
Autom Softw Eng (2014) 21:65–105
DOI 10.1007/s10515-013-0128-9

GUITAR: an innovative tool for automated testing
of GUI-driven software

Bao N. Nguyen · Bryan Robbins · Ishan Banerjee ·
Atif Memon

Received: 16 April 2012 / Accepted: 25 April 2013 / Published online: 7 May 2013
© Springer Science+Business Media New York 2013

Abstract Most of today’s software applications feature a graphical user interface
(GUI) front-end. System testing of these applications requires that test cases, mod-
eled as sequences of GUI events, be generated and executed on the software. We
term GUI testing as the process of testing a software application through its GUI. Re-
searchers and practitioners agree that one must employ a variety of techniques (e.g.,
model-based, capture/replay, manually scripted) for effective GUI testing. Yet, the
tools available today for GUI testing are limited in the techniques they support. In
this paper, we describe an innovative tool called GUITAR that supports a wide va-
riety of GUI testing techniques. The innovation lies in the architecture of GUITAR,
which uses plug-ins to support flexibility and extensibility. Software developers and
quality assurance engineers may use this architecture to create new toolchains, new
workflows based on the toolchains, and plug in a variety of measurement tools to
conduct GUI testing. We demonstrate these features of GUITAR via several carefully
crafted case studies.

Keywords GUI testing · Test automation · Test generation

B.N. Nguyen (�) · B. Robbins · I. Banerjee · A. Memon
Department of Computer Science, University of Maryland, College Park, MD 20742, USA
e-mail: baonn@cs.umd.edu

B. Robbins
e-mail: brobbins@cs.umd.edu

I. Banerjee
e-mail: ishan@cs.umd.edu

A. Memon
e-mail: atif@cs.umd.edu

mailto:baonn@cs.umd.edu
mailto:brobbins@cs.umd.edu
mailto:ishan@cs.umd.edu
mailto:atif@cs.umd.edu


66 Autom Softw Eng (2014) 21:65–105

1 Introduction

Graphical User Interfaces (GUIs) provide the primary user interface in the vast major-
ity of today’s commodity software (Myers 1995; Memon and Nguyen 2010; Shnei-
derman et al. 2009; Silva et al. 2008). We term a GUI-driven software application
(or simply GUI software or GUI application) as a software application program with
a GUI as its main interface for interaction. We consider GUI software to be a sub-
set of event-driven systems (Memon 2007; Ural and Yang 1991), also called reactive
systems (Veanes et al. 2008).

In GUI software, interface components form the visible GUI structure, and these
components accept sequences of user events (e.g., mouse clicks, type-in-text) that
alter the state of the software. This modification of state may or may not include a
change to the visible GUI itself. The testing of GUI software, then, involves execut-
ing events belonging to GUI components and monitoring resulting changes to the
program state. GUI test cases therefore have event sequences as input and some in-
dication of a program’s state (e.g., GUI state, memory state, error log, or any other
indicator of runtime application state) as expected output (Artzi et al. 2011; Mesbah
and van Deursen 2009; Xie and Memon 2007).

Because GUIs exist at the point of the end user interaction, GUI testing represents
a form of system-level testing for GUI software. GUI testing actually tests much
more than the code associated with the GUI itself. Even though test cases execute on
the GUI and output may be extracted from the GUI layer, prior work has shown that
this type of testing is effective at detecting both GUI and non-GUI faults (Robinson
et al. 2008; Brooks et al. 2009). This is because the events of the GUI execute un-
derlying non-GUI code. In many cases—unless an application includes both a GUI
and a non-GUI interface—GUI testing is the only form of system-level testing pos-
sible for GUI software. This makes GUI testing a critical part of testing for any GUI
software.

The size and complexity of modern GUIs, in terms of GUI components, and the
events that may be executed on them, exceed the practical limits of exhaustive and
analytical approaches to testing (Belli 2001; Memon 2007). The number of possible
test cases for a GUI increases exponentially with the number of events per test case.
Even a trivial GUI with a single repeatable event has infinitely many test cases, be-
cause an end-user may perform that event an arbitrary number of times. Each such
sequence is a potential test case. Unfortunately, testers cannot ignore long and com-
plex event sequences, because these sequences often reveal state- and context-specific
bugs that require chaining multiple GUI events together (Xie and Memon 2008; Yuan
and Memon 2010).

In practice, GUI testing tools use two major approaches. The first and most popu-
lar approach is to employ a script-based language such as JFCUnit,1 Selenium Web-

1http://www.jfcunit.sourceforge.net.

http://www.jfcunit.sourceforge.net


Autom Softw Eng (2014) 21:65–105 67

Driver,2 Robotium,3 Abbot,4 or SOAtest5 to manually create unit test cases for GUIs.
A unit test case consists of method calls which programmatically invoke GUI events.
The tests record and verify output using tester-specified assertions. Because manual
coding of test cases can be tedious, an alternative approach called capture/replay is
also used. Examples of capture/replay tools include Test Automation FX,6 Selenium
IDE,7 and Quick Test Pro.8 The test tool first “captures” sequences of events that
testers perform manually on the GUI. These sequences are treated as test cases for
testing the GUI. The test cases can be later “replayed” automatically on the GUI to
detect bugs. Both script-based and capture/replay tools offer limited test automation.
These tools require manual test case creation, which is expensive and typically leads
to a small number of test cases.

In this paper, we posit that the complex nature and pervasive use of modern GUIs
requires flexible tool support for testing. A flexible GUI testing tool would allow the
tester to tailor the tool’s capabilities for the needs of specific applications. The tester,
with knowledge of the GUI’s intricacies, would be in a position to customize the
tool’s algorithms while having the option of using the tool as a part of a larger test
harness.

We describe GUITAR, an innovative and flexible framework for the development
of GUI testing tools. By framework we mean that GUITAR supports the develop-
ment of customized tools for testing. Over the years we, and others affiliated with
our research group, have developed many open-source tools based on the GUITAR
framework. We openly distribute many of these tools at http://guitar.sourceforge.net.
The design and implementation of GUITAR emphasizes the following features:

– Automation: GUITAR automates key GUI testing activities while lending itself
well to third-party test harnesses.

– Algorithm Reuse: GUITAR’s core is not limited to a specific application, platform,
or technique, but maximizes reuse of platform-independent aspects of algorithms.

– Algorithm Customization: GUITAR supports the customization of tools for specific
quality assurance goals (e.g., on specific platforms, with specific applications, with
specific types of monitoring and oracles, etc.).

– Model-based: GUITAR is natively but not exclusively model-based.
– Modularity: GUITAR’s architecture is plugin-based.

In Sect. 2, we discuss GUI testing activities and related literature. In Sect. 3,
we discuss core algorithms and examine GUITAR’s standard use case with a case
study of GUITAR’s Java Foundation Classes (JFC) based toolchain. We then review
the GUITAR architecture (Sect. 4), which sets up our discussion of five additional

2http://www.seleniumhq.org/projects/webdriver.
3http://www.code.google.com/p/robotium.
4http://www.abbot.sourceforge.net.
5http://www.parasoft.com/jsp/products/soatest.jsp.
6http://www.testautomationfx.com.
7http://www.seleniumhq.org/projects/ide.
8http://www.hp.com/QuickTestPro.

http://guitar.sourceforge.net
http://www.seleniumhq.org/projects/webdriver
http://www.code.google.com/p/robotium
http://www.abbot.sourceforge.net
http://www.parasoft.com/jsp/products/soatest.jsp
http://www.testautomationfx.com
http://www.seleniumhq.org/projects/ide
http://www.hp.com/QuickTestPro


68 Autom Softw Eng (2014) 21:65–105

case studies with GUITAR (Sect. 5). Finally, we conclude by evaluating GUITAR’s
strengths and weaknesses, and discuss additional uses from literature and future work
(Sect. 6).

2 Background and related work

Before we discuss the design and use of GUITAR, we first consider the activities
associated with software testing in general, and GUI testing in particular. We also
discuss related, existing work on GUI testing.

2.1 GUI testing activities

At a minimum, testers must construct test cases, combine test cases to construct test
suites, and then execute test cases on applications to obtain test results. We consider
each of these activities in the specific context of GUI testing, though many aspects
apply to testing in general.

2.1.1 Test case construction

As mentioned earlier, test case construction for GUI testing involves selecting se-
quences of GUI events and describing the expected state of the program after the
events’ execution. We refer to these two activities as event selection and oracle spec-
ification, respectively.

Event selection involves composing sequences of GUI events that make useful
test cases. Often, test cases follow an existing system-level specification, such as a
set of detailed use cases or performance requirements (Silva et al. 2008; Memon et
al. 2001a). Just as in every level of testing, GUI tests must consider both valid and
invalid inputs. From a tool perspective, many tools exist for capturing manually en-
tered sequences. We discuss these alternatives in Sect. 2.2. In this “capture/replay”
paradigm, test case selection involves entering every input sequence of events manu-
ally.

