts additional information from the GUI such as event
types to develop these structures. We now describe some of
this information and structures.

To develop units of testing, we exploit the GUI’s hierar-
chy to identify groups of GUI events that can be analyzed in
isolation. One hierarchy of the GUI and the one used in this
research is obtained by examining the structure of modal
windows in the GUI.

At all times during interaction with the GUI, the user
interacts with events within a modal dialog. This modal
dialog consists of a modal windowX and a set of mode-
less windows that have been invoked, either directly or in-
directly byX . The modal dialog remains in place untilX

is explicitly terminated. Intuitively, the events within the
modal dialog form aGUI component.

Definition: A GUI componentC is an ordered pair
(RF , UF), whereRF represents a modal window in terms
of its events andUF is a set whose elements represent mod-
eless windows also in terms of their events. Each element
of UF is invoked either by an event inUF orRF . 2

Note that, by definition, events within a component do
not interleave with events in other components without the
components being explicitly invoked or terminated.

Terminal
Restricted

Focus
Unrestricted

Focus
System

Interaction
Menu
Open

Main 1 11 2 69 6
FileNew 2 0 0 2 0
FileOpen 2 0 0 18 0
FilePrint 2 0 0 3 0
FilePage Setup 2 1 0 21 0

Event Types
Component

Table 1. Some GUI Components of WordPad.

Since components are defined in terms of modal win-
dows, a classification of GUI events is used to identify com-
ponents. The first class of events, calledrestricted-focus
eventsopenmodal windows. For example,Set Lan-
guage in MS Word is a restricted-focus event. The sec-
ond class, calledunrestricted-focus eventsopen mode-
less windows. For example,Replace in MS Word is an
unrestricted-focus event.Termination eventsclose modal
windows; common examples includeOk andCancel.

The GUI contains other types of events that do not open
or close windows but make other GUI events available.
These events, calledmenu-open eventsare used to open
menus. They expand the set of GUI events available to the
user. Menu-open events do not interact with the underlying
software. Note that the only difference between menu-open
events and unrestricted-focus events is that the latter open
windows that must be explicitly terminated. The most com-
mon example of menu-open events are generated by but-
tons that open pull-down menus. For example, in MS Word,
File andSendTo are menu-open events.

Finally, system-interaction eventsinteract with the un-
derlying software to perform some action; common exam-
ples include theCopy event used for copying objects to the
clipboard.

Table 1 lists some of the components of WordPad. Each
row represents a component and each column shows the
different types of events available within each component.
Main is the component that is available when WordPad is
invoked. Other components’ names indicate their function-
ality. For example,FileOpen is the component of Word-
Pad used to open files.

Event-flow Graphs: A GUI component’s flow of events
may be represented as a flow graph. Intuitively, anevent-
flow graphrepresents all possible interactions among the
events in a component. An event-flow graph is created by
identifying the events in a GUI component. For every event
e, the events that can be performed immediately aftere are
identified. They are linked witheusing thefollows relation.

Definition: An event-flow graphfor a componentC is
a 4-tuple<V, E, B, I> where:

1. V is a set of vertices representing all the events in the
component. Eachv ∈V represents an event inC.

����������������
��������

	
	
	
	

����� �� �

������� ����������� ����������� ����������� ����
���� � ���

������������������������
���� � ���

� ����	������	������	������	�
����� � !

����������������
����� �� �

�� "��� �# ��$�%���� "��� �# ��$�%���� "��� �# ��$�%���� "��� �# ��$�%��
����� ���

Figure 4. Partial Event-flow Graph for a Com-
ponent of MS WordPad.

2. E ⊆ V × V is a set of directed edges between vertices.
Event ej follows ei iff ej may be performed imme-
diately afterei. An edge(vx, vy) ∈ E iff the event
represented byvy follows the event represented byvx.

3. B ⊆ V is a set of vertices representing those events of
C that are available to the user when the component is
first invoked.

4. I ⊆ V is the set of restricted-focus events of the com-
ponent.

2

An example of an event-flow graph for the “connect to
printer” component of MS WordPad is shown in Figure 4.
The nodes represent events in the component and the edges
show thefollows relationship.

