
Refactoring Using Event-based Profiling

Adithya Nagarajan
Department of Computer Science

University of Maryland
College Park, Maryland, USA

sadithya@cs.umd.edu

Atif Memon
Department of Computer Science

and Fraunhofer Center for
Experimental Software Engineering

University of Maryland
College Park, Maryland, USA

atif@cs.umd.edu

Abstract

Refactoring is a disciplined process of restructuring soft-
ware code in order to improve it, e.g., to make it more
reusable, reliable and maintainable. The source of infor-
mation that guides the refactoring process may be the soft-
ware’s user profiles. An increasingly important class of soft-
ware is event-based software. Event-based software take an
event as an input, change their state, and perhaps output
an event. They provide new opportunities for refactoring.
For example, reorganizing the objects related to an event
and restructuring the event handlers based on the behavior
of the software. These opportunities require that we collect
user profiles at the level of events rather than the code and
model the software in such a way that allows refactoring of
event handlers. We present new techniques to collect event-
level profiles and organize event handlers. We describe our
techniques on one class of event-based software – Graphi-
cal User Interfaces (GUIs). We demonstrate the practicality
and usefulness of our techniques on a large software system.

1 Introduction

Refactoring is the process of restructuring code in a dis-
ciplined way [8]. It has multiple goals including improve-
ment of a software’s structure for increased reusability [6],
reliability [11], and maintainability [12] of code. Refactor-
ing is carried out in two phases: phase one is the research
and understanding phase used to identify and understand the
code architecture; phase two involves using this understand-
ing to actually restructure the code. The source of informa-
tion required for refactoring can either be the developer’s
understanding of the code or can be obtained automatically
using program analysis techniques or user profiles. For
example, tools such as IBM’s Eclipse [2], Refactorit [3],

and Flywheel [4] perform refactoring of code automatically
by analyzing the code architecture; specialized refactoring
techniques such as code optimization rely on user profiles
to identify hot paths in the program and use this profile in-
formation to perform restructuring [5].

An increasingly important class of software is event-
based software. Event-based software take an event as an
input, change their state, and perhaps output an event. Com-
mon examples of event-based software are Graphical User
Interfaces (GUIs), Web applications and Network Proto-
cols. The way that events interact in an event-based soft-
ware provides new opportunities for refactoring. For exam-
ple, refactoring of such software may involve reorganizing
the objects related to an event and restructuring the event
handlers based on the behavior of the software. Also, since
most event-based software are developed using a collection
of event listeners (usually implemented as methods), they
provide opportunities for automatic refactoring. As event
interactions are dynamic, one source of information that can
be used for refactoring are user profiles of events.

In this paper we describe a technique for refactoring of
event-based software. Our technique involves: (1) collect-
ing user profiles at the event level, (2) refactoring driven by
the event level profiles, and (3)dynamic refactoring, i.e.,
restructuring, without access to (or need for) source code,
of objects in the software with the help of a set of tools that
we have developed. We describe our technique using one
important class of event-based software – those with a GUI
front-end. We have selected GUI based software for our
study because refactoring of such software is easy to visu-
alize, they are widely used, and the resulting set of tools are
useful for our GUI testing software called GUITAR [1].

In the next section, we explain opportunities that GUIs
provide for refactoring and the challenges involved. In Sec-
tion 3, we provide details of our event-based profiling tech-
nique and a dynamic GUI modeling technique. We present
an evaluation study that we conducted on GUITAR in Sec-

1

tion 4. Finally, we conclude with a discussion of future
work in Section 5.

2 Graphical User Interfaces

Most of today’s software have a GUI front-end and up
to 60% of the code in a software is dedicated to GUIs [10].
Maintaining such software involves making changes to the
design of the GUI layout based on users’ feedback and re-
organizing/deleting parts of the code based on usage. GUIs
by their very nature provide the following opportunities for
refactoring:� Changes to the GUI layout, i.e., reorganizing graph-

ical objects in the GUI. Examples include changing
the menu structure and rearranging buttons on the tool-
bars.� Removal of unused event-handlers, i.e., removing
event handlers associated with events that are never
used by certain classes of users.

These opportunities require that we collect user profiles
in terms of the GUI’s layout, thus enabling identification
of commonly used events, the GUI widgets and associated
event handlers.