While the capture/replay approach offers complete control over every aspect of the
selection process and sets up automated test case execution, we argue that the size of
any non-trivial GUI often makes completely manual capturing intractable. For ex-
ample, the version of Microsoft WordPad in Windows 7 (considered to be a rather
simple GUI by today’s standards) contains over 50 GUI events. This number may
seem small, but the number of possible test cases increases exponentially when con-
sidering combinations of these 50 events. In these cases, testers need a more complete
consideration of the GUI’s event space. Model-based testing (MBT) approaches for
GUI-driven software construct an abstraction of some subset of an application and
prescribe a test case selection process which constructs test cases based on the model
(Silva et al. 2008; Mesbah and van Deursen 2009; Jääskeläinen et al. 2009; Memon
2007; Belli 2001). MBT approaches may or may not be more tractable than capture-
based alternatives, depending on the cost of constructing the model and selecting test
cases. We argue that these approaches offer more opportunities for automation than a
completely manual selection process.



Autom Softw Eng (2014) 21:65–105 69

Oracle specification involves the specification of expected output for a test (Baresi
and Young 2001; Xie and Memon 2007). Tests may specify expectations at many
possible levels and at many possible points during a GUI test. A simple oracle may
perform crash testing, in which the test passes if no errors occur during the program’s
execution. Other possible assertions include the specification of a dynamic aspect of
the program’s state, such as a stack trace. In GUI testing, one may also assert the state
of the GUI, e.g., “The JTextArea should contain no text after the test case executes.”

Test oracle precision, while sometimes necessary and certainly capable of finding
bugs, have drawbacks. First, the use of more specific oracles limits opportunities
for automation. The automation of crash testing only involves examining a log, but
expectations of GUI and application state upon test completion require an existing
“gold standard”. As developers introduce intentional changes to a program, testers
must constantly update test oracles, leading to a higher cost of test maintenance.

Capture/replay tools as well as MBT approaches (discussed so far) do not
avoid these oracle specification difficulties (Xie and Memon 2007; Mesbah and van
Deursen 2009). At best, tools can assist in the creation of oracles based on the runtime
state of an application (e.g., by saving program state as a reference). Such an oracle
may be used for regression testing future versions of the application. This type of or-
acle can only automatically determine whether the application’s output has changed
or not, which may or may not indicate a functional error.

2.1.2 Test suite construction

Test suite construction involves selecting a set of test cases, presumably from a pool
of existing or possible test cases, to provide the desired level of quality assurance for
an application. While test suite requirements follow from specifics about an applica-
tion and its quality assurance goals, test suite construction in general centers around
a common decision point: How much testing is enough?

Testers commonly build suites around the notion of coverage, in order to guarantee
that a test suite covers a certain percentage of source code artifacts (methods, lines,
branches, or classes) of a program (Zhang et al. 2011; Cadar et al. 2008). For GUI
testing, previous work by our group has introduced the notion of event coverage,
which considers a suite’s coverage of certain types of events, event combinations,
such as all pairs of events (Memon et al. 2001b), or events in different contexts (Yuan
et al. 2011). The execution of all possible test cases of a significant length is rarely
possible in real GUI-driven software. Therefore, the tradeoff between adequacy mea-
sures such as coverage and the availability and cost effectiveness of resources plays
a large role in GUI test suite construction.

MBT approaches allow for a systematic approach to test suite construction (e.g.,
event coverage derived from an event-based model). In a capture-based or completely
manual approach, coverage may be considered after the fact using off-the-shelf tools,
but without a model of events or application states, coverage is likely limited to code-
based metrics (Ganov et al. 2008; Staiger 2007).

2.1.3 Test execution

Test execution involves the execution of previously defined test cases. Most testing
efforts utilize scripted test suites, as supported by a capture/replay or MBT tool. With



70 Autom Softw Eng (2014) 21:65–105

GUI testing, the primary difficulty in automatic replay arises from widget (or GUI
component) identification (Ruiz and Price 2008; McMaster and Memon 2009). In
GUI testing, any widgets with an associated event should be eligible for automatic
interaction with a replay tool. The most basic GUI test execution tools use coordi-
nate information as a basis for performing user events, but coordinate information
ties replay tools to a specific architecture and pixel resolution. The GUI must render
exactly the same for each test case execution so that widgets are identified correctly.
More general tools use additional GUI properties for identification, such as a widget’s
parent component or window, its color, and label.

2.2 Related work

In our discussion of testing activities, we mentioned current approaches to GUI test-
ing, such as MBT and capture/replay. In this section, we provide more details of
existing tools and approaches relevant to our research. Several GUI testing frame-
works and associated toolchains have been developed for industrial and academic
use. Based on the underlying test case generation techniques, these frameworks may
be grouped into four broad categories: script-based, capture/replay, random-walk,
and automated model-based.

Script-based frameworks provide scripting languages to programmatically control
the GUI. Most languages extend or adapt the JUnit framework,9 developed for unit
testing. Using the provided languages, testers can write test scripts to automatically
interact with the GUI. Test cases assert whether the application executed correctly.
During execution, assertion violations report any errors as test case failures. Script-
based tools are widely used in the industry. Examples of such tools include JFCUnit,
Selenium WebDriver, Robotium, Abbot, and SOAtest.

Academic researchers have also developed similar tools for research purposes.
For example, GTT (Chen et al. 2005) supports test-driven development of Java-based
GUI applications. It provides visual editing of test scripts, enabling test-driven de-
velopment in extreme programming environments. As another example, the Sikuli
testing framework (Chang et al. 2010) employs computer vision techniques to de-
velop a visual language for writing test scripts. The testers can use images of widgets
to visually identify GUI components and drive test case execution instead of using
their textual labels or other properties.

Using scripted test cases can significantly reduce GUI testing effort. Once test
cases are developed, they may be reused to automate GUI interactions in regression
testing. However, because script writing is a very labor-intensive process, the number
of test cases is often small. Capture/replay tools can reduce the burden of scripting by
providing interactive tool support. Examples of current capture/replay tools include
Test Automation FX, Selenium IDE, Rational Robot,10 HP WinRunner11 and Quick
Test Pro. The tools provide mechanisms for testers to record interactions with the GUI
and save their interaction as test cases. These test cases may be replayed automatically

9http://www.junit.org.
10http://www.ibm.com/software/awdtools/tester/robot.
11http://www.hp.com/functionaltesting.

http://www.junit.org
http://www.ibm.com/software/awdtools/tester/robot
http://www.hp.com/functionaltesting


Autom Softw Eng (2014) 21:65–105 71

to perform testing. However, because the capture phase is still done manually, these
tools typically yield a small number of test cases.

Random-walk tools such as Android Monkey12 and GUIdancer13 are used for
crash testing. Unlike script-based and capture/replay tools, random-walk tools do
not generate test cases. Instead, they randomly walk the user interface and execute
all encountered events in sequence. These tools are easy to use and may indeed find
bugs by using unexpected combinations of events, but with no notion of a test case or
the ability to replay exact sequences, they typically supplement a broader approach
to testing.

Recently, there have been some advances in developing automated model-based
testing tools. These tools create a model of the GUI and use this model to automat-
ically generate test cases. Tools differ in terms of the underlying models used and
the processes used to obtain, manipulate, and extract test cases and other information
from the models. TEMA (Jääskeläinen et al. 2009) is a MBT framework developed
for smartphone applications. The tester manually creates a two-tier model consist-
ing of two state machines called action and keyword machines, which represent the
GUI at design and implementation levels, respectively. The method traverses the ac-
tion machine to generate design-level test cases, then uses the keyword machine to
transform design test cases into executable ones.

MBT approaches employ tool support for automated test case generation. Several
tools exist for generating test cases automatically. PATHS (Memon et al. 2001a) uses
AI planning to generate test cases based on the state of a GUI before and after exe-
cuting a user-defined operation. GTG (Nguyen et al. 2010) enables testers to convert
business logic test cases into presentation logic test cases. Testers specify a mapping
from business logic to presentation logic which supports the conversion. PETTool
(Cunha et al. 2010) identifies patterns in GUIs and generates generic testing solu-
tions based on the patterns. The symbolic execution tool Barad (Ganov et al. 2008)
solves constraints between text input data with the aim of producing a minimal test
suite which maximizes code coverage.

MBT approaches can also use tools to support the construction of their model. Sev-
eral tools exist which support extracting information from the GUI of an application.
This information is used for modeling and generating test cases for the application.
GUISurfer (Silva et al. 2009) automatically reverse engineers a behavioral model of
the GUI from the source code of Java Swing-based GUI applications to produce a
Haskell specification. This model of the application is then validated by running test
cases. REGUI2FM (Paiva et al. 2008) reverse engineers a GUI into a Spec# model,
which can be used in Spec Explorer (Veanes et al. 2008) to generate test cases. It also
captures user actions into scenarios which are used for testing.

A2T 2 (Amalfitano et al. 2011) is a similar MBT tool, but uses a reverse engi-
neering technique to automatically construct the GUI model. This tool leverages a
crawl-based technique to reverse engineer the GUI structure of the Android phone
application and create a state machine model. The tool automatically generates test
cases from the state machine whose results can be automatically checked against

12http://developer.android.com/guide/developing/tools/monkey.html.
13http://www.bredex.de/web/index.php/guidancer_jubula_en.html.

http://developer.android.com/guide/developing/tools/monkey.html
http://www.bredex.de/web/index.php/guidancer_jubula_en.html


72 Autom Softw Eng (2014) 21:65–105

pre-defined constraints. Tools such as Crawljax (Mesbah and van Deursen 2009) and
Revangie (Draheim et al. 2005) employ similar techniques for web applications.