Integration Tree: Once all the components of the GUI
have been represented as event-flow graphs, the remaining
step is to identify event flows among components. A struc-
ture called anintegration treeis constructed to identify in-
teractions (invocations) among components.

Definition: ComponentCx invokes componentCy if
Cx contains a restricted-focus eventex that invokesCy. 2

Intuitively, the integration tree shows the invokes rela-
tionship among all the components in a GUI. Formally, an
integration tree is defined as:

Definition: An integration tree is a 3-tuple <

N ,R,B >, whereN is the set of components in the GUI
andR ∈ N is a designated component called theMain
component.B is the set of directed edges showing the in-
vokes relation between components, i.e.,(Cx, Cy) ∈ B iff
Cx invokesCy. 2

Note that a software’s integration tree is very different
from its GUI forest; each node in a GUI forest represents a
window whereas a node in an integration tree represents a
group of windows (called a component, as defined earlier).

Test-case Generation:GUI test cases are sequences of
GUI events [12]. Once we have the event-flow graphs and
integration tree, we generate test cases by traversing these

PROCEDUREDFS-Trees(DFS-ForestF)
R /* Set of all root nodes in the forestF */ 1
FORALL root∈ R DO 2
DFS-Tree-Recursive(root) 3

PROCEDUREDFS-Tree-Recursive(Node n)
W = get-child-nodes(n) 4
W /* Set of child nodes of the node being visited */5
FORALL w∈ W DO 6

DFS-Tree-Recursive(w) 7

Figure 5. Visiting Each Node of a Forest of
Directed Trees

structures and enumerating the events encountered. A large
number of test cases can be obtained quickly in this man-
ner. We usetest coverage criteriato guide the test case
generation process. A detailed discussion of test coverage
is beyond the scope of this paper. The interested reader is
referred to Memon et al. [21] for details.

In the next section, we describe the algorithms of the
GUI ripping process.

3 Design of the GUI Ripper

The process of GUI Ripping consists of two steps. First,
the GUI of the application is automatically traversed and its
structure is extracted by a tool, which we call theGUI Rip-
per. Second, since the implementation may be wrong (after
all, that’s what is being tested), the extracted information
may be incorrect; the tester visually inspects the extracted
GUI structure and makes corrections so that the structures
confirm to software specifications.

We first describe the algorithm used for the GUI Ripper
and then discuss the role of the human tester in inspecting
and correcting the extracted structure. We will use a top-
down approach to describe our ripping algorithm. Since we
use a depth-first traversal (DFS) of the GUI to extract its
structure, we will start with a generalized DFS algorithm,
tailor an instance of the algorithm for GUIs, and then finally
describe specific details of the Windows and Java imple-
mentations. We will use stubs in the high-level algorithms
that we will later describe in subsequent sections.

GUI Traversal and Extraction Algorithm: As dis-
cussed earlier in Section 2, the GUI of an application is
structured as a forest. We obtain this structure by perform-
ing a depth-first traversal of the hierarchical structure of
the GUI. We start with a generalized depth-first search al-
gorithm [5] shown in Figure 5 and adapt it for GUIs.

The procedureDFS-Trees takes as input a forest, rep-
resented as a set of trees. It performs a DFS traversal start-
ing from the root of each tree (lines2–3). The procedure

DFS-Tree-Recursive visits the tree rooted at noden.
A list W of all the child nodes of the noden is obtained (line
4). Then a recursive visit for the sub-trees rooted at each of
the child nodes is performed (line6–7).

We tailor the algorithm of Figure 5 to handle GUI traver-
sal. The resulting algorithm is shown in Figure 6. Two
proceduresDFS-GUI and DFS-GUI-Recursive tra-
verse the GUI of the application and extract its structure.
The functionaccess-top-level-windows (line 1)
returns the list oftop-level windowsin the application un-
der test (AUT). Recall that top-level windows of an applica-
tion are those windows that become visible when the appli-
cation is first launched. A GUI tree is constructed for each
of the top-level window by invoking the procedureDFS-
GUI-Recursive. The trees are constructed in the set
GUI. At the termination of the algorithm,GUI contains
the GUI forest of the application.