The challenges involved in refactoring of GUIs are as
follows:� Unavailability of source code. Most GUI applications

are built using COTS products or library components
for which source code is not available. Hence, conven-
tional code-based program profilers [7] cannot be used
to collect user profiles for GUIs. A profiler is needed
that does not make use of the source code.� Unavailability of techniques to incorporate GUI lay-
out information with user profiles. Existing code-
based program profilers do not provide GUI layout in-
formation with user profiles. In order to perform refac-
toring of GUIs at the event level, a profiler is needed
that integrates GUI layout information with user pro-
files.� Bad software engineering practices. Current software
engineering practices often produce software in which
the GUI layout information is closely tied to the un-
derlying code and hence is difficult to change. A new
GUI modeling technique needs to be developed that
ensures loose coupling between GUI layout informa-
tion and the underlying code. This will allow changes
to the GUI layout without modifying the source code.

In subsequent sections, we will present a novel technique
for profiling of GUI events and apply it to refactor GUI ap-
plications. What distinguishes our technique from existing
techniques is our ability to collect event-level profile infor-
mation even in the absence of source code. The profile

information includes GUI widget information and associ-
ated events. Widgets such as Button, Menu, TextField and
Checkbox are the sources of events. The type of events as-
sociated with the widgets include mouse-clicks, type-in-text
and item-selection. We use this event level profile informa-
tion to dynamically restructure the GUI layout. We also de-
scribe a technique to de-couple the GUI layout information
from the actual source code of the GUI, enabling dynamic
restructuring.

3 Event-based Profiling for GUI Refactoring

To address the challenges involved in refactoring of GUI
applications, we have developed an event-based profiling
technique. In this section we provide details of this tech-
nique. We also describe a new GUI modeling technique
that allows refactoring without the need for source code.

3.1 Design of Event-based Profiler

We have developed an event-based profiler based on
our previous work of reverse engineering technology called
GUI Ripping [9]. We have designed the profiler with the
following goals in mind: (1) it should be light-weight so
that it does not influence the performance of the applica-
tion, (2) it should be generic to be applied to any type of
GUI applications, and (3) it should be easy to implement.

Widgets such as Buttons, Menus, TextFields and Labels
are the building blocks of a GUI. Some of these widgets
(e.g., Buttons, Menus and TextFields) allow user interac-
tions whereas other widgets are static (e.g., Labels to dis-
play text). The users interact with the widgets by perform-
ing events. For example typing a character or pressing a
mouse button.

The widgets that handle user events haveevent listeners
attached to them. Event listeners are invoked when events
are performed on the widgets. For example, aMouse-Over
event listener for a toolbar button may display a tool-tip. In
Figure 1(a)actionPerformedis a method ofActionListener
event listener that handles events on theSavemenu-item.
Note that multiple event listeners can be attached to a wid-
get. For example, a TextField may have a key event listener
and a mouse event listener attached to it.

The key idea of our profiling technique is to detect the
existing listeners and attach our own listeners. Hence,
whenever a user performs an event on a particular widget,
our listener gets a message. The choice of event listeners
depends on the type of the widget. For example ActionLis-
tener is a listener that is attached to widgets such as Buttons
and Menus, and ItemListener is attached to Checkboxes.

Our profiling technique involves two steps. First, to re-
verse engineer GUIs to extract widgets from them. Second,
to identify the existing listeners attached to the widgets and

2

Source Code--Event Handler
File file = new File(“myFile”);
public void actionPerformed(ActionEvent evt) {

doSave(file);
} (a)

Profiler-- Register Event Listener
saveButton.addActionListener(

new myActionListenerforButton());
class myActionListenerforButton implements

ActionListener {
public void actionPerformed(ActionEvent evt) {

Button_Action_Handler(evt);
}

} (b)

Figure 1. Event-based Profiling

attach our own listeners at runtime. These two steps are
described next.

1. We have implemented the profiler in Java. It is imple-
mented as a seperateThreadof execution and is acti-
vated when the application is invoked. In a Java ap-
plication, all GUI windows and widgets are instances
of Java classes. They are analyzed using Java APIs.
For example, APIjava.awt.Frame.getFrames()is used
to identify all visible GUI windows of the application.
The GUI windows are analyzed, using methodsget-
Componentsof classContainerandgetJMenuBar()of
classJFrame, to extract widgets.