Model-based approaches can also use tool support to edit models directly. Certain
tools allow the tester to visually inspect and edit GUI specifications. The NModel
framework14 provides tools for scripting and visualization of scripted models of C#
programs as well as test case generation and replay tools. VESP (Chen and Subra-
maniam 2001) allows a tester to visually manipulate test specifications of Java-based
GUI applications represented as state machines. VESP executes the applications un-
der its control and allows the tester to edit the state machine model directly. The
modified state machine model can then be used for test case generation. ActiveStory
Enhanced (Hellmann et al. 2010) supports agile GUI design and development. De-
velopers create low fidelity prototypes of GUI components which can be used for
usability analysis. The low-fidelity design can be used to generate test cases for iter-
ative agile development.

Finally, tools also exist for test maintenance based on model evolution. TDE/UML
(Vieira et al. 2006) acts as a plugin to modeling environments such as Rational Rose
and provides support for test case generation as part of a comprehensive approach
to application modeling. REST (Grechanik et al. 2009) enables a user to evolve test
scripts when the GUI changes. The tool detects differences between original and
modified versions of a GUI and generates a warning if a script needs correction.

2.3 Comparing GUITAR to existing frameworks

To provide appropriate context for our discussion of GUITAR, we now consider how
the approach of GUITAR, from an automation engineering perspective, compares
to existing alternatives. Here we focus on four alternative frameworks that, to our
knowledge, are individually among the most actively used in practice and as a group
provide a representative sample across the different approaches to testing we previ-
ously reviewed.

1. Monkey, a tool for random walking of Android application GUIs
2. NModel, a model-based testing framework for C# programs
3. Quick Test Pro, a popular proprietary, multi-platform tool for test automation
4. Selenium WebDriver, a popular API for browser automation.

Table 1 offers a concise, high-level comparison of the frameworks. While a full
experimental comparison of these tools is outside the scope of the current paper,
comparison of the features of the frameworks highlights some unique features of
GUITAR.

Monkey, as a random walking tool for Android mobile applications, uses no un-
derlying model. Test cases are not explicitly generated, but instead, the tool executes
random events automatically in a single application instance. This provides a sim-
ple, fully automated testing tool. For simple mobile applications, this may provide
a useful amount of coverage, but without modeling or test case output other than a
log of interactions. Monkey compares most directly to the GUITAR Ripper, though

14http://nmodel.codeplex.com/.

http://nmodel.codeplex.com/


Autom Softw Eng (2014) 21:65–105 73

Table 1 Comparison of testing frameworks

Framework
name

Model
generation

Model
verification

Test case
generation

Test
oracles

Supported
platforms

GUITAR Rev. Eng (A) Manual Model based (A) Custom Multiple†

Monkey None None None Supported
events

Android

NModel Scripted (M) Tool support
(M)

Model based (A)
& Scripted (M)

Custom C#

Quick Test
Pro

None None Scripted (M) &
Captured (M)

Custom Multiple‡

Selenium None None Scripted (M) &
Captured (M)

Custom Web

A = automated, M = manual

† JFC, SWT, Web, Android, other platforms in alpha

‡ Java, Web, .NET

the Ripper algorithm proceeds in a consistent order rather than randomly. Monkey
is also the only framework that does not support custom test oracles, as only spe-
cific tool-supported error events can be detected (e.g., crashes, timeouts, permissions
errors). We currently distribute an Android GUITAR toolchain, which, if combined
with our random test case generator working from a model, can also test an Android
application by random walk.

The NModel framework provides an interesting comparison for GUITAR. The
multiple NModel tools work from a manually provided model specification. Visual-
ization tools assist with model verification, and test case generation and execution
follow from the model as defined. NModel only works for C# programs. The tools
of NModel compare almost directly to GUITAR’s tools except for the absence of a
Ripper tool. The scripting alternative allows for more precise model definition at the
expense of scalability, as manual specifying a model correctly may take a great deal
of time for non-trivial applications. With NModel, assertions can be coded into the
model itself and applied during test execution as a test oracle.

Interestingly, the NModel framework contains tool support for model verification.
While GUITAR as a framework does not natively support visualization (which allows
manual verification of models), the XML formats we use in GUITAR’s input and
output files support direct conversion into visualizations. We use external processing
scripts to generate Graphviz15 and Gephi16 visualizations of our models (such as the
images included in this paper). We recognize that tool support is often still necessary
beyond simply visualizing a model, as the models can be quite large.

The proprietary Quick Test Pro tools support both scripting and capturing of test
cases without consideration of a model. The tools can replay existing test cases. As
a proprietary tool, developers have less lower-level control and limited ability for

15http://www.graphviz.org/.
16https://gephi.org.

http://www.graphviz.org/
https://gephi.org


74 Autom Softw Eng (2014) 21:65–105

customization. However, the tool does exist for many platforms and continues to
expand.

Finally, the Selenium framework provides multiple tools for browser-based testing
of web applications. The Selenium IDE provides a plugin for the Firefox browser that
supports capture of events. Alternatively, Selenium Web Driver provides program-
ming interfaces in many languages for scripting tests. The scripted tests can then be
replayed as an executable program in the chosen language. Selenium also supports
a “Grid” mode to run many browser instances and improve scalability. No known
Selenium tools work from a model of the application. With Selenium, the application
programming interface (API) exposes many types of assertions that can be applied
during test execution, coupling the test oracle with the sequence of events. We cur-
rently distribute a web version of GUITAR which leverages Selenium’s Firefox Web
Driver as a GUI automation backend.

By comparison, GUITAR is uniquely both model-based and multi-platform, as
supported by its plugin-based architecture. The plugin-based approach also allows
GUITAR to be extended to new platforms as they become available, and allows de-
velopers to customize and extend GUITAR at the model, event, and widget levels of
abstraction, as we illustrate throughout this paper.

GUITAR supports test oracles capable of verifying any detectable aspect of GUI
state both during and after test execution. For runtime assertions, GUITAR requires
the implementation of Test Monitor plugins. We describe the implementation of a
Test Monitor plugin for collecting code coverage in Case Study 3. GUITAR’s ap-
proach to test oracles is similar to the Monkey approach, in that failures of a certain
class (e.g., crashes, permissions errors, timeouts) can be detected by a class-specific
Test Monitor. However, Test Monitor implementations, because they are plugins to
the framework, are completely customizable.

GUITAR’s support for customization throughout the model-based testing pro-
cess also allows the framework to support development of tools with capabilities
very similar to others considered here. We claim that GUITAR’s combination of
model-based, multi-platform support, and customization throughout the testing pro-
cess makes GUITAR an innovative tool as compared to current approaches in the
industry.

One weakness of GUITAR evident in this comparison is a lack of tool-based sup-
port for any manual (scripted or captured) test development, including integration of
manual and model-based test cases. We recognize this as a current issue in GUITAR,
and are in the early stages of bringing test case capture capability to the framework
in a way that preserves the plugin-based architecture.

3 Using GUITAR: an in-depth case study

We now present GUITAR, our framework for automated GUI testing. The salient
features of GUITAR include (1) GUI reverse engineering, (2) automated test case
generation, (3) automated execution of test cases, (4) support for platform-specific
customization, (5) support for addition of new algorithms as plugins, and (6) sup-
port for integration into other test harnesses and quality assurance workflows. To the



Autom Softw Eng (2014) 21:65–105 75

Fig. 1 Standard workflow using JFC toolchain

best of our knowledge, GUITAR is the first GUI testing tool to combine these six
capabilities.

For ease of presentation, we demonstrate GUITAR using a workflow called Case
Study 0. More specifically, we describe a part of GUITAR that is tailored for Java
Foundation Classes (JFC), a graphical framework for building portable Java GUIs.
We create a simple regression-testing workflow referred to as the standard work-
flow in the rest of this paper. The standard workflow is shown in Fig. 1. We use two
open-source JFC-based applications for this demonstration—ArgoUML,17 which
provides graphical tools for working with the Unified Modeling Language (UML),
and JabRef,18 a text-intensive application for citation management. Both ArgoUML
and JabRef are mature and popular applications, both around for approximately 10
years and each downloaded more than a million times.

3.1 Components and algorithms

The GUITAR framework allows for the development of four primary tools. They
are:

Ripper, a tool for generating a structural model of the GUI of an application under
test (AUT) by means of reverse engineering from the run-time state of the applica-
tion (Memon et al. 2003).

Graph Converter, a tool for converting the structural model, generated by the Ripper,
into a graph, such as the Event-Flow Graph (EFG).

Test Case Generator, a tool for automated test case generation based on the graph
generated by the Graph Converter.

Replayer, a tool for automated execution of test cases generated by the Test Case
Generator on the AUT.

The Ripper and the Replayer interact with the AUT and hence always require
platform-specific customization. The Graph Converter and the Test Case Generator,
on the other hand, process models and are hence platform-independent.

17http://argouml.tigris.org.
18http://jabref.sourceforge.net.

http://argouml.tigris.org
http://jabref.sourceforge.net


76 Autom Softw Eng (2014) 21:65–105

3.1.1 Ripper

The primary purpose of the Ripper is to discover as much structural information
about the GUI as possible using automated algorithms and some human input. This
information is output into a structure called a GUI Tree.