Note that lines4–7 of Figure 5 has been replaced with
lines5–12in Figure 6. This is because, for a directed tree,
the children of a node can be obtained by invoking the pro-
cedureget-child-nodes. However, for a GUI appli-
cation, a node is a GUI window. It may contain several
widgets, which in turn, may invoke one or more GUI win-
dows. To obtain a list of all GUI windows that can be in-
voked from a GUI windowg, we must query each ofg’s
constituent widgets.

The procedureDFS-GUI-Recursive performs a
depth-first search of the GUI tree rooted at the GUI win-
dow g. In line 5 the call toget-widget-list-and-
properties returns a listW of the constituent wid-
gets in the GUI windowg. The functionidentify-
executable-widgets in line 6 searches the setW and
returns a list of widgets which invoke other GUI windows.
This is because not all of the widgets inW invokes other
GUI windows.

A widget e that invokes other GUI windows is executed
by execute-widget in line 8. When executed,e may
invoke one or more GUI windows. The functionget-
invoked-gui-windows in line 9 returns the list of GUI
windows invoked bye. Note that each of the GUI windows
c in the setC are child nodes of the nodeg in the GUI tree.
The GUI treeGUI is updated in line10. This is done by
inserting each GUI Windowc from C as a child node of the
GUI windowg. Lines11–12performs a recursive search of
the sub-tree rooted at each of the invoked GUI windowc.

When the procedureDFS-GUI-Recursive returns to
DFS-GUI, the tree rooted at the top-level windowt is con-
structed. At the completion of the procedureDFS-GUI, the
complete GUI forest of the application under test is avail-
able inGUI.

The algorithm described in Figure 6 is general and can
be applied to any GUI defined in Section 2. In Section 4, we
will describe how the high-level functions used in the algo-

GUI /* GUI tree of application under test */
PROCEDUREDFS-GUI(Application A)

T = access-top-level-windows(A) 1
GUI = T 2
/* T is set of top-level windows in the application */
FORALL t ∈ T DO 3
DFS-GUI-Recursive(t) 4

PROCEDUREDFS-GUI-Recursive(Window g)
W = get-widget-list-and-properties(g) 5
/* W is the set of all widgets in the Window */
E = identify-executable-widgets(W) 6
/* From W identify executable widgets */
FORALL e∈ E DO 7
execute-widget(e) 8
/* Execute the widget e */
C = get-invoked-gui-windows(e) 9
GUI = GUI ∪ g 10
FORALL c ∈ C DO 11
DFS-GUI-Recursive(c) 12

Figure 6. GUI Traversing and Extracting the
GUI of an application

rithm may be implemented using Windows and Java API.
Manual Inspection: The automated ripping process is

not perfect. Different idiosyncrasies of specific platforms
sometimes result in missing windows, widgets, and prop-
erties. For example, we cannot distinguish between modal
and modeless windows in MS Windows; we cannot extract
the structures of thePrint dialog in Java. Such platform
specific differences require human intervention. We provide
tools to edit and view the extracted information. We also
provide a process called “spy” using which a test designer
can manually interact with the AUT, open the window that
was missed by the ripper, and add it to the GUI forest at an
appropriate location.

Generating the Event-flow Graph and Integration
Tree: During the traversal of the GUI, we also determine
the event type (discussed in Section 2) by using low-level
system calls. Once this information is available, we can
create the event-flow graphs and integration tree relatively
easily using algorithms described in [12]. We omit details
of the algorithms here due to lack of space.

4 Implementation

We now describe the platform-specific details of our two
implementations of the GUI Ripper, one for MS Windows
GUIs and the other for Java Swing GUIs. We will fre-
quently refer back to the line numbers and high-level func-
tions invoked in the algorithm of Figure 6.

Windows Applications: Before detailing the Windows
implementation, we describe some windows-specific de-
tails. The Windows Operating System provides ahandle
for all GUI windows and widgets. The handle is an identi-
fier, which uniquely identifies the GUI window or widget.
Using the Windows API (Application Programmers Inter-
face) it is possible to perform GUI operations such as enu-
merating the visible GUI windows, enumerating the wid-
gets embedded in a GUI window and detecting the invoca-
tion of a new GUI window.