2. The next step is to analyze the extracted widgets to
identify the existing listeners and attach our own lis-
tener. For example in Figure 1(b),myActionListener-
forButton() is the listener that the profiler attaches to
the Savemenu-item, at runtime. Hence, whenever a
user performs an event or action onSave, the profiler
gets a message of the event in addition to the default
action thatSaveevent performs. The profiler records
all this event information.

3.2 Design of Dynamic GUIs

In order to enable efficient refactoring of GUIs, we have
developed a new technique of GUI modeling. The goals
of our technique are to keep the GUI layout information
outside the source code and to make restructuring of GUIs
easy.

GUI restructuring involves rearrangment of the GUI
widgets and identifying and removing the methods or the
event handlers that are not used. The information required
for this restructuring can be obtained automatically using
the profiler described above or can be obtained from other
sources such as users’ feedback.

Our technique involves seperating the GUI layout infor-
mation from the underlying code, and storing it in a XML

-��WKH0HQX!�
+��D0HQX�LG �3URMHFW�!�
+��D0HQX�LG �9LHZ�!�
+��D0HQX�LG �*HQHUDWH�!�
-��D0HQX�LG �(GLW�!�
 ��LWHP�W\SH ���DFWLRQ �HGLWBJXL6WUXFWXUH�!*8,�6WUXFWXUH��LWHP!��
 ��LWHP�W\SH ���DFWLRQ �HGLWBWHVW&DVHV�!7HVW�&DVHV��LWHP!��
 ��LWHP�W\SH ���DFWLRQ �HGLWBWHVW2UDFOH,QIRUPDWLRQ�!7HVW�2UDFOH�

,QIRUPDWLRQ��LWHP!��
 ��LWHP�W\SH ���DFWLRQ �HGLWBHYHQW)ORZ*UDSKV$QG,QWHJUDWLRQ7UHH�!(YHQW�

)ORZ�*UDSKV�DQG�,QWHJUDWLRQ�7UHH��LWHP!��
 ��LWHP�W\SH ���

DFWLRQ �HGLWBFRYHUDJH5HSRUW)RU*HQHUDWHG7HVW&DVHV�!&RYHUDJH�5HSRUW�
IRU�*HQHUDWHG�7HVW�&DVHV��LWHP!��

 ��LWHP�W\SH ���DFWLRQ �HGLWBFRYHUDJH5HSRUW)RU([HFXWHG7HVW&DVHV�!&RYHUDJH�
5HSRUW�IRU�([HFXWHG�7HVW�&DVHV��LWHP!��

 ��LWHP�W\SH ���DFWLRQ �HGLWBODEHO0DSSLQJV�!/DEHO�0DSSLQJV��LWHP!��
 ��LWHP�W\SH ���DFWLRQ �HGLWBLQVWUXPHQWHG&RGH�!,QVWUXPHQWHG�&RGH��LWHP!��
 ��LWHP�W\SH ���DFWLRQ �HGLWBSGGO2SHUDWRUV�!3''/�2SHUDWRUV��LWHP!��
 ��LWHP�W\SH ���DFWLRQ �HGLWBSGGO6FHQDULRV�!3''/�6FHQDULRV��LWHP!��

 ���D0HQX!�
+��D0HQX�LG �([HFXWH�!�
+��D0HQX�LG �2SWLRQV�!�
+��D0HQX�LG �+HOS�!�
 ��VWRS��!��

 ���WKH0HQX!�

Figure 2. GUI Layout of a Menu Structure

file. The underlying code reads the XML file each time
the application is launched and constructs the GUI auto-
matically. The GUI layout consists of information about
the widgets, their positional heirarchy such as location in
a menu structure, and their corresponding event handlers.
In order to simplify the GUI development and restructuring
process we keep each of the event listeners in seperate files.

Figure 2 shows a sample GUI layout information of a
menu structure. It consists of the labels ofmenu itemsand
the action event listener. Theaction name corresponds to
the event listener in the code that should be invoked in re-
sponse to an event. For example in Figure 2,GUI Struc-
ture is the label of a menu-item andedit guiStructureis the
event listener that handles events onGUI Structuremenu-
item. A user or developer can remove a particular event
from the GUI layout by simply deleting the corresponding
entry in the XML file and deleting the associated event han-
dler file. For example, the menu-itemGUI Structurecan
be removed from the GUI layout by deleting the entry in
Figure 2 and deleting the corresponding event handler file
edit guiStructureclass.

4 Evaluation Study

We implemented both the profiler and XML based GUI.
We now present an evaluation study to determine whether
our techniques are feasible, practical and useful.