During ripping, the GUI application is executed automatically; the application’s
windows are opened in a depth-first manner. The Ripper extracts all the widgets and
their properties from the GUI. Properties of widgets include basic attributes such as
position, color, size, and enabled status. Properties also include information about
widgets’ events, such as: whether a widget opens a modal or modeless19 window or
a menu, whether a widget closes a window, and whether the widget is a button or an
editable text-field. The Ripper extracts properties for widgets as well as their contain-
ing GUI windows and stores the information in the GUI Tree. For each GUI window,
the Ripper first extracts structural information of that window. It then executes wid-
gets that invoke other GUI windows. The depth-first traversal terminates when all
GUI windows are covered. Note that the order of invoking the widgets may affect the
GUI structure being extracted. Each possible order may result in a slightly different
structure. A hypothetical ideal Ripper would potentially require infinite sequences of
invocations because there are, in principle, an infinite number of ways to interact with
a GUI application. This would result in an intractable ripping algorithm for any non-
trivial GUI. It is possible to improve accuracy of the Ripper by attempting different
orders of invocation. Different heuristics will be developed in future work.

Because of the low-level nature of the Ripper’s algorithms (e.g., extracting GUI
windows and widgets at run-time), it is necessarily a platform-specific component
of GUITAR. A plugin customized for a particular platform uses the Ripper frame-
work to interact directly with the application on a specific platform. For example, the
JFCGUIRipper (discussed later in Sect. 3.2.1) is only able to interact with JFC-based
widgets and windows.

Several pieces of information required during ripping must be provided as human
input. First, human input directs the unambiguous identification of windows using
their titles. Most GUI windows in an application have fixed titles (e.g., FileOpen in
MS Word, Print in Adobe Acrobat). Once the Ripper encounters such fixed-title win-
dows, it adds them to the Gui Tree. If the Ripper encounters the same window again,
the algorithm knows not to reverse engineer the window again. However, there are
certain windows in GUI applications that do not have fixed titles. For example, the
Main window of MS Word always shows the file-name of the currently opened docu-
ment. By default, if the Ripper encounters such dynamically titled windows multiple
times during its traversal of the application, it adds them all to the GUI Tree as differ-
ent windows, and proceeds to rip each one separately. Human input guides the Ripper
algorithm in such a situation.

Second, the application being ripped may have certain windows or widgets that
interfere with the Ripper’s algorithm, e.g., by closing the application or invoking

19Standard GUI terminology; see detailed explanations at msdn.microsoft.com/library/en-us/vbcon/html/
vbtskdisplayingmodelessform.asp and documents.wolfram.com/v4/AddOns/JLink/1.2.7.3.html.

http://msdn.microsoft.com/library/en-us/vbcon/html/vbtskdisplayingmodelessform.asp
http://msdn.microsoft.com/library/en-us/vbcon/html/vbtskdisplayingmodelessform.asp
http://documents.wolfram.com/v4/AddOns/JLink/1.2.7.3.html


Autom Softw Eng (2014) 21:65–105 77

an external application such as a browser that is not a part of the AUT. Addition-
ally, certain widgets may cause undesirable side effects, e.g., sending large files to
the printer. Human testers must enumerate these problematic widgets as input to the
Ripper called the ignore-list. The Ripper also needs to know a priori about widgets
which close a GUI window. These widgets, called terminal widgets—such as OK,
Cancel, and Dismiss—are identified by the human tester and provided as input
to the Ripper as the terminal-list. The Ripper uses the ignore-list and terminal-list to
identify and handle those widgets as special cases. Ignored widgets are never exer-
cised. Terminal widgets are exercised only when the Ripper intends to close a GUI
window, only after completely extracting a window’s structure.

Third, human input specifies an initial state for the AUT. The Ripper launches
an application before identifying its top-level window(s) and proceeding to exercise
its individual widgets. The application’s initial state must be configured a priori by
human input. Importantly, this choice of initial state can affect the components avail-
able in the GUI and detectable by the Ripper. For example, if Microsoft Notepad is
launched with an empty document, the Edit->Copy menu item is inactive.

Fourth, during the ripping process, the Ripper may encounter text fields such as
FileDialog entries, URL fields, or other similar inputs. The human tester can
configure the Ripper with values to supply into these fields in a text-entry-list. For
example, a GUI requiring a login and password can obtain this information when
needed if specified in the text-entry-list. Based on the text-entry-list, the inputs to the
application may trigger different, and more exhaustive, structural behavior.

All manual inputs, including the ignore-list, terminal-list and text-entry-list are
provided as inputs to the Ripper in a single configuration file. The application’s ini-
tial state is dictated by application arguments, which are specified when launching
the Ripper, and sometimes application support files, which must be maintained exter-
nally.

At the end of the ripping process, the Ripper stores the extracted structural infor-
mation about the GUI in a data structure called GUI Tree, in XML format. Figure 2a
shows the GUI of a simple Java application. The application has two GUI windows,
where the Exit button of the root window invokes the child window. Figure 2b
shows the corresponding Gui Tree. For readability, only a subset of the extracted
attributes of the GUI windows is shown.

A fundamental design decision for the Ripper was to shield other components of
the GUITAR toolchain (Graph Converter and Test Case Generator) from platform-
specific intricacies. Once an AUT has been ripped and a GUI Tree obtained, GUITAR
does not need to interact with the AUT for generating test cases. Subsequent steps
extract information from the GUI Tree to automatically generate appropriate graph
models and test cases.

3.1.2 Graph converter

The Graph Converter provides a platform-independent framework to convert the Gui
Tree model, output by the Ripper, into a graph representing relationships between
events in the GUI of the application. The framework provides support for processing
the input GUI Tree and generating a graph which is subsequently used for test case
generation.



78 Autom Softw Eng (2014) 21:65–105

Fig. 2 GUI Tree and EFG of a simple RadioButton application; (a) shows a small GUI application with
two windows; (b) shows its GUI Tree with 2 nodes and a subset of attributes; (c) shows the corresponding
EFG

The default event model in GUITAR is the event-flow graph (EFG) (Memon et
al. 2001b; Memon 2007). An EFG is a directed graph representing all possible event
interactions on a GUI. Each node in an EFG represents a GUI event (e.g., click-
on-Create, click-on-OK). An edge from node v to node w represents a follows
relationship between v and w, indicating that event w can be performed immediately
after event v. An EFG is analogous to a control-flow graph, in which vertices repre-
sent program statements and edges represent execution flows between the statements.

The construction of the EFG is based on the identification of modal and mod-
eless windows. Recall that the Ripper classifies GUI events while extracting wid-
get properties and encodes this information in the GUI Tree. The Graph Converter
leverages this information while constructing the EFG. Restricted-focus events open
modal windows. Unrestricted-focus events open modeless windows. Terminal events
close modal windows. Expand events are used to reveal hidden sub-components (e.g.,



Autom Softw Eng (2014) 21:65–105 79

sub-menu items or tab elements). System-interaction events are not used to manipu-
late the structure of the GUI; rather, they interact with the underlying software to
perform some actions.

The Graph Converter uses the above classification to compute the follows set
for each event, which in turn is used to create edges of the EFG. We have presented
the details of how to compute the follows set in our previous work (Memon et al.
2001b). Figure 2c shows the EFG for the application seen in Fig. 2a. In this EFG,
there is an edge from circle to circle because a user can execute circle in succession;
however, there is no edge from circle to yes because a user cannot execute yes after
circle. The EFG has a set of initial events, shaded in Fig. 2c, which can be executed
in the GUI’s initial state. We show exit, a window-opening event, using a diamond;
yes and no, both window-termination events, using the double-circle shape; and the
remaining system-interaction events using ovals.

An Event Model Converter is similar to the Graph Converter, except that it trans-
forms from one event model to another. GUITAR provides some built-in Event Model
Converters to transform from the EFG to its variant models such as the event-
interaction graph (Memon et al. 2001b), event-semantic interaction graph (Yuan et
al. 2011) and probabilistic event-flow graph (Brooks and Memon 2007). Users of
GUITAR can extend model converters to work with their own models and support
tools based on these models.

3.1.3 Test case generator

The Test Case Generator is the next tool in the toolchain. Like the Graph Converter,
this tool is also platform-independent. A Test Case Generator automatically gener-
ates test cases based on the graph model output from the Graph Converter. Although
the tester is free to implement any algorithm for test generation, our current Test
Case Generator framework provides support for taking, as input, the Graph Con-
verter’s output graph model and performing specified graph traversal algorithms on
the model to automatically generate test cases. Hence, the GUI test generation prob-
lem is reduced to a problem of graph traversal.

The Test Case Generator framework provides three core features that may be used
by a tester to implement a specific test generator. First, depending on the model ex-
ploration strategies desired, various test case generators may be built around a single
graph model. In theory, a GUI test case can be of any length, possibly infinite, as a
single widget can be clicked an infinite number of times. With multiple widgets on
a GUI, the possible combinations can easily grow very large. Similarly, a GUI test
suite can be of any size, possibly infinite. One can construct a test suite containing
test cases of all lengths.

Second, the Test Case Generator generates values for event parameters if required
(such as adding values for text-input fields by reading text inputs from the configu-
ration file). Third, the Test Case Generator framework inserts “connecting” events in
the test case to make it executable on the real GUI. Connecting events may be added
to the test case e1 → e2, to create c1 → e1 → c2 → e2. This insertion makes e1 ac-
cessible from the initial state of the GUI, and also makes e2 accessible from e1. Here,
the added event c1 is called a “prefix” event.