Lines 1–2. The Windows Ripper needs to identify the
top-level windows of an application. This is a manual pro-
cess, where the tester points-and-clicks on the top-level
windows. The GUI Ripper, which executes as a background
process, records the windows handle of the top-level win-
dows.

Lines 3–4.A Recursive depth-first search is initiated for
each top-level window using its window handle.

Line 5. The procedureget-widget-list-and-
properties returns the list ofall the widgets in the spec-
ified GUI window and their state. It uses the Windows API
EnumChildWindow, which takes a handle to the GUI win-
dow and returns a list of widgets (handles) embedded in it.
The handles are then queried for state information of the
widgets, such as visibility state, caption, etc.

Line 6. ‘Executable’ widgets are those that represent
restricted-focus events, i.e., those that invoke other GUI
windows. Thecaption propertyof a widget is examined
to see if it ends with three dots ‘...’. For Windows applica-
tions, this signifies that the widget is executable.

Lines 7–8.An ’executable’ widget is executed by emu-
lating a user’s left-click mouse action. The Windows API
SendMessageis used to send a message to the widget to
emulate it.

Line 9. The procedureget-invoked-gui-
windows, returns the list of GUI windows that are actually
invoked by an executable widget. This is implemented us-
ing a Windowshook. A hook is a mechanism by which a
predefined user level functions is called by Windows, when-
ever a specified GUI event occurs. In our case, this event is
the invoking of one or more GUI windows. If the widget
invokes GUI windows,C, the handles ofC are sent by Win-
dows to the hook procedure. This handle is then used to
analyze the new window.

Line 10. GUI windows that appear in response to exe-
cuting a widget are child windows of the window containing
the widget. The GUI tree being traversed is updated with
this structural information.

Lines 11–12. The windows opened by the widget are
traversed. Each window is analyzed by the DFS-GUI-
Recursive using its unique Windows handle.

The Windows implementation of the GUI Ripper may
miss some widgets during the process of ripping. This

happens when a widget does not have a Windows handle.
Widgets created by the application that bypass the Win-
dows drawing functions usually do not have handles and
are missed by the GUI Ripper. After Ripping is complete,
the tester may manually add the missed widgets using our
spy process.

Java Applications: Java applications do not have a han-
dle and hence cannot be ripped using the Windows Ripper.
The Java implementation (Java Ripper) is used to rip the
GUI structure of applications developed using Java. In ap-
plications developed using Java, GUI windows and widgets
are instances of Java classes. They are analyzed using Java
APIs.

Lines 1–2.From the executable class file(s) of the AUT,
the GUI Ripper locates the file containing themain class.
Using this class, it launches the AUT as an object. The
Java APIjava.awt.Frame.getFrames()is used to identify all
visible GUI windows (ripper’s and those belonging to the
AUT). The ripper ignores the windows belonging to itself.
The remaining windows are the top-level windows of the
AUT.

Lines 3–4. A recursive search is initiated for each top-
level window of the AUT using two threads. These are
theController andSpy threads. TheSpy thread ana-
lyzes individual GUI windows and their widgets. TheCon-
troller thread monitors the ripping process and identi-
fies the window to be analyzed by theSpy thread.

Line 5–6. The Spy thread analyzes each window
of the AUT and at the end of the analysis disposes the
window. The analysis of the window involves extract-
ing its constituent widgets and their properties. For this
we used methodsgetComponents()of classContainerand
java.awt.Frames.getJMenuBar()of classMenuBar. These
methods are then used recursively to get all the widgets
(buttons, menu items) that belong to the window. From this
array a set of clickable/executable widgets are identified.
This is achieved by selecting the widgets that belongs to the
AbstractButtonclass family.

Lines 7–8.For analyzing all the windows that belong to
the AUT they need to be invoked. Aclick event is exe-
cuted on the executable widgets. This is done by triggering
theclick event using the Java APIdoClick()of classAb-
stractButton. For example, clicking the menu itemNew on
an application will launchNewwindow.

Lines 9–10. The new windows that are visible as
a result of event are detected using Java API method
java.awt.Frame.getFrames(). This method returns an array
of windows that are tracked by theController thread.
The GUI tree being traversed is updated with this informa-
tion.