We selected GUITAR as our subject application for this
study. GUITAR is a comprehensive GUI Testing Frame-
work that provides a wide range of GUI testing functional-
ity to testers. Its GUI was developed using the XML-based
GUI modeling technique described in Section 3.2. We se-
lected GUITAR as our subject application because it has
a comprehensive GUI interface and large user base. The

3

users of GUITAR include students of the under-graduate
software engineering course, our research team, and other
testers, who are using it as a testing framework for their
organizations. Each of the classes of users has specific re-
quirements. For example, our research team need all the
testing functionalities available in GUITAR, whereas stu-
dents need only a limited functionalities required for their
course work.

We began our study by distributing GUITAR with the
profiler to different users. We then collected the profile in-
formation from each user. Analysis of this information led
to restructuring the GUI layout for each user class. The
restructuring involved removing certain widgets and their
event handlers and rearranging the widgets such as mov-
ing the menus, that are frequently used, to the toolbar. We
accomplished this task by editing the XML GUI layout file
and deleting the related event handler files. We created mul-
tiple versions of GUITAR, one for each class of users, based
on their usage pattern.

We found the profiling technique useful for restructuring
of GUITAR’s GUI layout. Moreover, the GUI modeling
technique made the restructuring task simple and fast. From
this study, it is evident that our techniques are practical and
can be employed easily for GUI refactoring.

The study also provided us with additional information
that helped us to improve the performance of GUITAR and
the profiler. Based on the feedback from users, we discov-
ered that our profiler had an adverse effect on the perfor-
mance of GUITAR. The profiler’s task of analyzing the ap-
plication and attaching the listeners to the GUI widgets was
computationally expensive. The way profiler was imple-
mented, it had a live pollingThreadthat kept analyzing and
attaching event listeners to the widgets. We fixed this prob-
lem by reducing the polling frequency by having an explicit
delay of 500 milliseconds in the thread of the profiler. The
profile information also gave us event sequences that led to
failures/crashes and thereby helped us debug GUITAR.

5 Conclusion and Future Work

In this paper, we presented a novel technique of us-
ing event-based profiling for refactoring. We demonstrated
the effectiveness of our technique on an important class of
event-based software – GUI applications. We have also
provided a GUI modeling technique that enables dynamic
refactoring of GUIs. Our feasibility study showed that our
technique is efficient, useful and practical. In general, our
profiling technique may be used for refactoring of other
event-based software such as Web applications and Net-
work protocols.

In future, we plan to study usage patterns on a large scale
and conduct more studies on other applications. We envi-
sion that these usage patterns may be used to design a better

software systems. We would also like to study the perfor-
mance of our profiling technique on other event-based soft-
ware and on other object oriented programs.

References

[1] GUI Testing Framework, 2003.
http://www.guitar.cs.umd.edu.

[2] IBM Eclipse, 2003. http://www-
106.ibm.com/developerworks/library/l-eclipse.html.

[3] Refactorit– Java Refactoring Tool, 2003.
http://www.refactorit.com.

[4] Velocitis– Tool for .Net Professionals, 2003.
http://www.velocitis.com.

[5] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design
and implementation of a dynamic optimization framework
for windows. In4th ACM Workshop on Feedback-Directed
and Dynamic Optimization (FDDO-4), December 2000.

[6] R. E. Caballero and S. A. Demurjian. Toward the formaliza-
tion of a reusability framework for refactoring. 2002.

[7] P. P. Chang, S. A. Mahlke, and W. mei W. Hwu. Using pro-
file information to assist classic code optimizations.Soft-
ware - Practice and Experience, 21(12):1301–1321, 1991.

[8] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[9] A. Memon, I. Banerjee, and A. Nagarajan. GUI Ripper:
Reverse engineering of graphical user interfaces for testing.
In WCRE 2003, The 10th Working Conference on Reverse
Engineering, November 2003.

[10] A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. Ph.D. thesis, Department of
Computer Science, University of Pittsburgh, July 2001.

[11] W. F. Opdyke. Object-oriented refactoring, legacy con-
straints and reuse.

[12] L. Tahvildari and K. Kontogiannis. A methodology for de-
veloping transformations using the maintainability soft-goal
graph. InProceedings of the 9th IEEE Working Confer-
ence on Reverse Engineering (WCRE), pages 77–86, Vir-
ginia, USA, 2002.

4