80 Autom Softw Eng (2014) 21:65–105

3.1.4 Replayer

The Replayer provides a framework for executing a test case automatically on the
AUT. The tool also provides hooks for observing and recording the AUT during test
case replay. The Replayer takes as input an executable test case, the Gui Tree and
the graph model, launching the application with the same initial state used during
ripping. For each event in the test case, the Replayer uses the information in the GUI
Tree and the graph model to identify the GUI window and widget on which the event
needs to be executed. The tool invokes the event on the identified widget. When all
events have executed, the Replayer closes all open windows and shuts the application
down.

As was the case with the Ripper, the human tester may pre-configure the Replayer
with values to supply into input fields using the text-entry-list. This list is provided
as input to the Replayer using a configuration file. The tester may also use Replayer-
provided hooks called Test Monitors to implement plugin-specific steps to observe
and record the state of the GUI. For example, plugins may record some aspect of the
state of the application during execution. This information can serve to validate the
result of the executed test case or by directly comparing it with a previously recorded
state. Test Monitors can also collect any other available run-time information, such
as data supporting event-specific code coverage analysis.

The Replayer is a platform-dependent component. Plugins need to be imple-
mented specific to the platform since they interact directly with the AUT.

3.1.5 Oracle verifier

The Oracle Verifier provides mechanisms to determine whether a GUI executed cor-
rectly for a test case. In addition to a sequence of events to be executed, a test designer
must decide both what to assert and when or how often to check an assertion, e.g.,
after each event in a test case or after the entire test case completes execution. Vari-
ations of these two factors significantly impact the fault-detection ability and cost of
the execution and maintenance of a GUI test case. Currently, we support two Ora-
cle Verifier implementations with GUITAR: the CrashVerifier for reporting crashes
(demonstrated in the Case Study 0) and the StateVerifier for matching output GUI
states across different test case executions.

In general, GUITAR supports assertions of GUI state both during (through Test
Monitor extensions) and after test case execution (as in the CrashVerifier and StateV-
erifier). The types of oracles supported by GUITAR are limited only by the ability to
extract and verify GUI attributes during or after a test. Further analysis of GUI oracle
choices with GUITAR and their effects on fault detection is outside the scope of this
paper.

3.2 JFC toolchain

We have used the GUITAR framework to implement a set of tools for testing appli-
cations written with the Java Foundation Classes (JFC). The tools form a toolchain
which can be used to automatically test a JFC application. In this section, we describe
tools implemented for the JFC toolchain.



Autom Softw Eng (2014) 21:65–105 81

3.2.1 JFCGUIRipper

JFCGUIRipper is a plugin based on the Ripper framework. As a Ripper, the tool is
capable of extracting GUI structural information from JFC-based GUI applications.

The JFCGUIRipper uses reflection to interact with GUI widgets. Specifically, the
tool interacts with all widgets that support the Java Accessibility framework (all stan-
dard Swing and AWT widgets support this framework). The default GUI events such
as left click on clickable widgets (e.g., button, checkbox) and type-in-text on editable
widgets (e.g., text box) supported by the Java Accessibility framework are recog-
nized and captured. In addition, the Ripper algorithm needs specific guidance to dis-
cover relationships among GUI events and widgets. This information is encoded in
the tool’s adapters. JFCGUIRipper includes custom adapters for ripping JTabbed-
Pane and JTreewidgets correctly. The ripping process for all other widgets follows
GUITAR’s generic Ripper algorithm previously described.

Given the default implementation of JFCGUIRipper, some non-standard widgets
and their properties may be missed during ripping. In order to interact with and extract
properties from these additional widgets correctly, application-specific implementa-
tion beyond the existing JFCGUIRipper is required. These additional extensions yield
a more accurate GUI Tree and EFG. In a later case study (Sect. 5.4), we describe
extensions to the JFCGUIRipper supporting the extraction of a more detailed GUI
structure for a specific application.

3.2.2 EFGConverter and sequenceLength generator

The JFC toolchain includes a single Graph Converter, EFGConverter (Memon 2007),
based on the Graph Converter framework. This platform-independent plugin is us-
able with the JFC toolchain as well as any other GUITAR toolchain. The EFGCon-
verter converts the GUI Tree generated by the JFCGUIRipper into an EFG, based on
the event-flow model.

SequenceLength Generator is the Test Case Generator of the JFC toolchain, and
is likewise platform-independent and based on the Test Case Generator framework.
This tool generates all possible test cases of a specified length (L). The resulting suite
contains one test case for each event sequence of length L in the input EFG. For L =
1, the resulting suite covers every event in the EFG, for L = 2 the suite covers every
pair of events occurring in the EFG, and so on for longer lengths. Each individual test
case covers one sequence of length L, with a prefix applied to the sequence to make
it accessible from the application’s initial state. Note that this prefix means the actual
length of test cases may in fact exceed the value of L.

3.2.3 JFCGUIReplayer

The JFC toolchain includes a test case Replayer based on the Replayer framework
called JFCGUIReplayer. The JFCGUIReplayer is platform-dependent, being able to
execute test cases on a JFC-based application.

The JFCGUIReplayer implements Test Monitors to store the state of the GUI after
executing each event in the test case as a XML file. As a Replayer, the JFCGUIRe-
player executes a test case in isolation rather than in the exploratory fashion of the



82 Autom Softw Eng (2014) 21:65–105

Ripper. The observed state may therefore be unique, having never occurred during
the ripping process. This XML GUI state file can be analyzed to determine if a test
case passed. The analysis may include comparing the state with the state stored from
a previous execution, for example, during regression testing.

The JFCGUIReplayer follows the generic Replayer algorithm presented earlier
to execute each test case. Java applications in particular have a high cost associated
with launching the application to ensure an identical initial state. This cost leads to
the JFCGUIReplayer’s execution time dominating the compute cost in this case study,
and this result is typical for GUITAR workflows in other platforms.

A simple shell script, acting as a test oracle, examines log files generated by
JFCGUIReplayer. In addition to a simple CrashVerifier oracle, the script also de-
tects exceptions and error strings from execution logs, which human testers can then
manually inspect.

3.3 Case study 0

This section describes a simple workflow, called the standard workflow, that uses the
JFC toolchain (Sect. 3.2)—JFCGUIRipper, EFGConverter, SequenceLength Genera-
tor, JFCGUIReplayer—to “crash test” two JFC applications. Figure 1 shows the JFC
standard workflow. Ovals represent processes and boxes represent testing artifacts
and results.

The case study was executed on the ArgoUML and JabRef JFC applications. Ta-
ble 2—Lines of code, Windows, and Widgets20—shows that these are non-trivial ap-
plications.

The first step was executing the JFCGUIRipper. This step first requires manually
specifying the ignored and terminal widgets. Certain widgets have to be ignored and
some marked as terminal for a smooth and accurate ripping process (Sect. 3.2.1).
To determine the ignored and terminal set of events, we first ran the Ripper with no
configuration. The generated GUI Tree was then processed (with an XML parsing
script) for a count of windows and widgets. If the Ripper got stuck, we considered
ignoring the last successfully executed event. If the Ripper completed, but the counts
of GUI windows were intuitively lower than expected, we considered adding the last
executed event to the set of terminal widgets. For ArgoUML, the application’s “Print”
dialog was ignored, by this process, to avoid physical printing during ripping. Also,
the “Help” dialog, which contributed very little to coverage, was ignored. For JabRef,
in addition to “Help”, certain widgets that induced dynamic changes in titles of GUI
windows, which prevented the Ripper from correctly identifying GUI windows, were
ignored. This problem is an artifact of the Ripper’s approach of identifying windows
and widgets detailed earlier.

The set of terminal widgets remains fairly consistent across the two applications.
The final configurations of both applications marked widgets with labels such as
“close”, “open”, “save”, “ok”, “cancel”, “quit”, “yes”, “no”, “save”, and “exit”, with
some application-specific differences, such as the label “Close database” for JabRef.

20The numbers reported here are for all available widgets, including non-interactable widgets (e.g., labels,
pictures) and invisible widgets (e.g., layout panels, tab panels).



Autom Softw Eng (2014) 21:65–105 83

Table 2 Case study 0: Result summary

ArgoUML JabRef

Ripping Lines of code 69,954 44,522

Windows 30 40

Widgets 1,548 1,285

Ignored 2 6

Terminal 13 14

Time (s) 231 431

Model conversion Nodes 328 376

Edges 4,468 15,562

Time (s) 4 5

Test case generation Test cases 4,468 15,562

Avg length 2.82 4.80

Time (s) 213 875

Replaying Statement coverage 22.45 % 29.12 %

Branch coverage 10.31 % 12.04 %

Log size (GB) 8.4 185.0

Fault detected 3 4

False positives 6 8

Time (hours) 309 1,204

Because the configuration of terminal widgets in GUITAR supports matching on any
subset of widget properties (including just the label), an existing set of common ter-
minal widget labels could provide a default terminal-list for GUITAR.

Note that the time reported for Ripper execution includes only the execution time
of the Ripper under its final configuration. This time does not include the time re-
quired for manual configuration. We did not measure the time required for Ripper
configuration, as the testers in this case study (the authors of this paper) do not rep-
resent typical users of GUITAR. Because we started from empty configurations of
ignored and terminal widgets for each application, the number of ignored widgets
(2 for ArgoUML and 6 for JabRef) and terminal widgets (13 for ArgoUML and 14
for JabRef) gives an imprecise indication of the manual effort required for Ripper
configuration. The cost of this manual configuration includes a number of iterations
(approximately one per each ignored or terminal widget) of running only the auto-
mated Ripper, then manually checking for any issues and updating the configuration.