Lines 11–12. With the help of theController and
Spy threads the analysis is recursively performed till all the
windows of the AUT are analyzed.

Application
Rip Time

(Sec)
Ripped

Windows
Missed

Windows
Manual

Effort (mins)
Size (KB)

TerpCalc 29 4 0 5 15.1
TerpPaint 42 7 3 7 24.5
TerpWord 40 10 2 6 53.8
TerpSpreadSheet 89 7 1 7 72.8
WordPad 5 22 2 8 148
Notepad 6 14 2 7 90
Yahoo Messenger 6 18 4 10 159

Table 2. Time for Ripping the GUI of Windows
and Java applications

Once all the windows of the AUT are analyzed the Java
Ripper generates the GUI forest.

5 Empirical Evaluation

We now empirically demonstrate that the ripping pro-
cess isefficientin that it is fast and requires very little re-
sources and manual effort, andeffectivein that it produces
GUI structures that are complete and very close to correct.
We also show ripping as part of the overall GUI testing pro-
cess and compare the time it takes relative to other phases of
GUI testing. We have used the extracted GUI structures for
automatically generating GUI testing information as part of
our GUITAR and DART systems [15].

Ripped Structures: We evaluated the performance of
the GUI Rippers on several MS Windows and Java Swing
applications. We used Microsoft WordPad, Yahoo Messen-
ger, and NotePad on the MS Windows platform. Our Java
test suite is part of an open-source office suite developed at
the Department of Computer Science of the University of
Maryland by undergraduate students of the senior Software
Engineering course. It is called TerpOffice2 and consists
of six applications out of which we use four – TerpWord,
TerpCalc, TerpPaint and TerpSpreadSheet.

The first step of the ripping process, i.e., extracting the
GUI model from the GUI application, is fully automated.
It does not requiring any human interaction. Some GUI
windows may be missed by the ripper. The tester identifies
these windows to the ripper, which can now automatically
rip these missed windows.

Table 2 shows the results of ripping the applications. We
note that the time taken to rip Java applications is signifi-
cantly more than Windows applications, although the total
time in almost all cases is less than a minute. The time
taken to rip an application is directly proportional to the
number of windows it contains. This is because, opening
windows is a slow windowing process. For example, click-
ing theFile → Open causes a delay while the application
launches theFileOpendialog.

2http://www.cs.umd.edu/users/atif/TerpOffice

Application
Rip

Application
(sec)

Test Case
Generation

(sec)

Oracle
Generation

(sec)

Replay Time
(sec)

Faults
Detected

TerpPaint 42 39 8975 344 2
TerpWord 40 35 4217 344 47
TerpSpreadSheet 89 38 9647 730 12

Table 3. Time for Testing TerpOffice using
GUITAR. 1000 Test Cases.

Note that the ripper was able to detect a large fraction of
the total number of windows in all applications. Very few
windows were missed that had to be manually added later.
This process took several minutes. The size of the resulting
structures is shown.

Aid to Testing GUI Applications: The GUI Ripper is
never used in isolation. We always use it as an important
part of large testing tools. We now describe two such tools –
GUITAR and DART. GUITAR [12] is a GUI testing frame-
work that we have developed for automated GUI testing.
DART [15] is a software that we use for repeated nightly
testing of software that have a GUI.

In both GUITAR and DART, a GUI tester extracts the
GUI structure of an application using the GUI Ripper, au-
tomatically generates test cases for the application basedon
the extracted information, creates expected output (oracle)
for the test cases, executes the test case on the application
and determines if the tests ran successfully. Table 3 shows
the time taken to perform the entire process of ripping, gen-
erating 1000 test cases, generating oracle information and
replaying the test cases for three TerpOffice applications for
one of our testing experiments. As can be seen from the ta-
ble, the ripping time is almost insignificant compared to the
total time required for testing. As a side-note, the table also
shows that we were able to successfully detect faults in the
three software.

We note that the GUI Ripper is our most valuable tool
in our software testing toolbox. If we did not have the GUI
Ripper, we would have spent significant effort in creating
the GUI model manually.