After the Ripper was sufficiently configured to generate a reasonable GUI Tree, the
EFGConverter automatically generated the EFG from the GUI Tree. Table 2 shows
the number of nodes and edges in the EFG obtained for ArgoUML and JabRef.

Using the EFG, the SequenceLength Generator generated test cases covering all
event sequences of length 2. The total number of test cases and the average test case
length in each suite is reported in Table 2 Recall that the average length can vary from
the length 2 because the length parameter determines the length of event sequences



84 Autom Softw Eng (2014) 21:65–105

chosen from the EFG. An initial set of events may be prefixed to the generated test
case to make the first event reachable (Sect. 3.2.2). The first three steps—ripping,
graph conversion and test case generation—were executed on a machine with 1 GB
main memory and 2 GHz single core CPU running Redhat Linux Enterprise Linux 5.

Finally, the JFCGUIReplayer executed all of the generated test cases, completely
unattended, on a homogeneous cluster of 120 machines with the above configuration.
Table 2 shows the statement, branch coverage and faults detected during replay. The
total time taken to execute the test suite is also reported. This time is the sum of
execution time for all test cases. As expected, test replay time dominated the total
computation time of this study.

Logs from the JFCGUIReplayer were analyzed using scripts, acting as simple or-
acles, to detect faults (Sect. 3.2.3). Under manual inspection of script output, some
exceptions were found to have occurred due to inactive widgets or due to expected
widgets not being found in the GUI during test case execution. On closer manual anal-
ysis, these were found to have occurred due to limitations of the Ripper in extracting
a completely accurate GUI Tree (Sect. 3.1.1). We classified these specific faults as
false positives and they are not real faults in the AUT. ArgoUML encountered 6 such
instances, and JabRef encountered 8.

Table 3 reports faults detected for each application. We detected 7 crashes (3 in
ArgoUML and 4 in JabRef) as shown in Table 3. These crashes had never been re-
ported before to application developers. We reported each fault, and developers have
fixed the faults in subsequent versions of their applications. The bugs found reinforce
the importance of considering events in many possible contexts rather than a single
event execution. Most bugs we found would not have been found by a single event
execution. Critically, the EFG provides a known path to every captured event from
the initial state of the application, allowing coverage of each desired sequence and
resulting in longer, more effective test cases.

Figures 3 and 4 show a test case which led to the discovery of a specific fault
in JabRef, identified as fault JR2. Figure 3 shows the complete EFG obtained for
JabRef. The large nodes highlight the event-sequence leading to the fault, with the
last event triggering the fault. Figure 4 depicts the test case’s execution on JabRef.
The events e1, e2 and e3 were prefix events required to reach the generated length-2
sequence of e4 → e5.

Although our goal was coverage of length-2 event interactions, this test case re-
quired a length of 5 to cover the desired sequence. This systematic generation of
longer sequences makes the test suite more effective while being computationally
tractable. By covering all length-2 interactions, we were able to find bugs in less-
traversed (and likely less-tested) portions of the software.

Several things stand out in the extracted data. First, the test suites have a high num-
ber of possible test cases even when covering sequences of only length 2. This num-
ber increases exponentially as the covered sequence length increases, which magni-
fies the importance of test case automation and also emphasizes that most possible
test cases are necessarily overlooked by exploratory testing. With a model-based tech-
nique, we can make stronger arguments for test adequacy, but with so many test cases
to consider, tool scalability becomes important. We consider these problems in a case
study of continuous integration testing later in this paper (Sect. 5.2).



Autom Softw Eng (2014) 21:65–105 85

Table 3 Case study 0: Faults detected∗

Fault ID Summary Test case

AU1 FileNotFoundException
with invalid input file name for
Export Graphic

Expand ‘File’ menu → Click ‘Export
Graphic’ submenu → Enter an invalid file
name → Click ‘Save’

AU2 FileNotFoundException
with invalid input file name for
Export All Graphic

Expand ‘File’ menu → Click ‘Export All
Graphics’ submenu → Enter an invalid file
name → Click ‘Save’

AU3 An inappropriate exception trace
printed out when deleting object
with a blank document

Expand ‘Edit’ menu → Click ‘Delete from
Model’ submenu

JR1 FileNotFoundException
with an non-existing Journal
abbreviation file

Expand ‘Option’ menu → Click ‘Manage
journal abbreviation’ submenu → Enter an
invalid New file name → Click ‘OK’

JR2 MalformedURLException
with an invalid Journal
abbreviation download URL

Expand the ‘Option’ menu → Open
‘Journal abbreviation’ windows → Click
‘Download’ button → Enter an invalid URL
→ Click ‘OK’

JR3 NullPointerException with
invalid import folder name

Expand ‘Option’ menu → Click ‘Manage
custom imports’ submenu → Click ‘Add
from folder’ → Enter a non-existing folder
path → Click ‘Cancel’

JR4 ZipException with invalid zip
file name

Expand ‘Option’ menu → Click ‘Manage
custom imports’ submenu → Click ‘Add
from jar’ → Enter a non-existing zip file
name → Click ‘Select a Zip-archive’

∗A full fault report is available at http://www.cs.umd.edu/~baonn/projects/guitar/bugs

The code coverage numbers reported here may seem low. The seemingly low num-
bers can be attributed to several factors, including:

1. As a form of system-level testing, GUI testing can only exercise parts of the code
exposed to the GUI as executed by the Ripper. We have executed the Ripper in
a single environment with specific inputs. To improve coverage, these factors can
be varied by controlling the Ripper. Modifying inputs to the Ripper, e.g., for text-
input fields, could lead to increased coverage of widgets and code.

2. The Ripper may miss GUI elements as a result of execution within a single appli-
cation instance. To improve coverage, application-specific ignored and terminal
components could be configured more precisely. We have not considered deeper
application-specific configuration in this case study.

3. We have only considered test cases covering sequences of length 2. To improve
coverage, one could add more test cases, or focus on generating better test cases,
according to event coverage (e.g., sequences of length 3) or any other criteria
configurable by a test case generator. GUITAR’s support for customized test case
generation is discussed in Sect. 5.1.

http://www.cs.umd.edu/~baonn/projects/guitar/bugs


86 Autom Softw Eng (2014) 21:65–105

Fig. 3 EFG for JabRef with one event sequence triggering a fault

Fig. 4 The fault revealing event sequence of JR2



Autom Softw Eng (2014) 21:65–105 87

4. GUITAR tools may not know how to interact with all encountered widgets and
events. We expand on GUITAR’s ability to consider additional widgets and events
in Sect. 5.4.

GUITAR may also not appear very efficient. From Case Study 0, two aspects of
GUITAR appear resource intensive—the total amount of time consumed to execute
test cases and the total amount of artifacts generated (see Table 2). Extensive resource
requirements are a general problem of such model-based testing approaches. The
wall-clock time to execute test cases can be reduced, to a practical turnaround time,
by using a cluster of inexpensive and optionally virtual machines.

In summary, Case Study 0 leads to the following observations:

1. The model-based workflow of GUITAR leads to the generation of useful test cases
uncovering real faults.

2. The Ripper’s window and widget identification process has difficulties when win-
dow titles change.

3. The Ripper executes on an application’s GUI from a single initial application state.
This initial state may cause some widgets to be inaccessible and not to be extracted
into the GUI Tree. In addition, the Ripper follows only one order of traversing the
GUI. This may cause certain widgets to remain inaccessible and also not to be
extracted into the GUI Tree.

4. The manual configuration process can be addressed by a systematic manual pro-
cedure, but GUITAR offers no direct support for quick validation of GUI Trees.

5. GUITAR’s ability to match against any subset of widget properties when iden-
tifying widgets allows the configuration of terminal widgets across applications
to leverage applications’ tendency to reuse common labels for window-closing
widgets.

4 Supporting extension: the GUITAR architecture

In this section we describe the component-based design (Alfaro and Henzinger 2001)
of GUITAR, emphasizing the framework’s support for plugins and extensions which
enable more complex testing workflows and tool use cases.

GUITAR’s components can be grouped into: ‘core’, ‘tools’ and ‘plugin’ compo-
nents. ‘core’ components provide global services. ‘tool’ components provide build-
ing blocks for individual tools. ‘plugin’ components add customized features to tools.
Users may use tools independently or integrate them into toolchains for a customized
workflow supporting specific testing activities.

GUITAR is implemented in Java. Each GUITAR component has two layers to im-
prove flexibility and extensibility. The abstract layer defines an API for communicat-
ing with other components using abstract classes and interfaces. The implementation
layer provides low-level implementation details for the component. This separation
makes components interchangeable, such that replacing one component does not in-
terfere with other components of the framework. We now describe each component
in detail.



88 Autom Softw Eng (2014) 21:65–105

4.1 Model core

The central component in GUITAR is the Model core. This component defines the
following data structures common to all GUITAR components:

– The GUI Structure represents the GUI hierarchy, containing a set of all GUI win-
dows in the application. Each window contains GUI components with their prop-
erties and associated values. In GUITAR, a GUI Structure can be used to represent
either the static structure of the entire GUI or a dynamic GUI state as observed at a
particular time. The GUI Structure is used to store the GUI Trees generated by the
Ripper as well as the GUI states captured by the Replayer.

– An Event Model represents the relationships between events in the GUI Structure.
The Event Model is a directed graph with nodes representing events and edges
representing relationships between events (e.g., the follows relationships in the
EFG). Test Case Generators use an Event Model to systematically generate test
cases.

– The Test Case structure represents a sequence of GUI events which can be per-
formed one after another on the application from its initial state. A test case can
optionally contain a sequence of GUI Structure objects representing the expected
state of the GUI after each event as a form of an assertion.

All GUITAR components interact with one another using the common data struc-
tures defined in the Model Core.

4.2 Platform-specific components

GUITAR’s design emphasizes platform independence as much as possible. The
Graph Converter and Test Case Generator are platform-independent (see Sect. 3).
However, the Ripper and Replayer require platform-specific implementation in some
GUITAR components which interact directly with the GUI.

To enable the interactions between platform-specific and platform-independent
components, we provide an intermediate component called Executor. The Execu-
tor consists of two sub-components: (1) Tne Native GUI Automation component
is a platform-specific library such as Java Accessibility or Selenium Web Driver.
This component directly interacts with the GUI. (2) The Executor Bridge com-
ponent communicates with the Native GUI Automation component to support the
platform-independent Executor API. This API works as a contract between the
platform-specific details of the GUI Automation library and the high-level, platform-
independent models defined in the Model Core. The Executor API interfaces with
all other GUITAR components, so that once the Executor API is implemented, the
platform-specific components of the Executor can communicate with the rest of GUI-
TAR in a platform-independent way.

The Executor API includes four interfaces:

– GApplication21: represents a GUI application and methods to initialize appli-
cations, such as starting and terminating the GUI and accessing window handlers.

21The prefix “G” indicates that a component is a GUITAR abstract class.



Autom Softw Eng (2014) 21:65–105 89

– GWindow: represents a GUI window and methods to access window properties.
– GComponent: represents a GUI component (e.g., a widget) and methods to ac-

cess component properties.
– GEvent: represents an event type such as left-click, right-click, and text entry.

A GEvent paired with the GComponent represents a specific GUI event on a
GUI component (e.g., a left-click on the OK button).

The first three interfaces provide access to the content of the GUI such as the GUI
hierarchy and GUI properties. GEvent provides functionality to interact with the
GUI. Section 5.5 will provide a case study describing ways to implement the Execu-
tor API for a specific platform. The Executor plays an important role in GUITAR,
replacing the need for manual interaction with GUIs to enable the use of much larger
test suites.

GUITAR does not impose any restrictions on the types of applications to be tested.
However, a specific Executor implementation will only work on applications of a cer-
tain kind, due to the Executor’s dependence on GUI automation. For this reason, we
refer to GUITAR as supporting platforms of applications which can each be accessed
by a specific Executor implementation.

While we do not explore such extensions within this paper, an existing Executor
can support entirely new tools requiring GUI automation and model-based consider-
ations, such as a capture tool or alternative reverse engineering tool.

GUITAR contains two instances of the Executor: the Ripper and the Replayer.
These concrete instances implement two different automation strategies on the GUI
as described below.

4.2.1 The ripper

The default behavior of the Ripper (see Sect. 3.1.1) can be customized using plugins
called Ripper Adapters. A Ripper Adapter provides a hook for plugins to customize
the ripping step. The Ripper executes a plugin’s functionality before and after each
ripping step, allowing the plugin to override the default GUI traversal strategy of the
Ripper.

Developers can implement a specific Ripper Adapter by extending the abstract
class GRipperAdapter, which has two pertinent methods:

– isProcessed: specifies which components should be handled by this Ripper
Adapter.

– ripComponent: specifies how the Ripper should proceed with handling (e.g.,
interacting with and extracting properties from) the identified components.

For example, an adapter called IgnoreComponentAdapter implements the
capability to ignore components. This adapter is used in the JFCGUIRipper of Case
Study 0. The implementation overrides the Ripper’s handling of components speci-
fied in the configuration file so that the Ripper skips these components. Section 5.4
will provide a comprehensive example, where we use a custom Ripper Adapter to
enable the JFCGUIRipper to handle customized GUI components.



90 Autom Softw Eng (2014) 21:65–105

Table 4 Case Studies 1–5 using GUITAR

ID Scenario Required extensions

1 Alter the standard workflow to randomize the
generation of test cases

Custom GUITAR module based on
TestCaseGeneration Core

2 Distribute test case replay across a cluster of
machines

Test harness scripts for deploying
GUITAR tools. No change to
GUITAR code

3 Collect statement coverage of individual GUI events Custom test monitor based on
Replayer

4 Add support for an additional widget and event Custom widget type and custom
event type in Platform Model

5 Develop a new toolchain to support the automated
testing of a new platform

Custom Executor for the new
platform

4.2.2 The replayer

The default behavior of the Replayer (see Sect. 3.1.4) can be customized using plug-
ins called Test Monitors. A Test Monitor injects customized monitoring steps during
test case execution. Test Monitors extend the GTestMonitor interface with four
methods which are invoked at specific points during test case execution:

– init: invoked before any event is executed.
– beforeStep: invoked before an individual event is executed. It takes a GTest-
StepEventArgs object as argument to pass in any step-specific data (e.g., event
ID).

– afterStep: invoked after an individual event is executed. It also takes a GTest-
StepEventArgs object as an argument.

– term: invoked after all events are executed.

For example, the JFCGUIReplayer implements a StateMonitor to capture
GUI states during test case execution. In this monitor, the afterStep method
records GUI states after the execution of each test step. Those states are exported as
GUI Structure XML files that can be examined to determine test results. Section 5.3
will describe another Test M.

5 Extending GUITAR: case studies 1–5

With an understanding of GUITAR’s basic functionality (Sect. 3) and support for
extensions (Sect. 4), we now consider five customized workflows using GUITAR as
shown (Table 4). In each case, we describe a testing scenario and develop a corre-
sponding workflow supported by GUITAR tools. We describe the development of
tools beyond the JFC standard workflow and provide supporting artifacts. These case
studies highlight the flexible nature of GUITAR and its utility in GUI testing.



Autom Softw Eng (2014) 21:65–105 91

Table 5 Case study 1 results
ArgoUML JabRef

Test case
generation

Test cases 4,468 15,562

Avg Length 4.36 5.50

Time (s) 1,953 2,482

Replaying Statement coverage 24.72 % 28.70 %

Branch coverage 11.74 % 11.59 %

Fault detected 2 4

Time (h) 431 1,679

5.1 Case study 1: a custom test case generator

The SequenceLength Generator of Case Study 0 provides nice guarantees of event
coverage in the EFG. However, using longer sequence lengths could discover more
interesting bugs. The number of maximum possible test cases increases exponen-
tially with an increase in the length of test cases. Therefore, a tester might consider
random sampling as an alternate method for test case generation. In this case study,
we propose an alternative test case generator, RandomSequenceLength Generator,
implemented as a custom plugin to the Test Case Generator framework.

The RandomSequenceLength Generator takes two arguments, L and M, and au-
tomatically generates test cases covering a randomly sampled sequence (without re-
placement) from all possible sequences of length 1 to L to build a suite of M unique
test cases. Aside from the selection of the covered sequence, the RandomSequence-
Length Generator functions exactly as the SequenceLength Generator, prefixing a
path to an initial event, if necessary.

The sampling strategy in the RandomSequenceLength Generator is different from
those in the random walk testing tools discussed in Sect. 2.2. These tools typically
blindly navigate the GUI and perform events on encountered widgets without consid-
ering the overall GUI input space. In contrast, the RandomSequenceLength Generator
is guided by the EFG model of the GUI. By uniformly sampling from a known space,
the events in the generated test suite are equally distributed. In addition, because test
suite generation can be done before execution, the tester can perform further analysis
before executing any test cases.

5.1.1 Results

We applied the RandomSequenceLength Generator to the existing EFG files for Ar-
goUML and JabRef with parameters of L = 4 and M equal to the number of test
cases in each application’s complete SequenceLength L = 2 suite from Case Study 0.
Table 5 shows the results of Case Study 1, as compared to the results of Case Study
0 from Table 2.

From the raw data, we notice an increase for both applications in average test case
length, as a result of sampling from sequences of longer lengths. Test suite gener-
ation time, as measured by the time needed to generate the test suite, also rose for



92 Autom Softw Eng (2014) 21:65–105

both applications. This result is also expected. In the case of ArgoUML, code cov-
erage measures increased; but we observed slight decreases in coverage for JabRef.
Because of the randomness of the new test suite, we expect some differences in cov-
erage. We did confirm that the coverage of the two case studies does not completely
overlap.

We also take a deeper look into the defects found. We observe that not all of
the defects from Case Study 0 are detected by the new test suite. This outcome is
not surprising, because the new test suite (unlike the previous) does not guarantee
coverage of all length-2 sequences.

The new suites, though, did uncover new faults by exercising different sequences
sampled from longer sequence lengths. For example, in fault JR5, an ArrayIn-
dexOutOfBoundsException occurs when attempting to add a new string con-
stant to an already closed BibTex file in JabRef. The test case revealing this fault
consists of 6 events 〈e′

1: Expand BibTex menu; e′
2: Open ‘String for BibTex file’ win-

dow; e′
3: Close the BibTex file; e′

4: Open ‘Add Input String’ window; e′
5: Enter some

string to the text box; e′
6: Click OK to add string〉. This fault was not detected by the

L = 2 suite of Case Study 0 because detection requires an interaction of the three
events e′

3, e′
5, and e′

6. Missing one of these events will not uncover the fault.
The developers of JabRef confirmed that the behavior tested by this sequence of

closing the database then adding a string should be prohibited by making the String
for BibTex file window modal. This behavior was implied in their software’s specifi-
cation, but not enforced in the actual implementation, leading to the fault. This bug
illustrates GUITAR’s ability to find bugs based on execution. This capability comple-
ments existing specification-based GUI testing approaches (Silva et al. 2008; Chen et
al. 2005).