6 Related Work

Moore [22] describes experiences with manual reverse
engineering of legacy applications to build a model of the
user interface functionality. A technique to partially auto-
mate this process is also outlined. The results show that a
language-independent set of rules can be used to detect user
interface components from legacy code. Developing such
rules is a nontrivial task, especially for the type of informa-
tion that we need for software testing.

Systa has used reverse engineering to study and analyze
the run-time behavior of Java software [26]. Event trace

information is generated as a result of running the target
software under a debugger. The event trace, represented as
scenario diagrams, is given as an input to a prototype tool
SCED [11] that outputs state diagrams. The state diagrams
can be used to examine the overall behavior of a desired
class, object, or method.

Several different types of representations have been used
to generate test information. Anderson and Fickas have
used preconditions/postconditions to represent softwarere-
quirements and specifications [1, 7]. These representations
have been successfully used to generate test cases [24, 20].
Scheetz at al. have used a class diagram representation of
the system’s architecture to generate test cases using an AI
planning system [25].

There are various techniques used for testing GUIs
[9, 12]. One of our earlier techniques makes use of spec-
ifications to generate test cases. In the PATHS [19, 16, 18]
system we used an AI planner to generate test cases from
GUI specifications. PATHS system uses a semi-automatic
approach requiring substantial test designer participation.
Our GUI ripping technique is different in that we focus
on generating the specifications automatically thereby min-
imizing test designers involvement.

Chen et al. [4] develop a specification-based technique to
test GUIs. Users graphically manipulate test specifications
represented by finite state machines (FSM). They provide a
visual environment for manipulating these FSMs.

We have successfully used the GUI Ripper software in
large GUI testing studies of our DART system [15]. The
GUI Ripper was used to generate the GUI structure for sev-
eral applications. Test cases andtest oracle information(ex-
pected output) [17] were automatically generated from the
extracted information.

7 Conclusions and Future Work

Automated testing of software that have a graphical user
interface (GUI) has become extremely important as GUIs
become increasingly complex and popular. A key step to
automatically test GUI software is test case generation from
a model of the software. Our experience with GUI testing
has shown that such models are very expensive to create
manually and software specifications are rarely available in
a form to derive these models automatically. We presented
a new technique, called GUI ripping to obtain models of
the GUI’s structure and execution behavior automatically.
We represented the GUI’s structure as aGUI forest, and
its execution behavior asevent-flow graphsand anintegra-
tion tree. We described the GUI ripping process, which is
applied to the executing software. The process opens all
the software’s windows automatically and extracts all their
widgets, properties, and values. The execution model of
the GUI was obtained by using a classification of the GUI’s

events. Once the extracted information is verified by a test
designer, it is used to automatically generate test cases. We
empirically showed that our approach requires very little
human intervention. We have implemented our algorithms
in a tool called a “GUI Ripper” and have made it available
as a downloadable tool.

In the future, we will extend our implementation to han-
dle more MS Windows GUIs, Unix, and web applications.
We will also use the GUI ripper for performing usability
anlysis of GUIs. It will also be extended for measuring
specification conformanc of GUIs.

References

[1] J. S. Anderson.Automating Requirements Engineering Us-
ing Artificial Intelligence Techniques. Ph.D. thesis, Dept. of
Computer and Information Science, University of Oregon,
Dec. 1993.

[2] I. Bashir and A. L. Goel.Testing Object-Oriented Software,
Life Cycle Solutions. Springer-Verlag, 1999.

[3] B. Beizer. Black-Box Testing: Techniques for Functional
Testing of Software and Systems. John Wiley & Sons, 1999.

[4] J. Chen and S. Subramaniam. A GUI environment to ma-
nipulate fsms for testing GUI-based applications in java. In
Proceeding of the 34th Hawaii International Conferences on
System Sciences, Jan 2001.

[5] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Al-
gorithms, chapter 23.3, pages 477–485. Prentice-Hall of In-
dia Private Limited, September 2001.

[6] M. B. Dwyer, V. Carr, and L. Hines. Model checking graph-
ical user interfaces using abstractions. In M. Jazayeri and
H. Schauer, editors,ESEC/FSE ’97, volume 1301 ofLec-
ture Notes in Computer Science, pages 244–261. Springer /
ACM Press, 1997.

[7] S. Fickas and J. S. Anderson. A proposed perspective shift:
Viewing specification design as a planning problem. In
D. Partridge, editor,Artificial Intelligence & Software En-
gineering, pages 535–550. Ablex, Norwood, NJ, 1991.

[8] H. Foster, T. Goradia, T. Ostrand, and W. Szermer. A visual
test development environment for GUI systems. In11th In-
ternational Software Quality Week. IEEE Press, 26-29 May
1998.

[9] P. Gerrard. Testing GUI applications. InEuroSTAR, Nov
1997.

[10] J. H. Hicinbothom and W. W. Zachary. A tool for automati-
cally generating transcripts of human-computer interaction.
In Proceedings of the Human Factors and Ergonomics Soci-
ety 37th Annual Meeting, volume 2 ofSPECIAL SESSIONS:
Demonstrations, page 1042, 1993.

[11] K. Koskimies, T. Mnnist, T. Syst, and J. Tuomi. Automated
support for modeling oo software. InIEEE Software, pages
87–94, Jan-Feb 1998.

[12] A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. Ph.D. thesis, Department of
Computer Science, University of Pittsburgh, July 2001.

[13] A. M. Memon. GUI testing: Pitfalls and process.IEEE
Computer, 35(8):90–91, Aug. 2002.

[14] A. M. Memon. Advances in GUI testing. InAdvances in
Computers, ed. by Marvin V. Zelkowitz, volume 57. Aca-
demic Press, 2003.

[15] A. M. Memon, I. Banerjee, N. Hashmi, and A. Nagara-
jan. DART: A framework for regression testing nightly/daily
builds of GUI applications. InProceedings of the Interna-
tional conference on software maintenance 2003, September
2003.

[16] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a
goal-driven approach to generate test cases for GUIs. InPro-
ceedings of the 21st International Conference on Software
Engineering, pages 257–266. ACM Press, May 1999.

[17] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. InProceedings of the ACM SIGSOFT
8th International Symposium on the Foundations of Software
Engineering (FSE-8), pages 30–39, NY, Nov. 8–10 2000.

[18] A. M. Memon, M. E. Pollack, and M. L. Soffa. Plan gen-
eration for GUI testing. InProceedings of The Fifth Inter-
national Conference on Artificial Intelligence Planning and
Scheduling, pages 226–235. AAAI Press, Apr. 2000.

[19] A. M. Memon, M. E. Pollack, and M. L. Soffa. A planning-
based approach to GUI testing. InProceedings of The 13th
International Software/Internet Quality Week, May 2000.

[20] A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical
GUI test case generation using automated planning.IEEE
Transactions on Software Engineering, 27(2):144–155, Feb.
2001.

[21] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage
criteria for GUI testing. InProceedings of the 8th European
Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE-9), pages 256–267, Sept. 2001.

[22] M. M. Moore. Rule-based detection for reverse engineering
user interfaces. InProceedings of the Third Working Con-
ference on Reverse Engineering, pages 42–8, Monterey, CA,
8–10 Nov. 1996. IEEE.

[23] R. M. Poston. Automating Specification-Based Software
Testing. IEEE Computer Society, Los Alamitos, 1 edition,
1996.

[24] M. Scheetz, A. V. Mayrhauser, E. Dahlman, and A. E. Howe.
Generating goal-oriented test cases.

[25] M. Scheetz, A. V. Mayrhauser, R. France, E. Dahlman, and
A. E. Howe. Generating test cases from an oo model with
an ai planning system. InProceedings in the Twenty-Third
Annual International Computer Software and Applications
Conference, March 2000.

[26] T. Systa. Dynamic reverse engineering of java software.
Technical report, University of Tampere, Finland, Box 607,
33101 Tampere, Finland, 2001. http://www.fzi.de/Ecoop99-
WS-Reengineering/papers/tarjan/ecoop.html.

[27] A. Walworth. Java GUI testing.Dr. Dobb’s Journal of Soft-
ware Tools, 22(2):30, 32, 34, Feb. 1997.