In summary, Case Study 1 adds the following observations:

1. The GUITAR framework allows test case generation techniques to be imple-
mented with no dependence on platform-specific code by the extension of one
abstract class.

2. GUITAR supports randomly sampling from models, which allows a tradeoff be-
tween considered event interactions, test suite size, and the exhaustiveness of a test
suite. This tradeoff gives the tester control over the scalability of the exponential
cost of considering longer sequences.

3. GUITAR creates test cases from AUT execution which contrasts with testing from
specification.

5.2 Case study 2: continuous integration testing

The previous two case studies have given rise to very large test suites. GUITAR of-
fers automated replay of test cases, but execution of an entire suite constructed from
a model-based coverage criteria would last for weeks on a single machine. Fortu-
nately, the separation of logic amongst GUITAR’s tools enables distribution of test
case replay. In this case study, we demonstrate distributed continuous testing using
GUITAR. This workflow results in a much quicker turnaround time than the standard
workflow.



Autom Softw Eng (2014) 21:65–105 93

Fig. 5 Schematic representation of a continuous integration testing system using GUITAR. (a) Controller
instantiates GUITAR and AUT on slaves, (b) generates test cases and transfers in batches to slaves, (c) trig-
gers execution of test cases and receives archive results

To support this scenario’s need for a quick turnaround of test case results, we
develop a distributed workflow for GUITAR. We use the JFC standard toolchain to
set up a testbed for Java applications which consists of four components: a code
repository, a controller machine, a set of slave machines and a result repository. The
testing process follows seven steps as marked in Fig. 5. The controller guides the
distributed workflow as follows:

1. Initialize all slave machines with GUITAR tools
2. Compile from source and package as necessary the latest version of the application

under test (AUT), e.g., from its trunk or specific branches
3. Generate GUI Tree and EFG on controller by running JFCGUIRipper and EFG-

Converter
4. Generate test cases on controller using SequenceLength Generator
5. Distribute test cases in even batches to slave nodes
6. Trigger execution of test cases on slave machines and wait for completion
7. Wait for slave machines to post results directly to the result repository

Figure 5 shows a schematic representation of a distributed deployment of GUI-
TAR. In a development lifecycle, this workflow can be triggered by code changes or
on a periodic basis (e.g., daily or nightly builds). We integrated this workflow with a
continuous build tool called Jenkins22 to guide the controller machine.

5.2.1 Results

We leveraged this distributed workflow for all case studies requiring the execution of
large test suites in this paper. Development of the distributed workflow from execu-
tion of the JFC standard workflow on a single machine required no changes to the
GUITAR code—only changes in the setup and deployment of tools. This flexibility
exemplifies GUITAR’s support for reuse of entire tools—and in this case the entire
JFC toolchain—to support alternative workflows.

We note that steps 2–4 of our distributed workflow could be pre-processed and test
cases reused from prior builds if developers do not expect the GUI of the application

22http://jenkins-ci.org.

http://jenkins-ci.org


94 Autom Softw Eng (2014) 21:65–105

to change. However, if any aspect of the GUI changes, GUITAR’s GUI tree, EFG,
and resulting test cases may also change, and should be regenerated to capture the
changes. The GUI Tree produced by the Ripper must always be validated to check if
any newly introduced widgets or events should be ignored or marked as terminal, or
if they require GUITAR extensions to be handled correctly by the Ripper.

Since many widget properties extracted by GUITAR and subsequently used to
guide the Ripper and Replayer are environment-specific (e.g., position, width, height,
etc. of widgets), the Ripper and Replayer tools should be run in the same environ-
ment. Many applications, even those implemented in cross-platform languages such
as Java, render GUI structures differently on different architectures. In this case, we
benefited from the use of a 120-node, homogeneous cluster. Since running this case
study, we have also begun to experiment with the deployment and use of identical
virtual machines for running distributed scenarios with GUITAR.

In summary, Case Study 2 of the distributed workflow adds the following obser-
vations:

1. Existing GUITAR toolchains require no modification for use in distributed testing
scenarios.

2. Distributed testing with GUITAR still requires manual intervention upon GUI
changes.

3. GUITAR toolchains require execution in a homogeneous environment.

5.3 Case study 3: measuring event-level statement coverage

In Case Studies 0 and 1 we have reported statement and branch coverage of each test
suite as a whole. These values were measured during test case execution by Cober-
tura, an open-source, instrumentation-based library.23 In this case study, we show
GUITAR’s support for collecting customized information during test case execution.
Specifically, we consider the scenario of collecting statement coverage associated
with individual test case events. This finer-grained coverage information, like similar
information available at run-time, offers better support when locating faults. When
a test fails, the tester can identify the last successfully executed event. Coverage at-
tributed to the last event and recently executed events can more accurately direct the
process of identifying the underlying fault which caused the test case to fail.

We implemented CodeCoverageMonitor, a Test Monitor which reports the
underlying statements covered by individual test case events. The CodeCoverag-
eMonitor extends the GTestMonitor interface described in Sect. 3.1.4. In the
init method, we trigger coverage data collection after application load to measure
initialization coverage. Then the beforeStep method resets the coverage data ob-
ject state to empty before the execution of each event. The afterStep method
saves a report after the event’s execution finishes. Finally, the term method merges
all event coverage information to provide a test case coverage report. This imple-
mentation ensures the creation of a fresh code coverage trace after launching the
application and after executing each event in the test cases.

23http://cobertura.sourceforge.net.

http://cobertura.sourceforge.net


Autom Softw Eng (2014) 21:65–105 95

Table 6 Statement covered during test case execution

Application Initialization Event level Test case level

ArgoUML 10,097

JabRef 5,789

Table 6 shows event-based code coverage for ArgoUML and JabRef. Column 2
shows code coverage for all code executed from application launch until prior to the
first event of a test case. This coverage remains identical across all test case execu-
tions because the application starts with the same initial state for all test cases in our
setup. This initial coverage provides an interesting measure of test suite adequacy. If
the initial coverage represents a large fraction of an application’s total lines of code,
then the application may be easier to smoke-test. Column 3 shows the distribution
of lines-of-code covered after executing each event. If executing an event tends to
cover a small number of lines, this indicates that targeted test cases may be required
to test all event-handling code in the application (Column 3). Column 4 shows the
distribution of the lines of code covered after executing a complete test case. Similar
to per-event coverage, the extent of line coverage by a complete test case indicates if
targeted test cases may be required to increase code coverage.

Collectively, this coverage information characterizes an application. In the case of
these two applications, we see that launching each application covers a large number
of statements (Column 2). We also find that the distribution of statement coverage of
individual events is fairly broad (Column 3). Some GUI events cover 6000 lines of
code in JabRef, while others indicate little or no coverage.

Instrumentation with Cobertura does impose performance overhead on the appli-
cation. To quantify this effect, in a small experiment, we executed 10 sequence length
test cases with L = 2 on ArgoUML, both with and without instrumentation on a vir-
tual machine with 1 GB RAM, 1.6 GHz 2-core CPU and running Fedora 12. The
average test case execution time (excluding an initial Replayer wait time of 20 sec-
onds) was 37 seconds with instrumentation and 33 seconds without instrumentation,
for a little over 12 % increase in execution time. Cobertura also consumed an aver-
age of 68 seconds for post processing the coverage log after each test case execution
completed.

In summary, Case Study 3 demonstrated GUITAR’s ability to support data collec-
tion during test execution through a single interface called the Test Monitor.

5.4 Case study 4: custom components and event types

In many cases, the application under test may use custom or otherwise unsupported
GUI components. Custom events, custom widget-specific properties, and custom im-



96 Autom Softw Eng (2014) 21:65–105

Fig. 6 Customized component in JabRef Preferences window

plementation can affect the Ripper’s ability to extract GUI widgets and their proper-
ties. To better gather properties and interact with such components, a custom exten-
sion of GUITAR is required. In this case study, we consider an extension of GUITAR
which improves testing of JabRef using custom components and events.

5.4.1 Custom GUI components

When ripping an application, the Ripper delegates the ripping of custom components
to Ripper Adapters (see Sect. 4.2.1). Each adapter directs the extraction of its cor-
responding components during ripping to make the GUI Tree richer, improving the
accuracy of subsequent models and test cases.

JabRef uses a custom-developed GUI component called GeneralTab. This
component improves the appearance of the Preferences window (see the left part
of the window in Fig. 6). Because of the implementation of GeneralTab, GUITAR
by default does not know how to discover its child components, such as the com-
ponents revealed on the right-hand part of the window when an item is selected on
the left side. By default, when a GeneralTab is selected, the corresponding GUI
components revealed on the right-hand side of the window do not show up directly
as children of the GeneralTab in the GUI Tree. This problem occurs because the
implementation of GeneralTab creates a separate panel and explicitly moves the
affected components to their new location. Without support for this custom compo-
nent, the Ripper attempts to handle the component as a standard Java Tab, missing all
of the components on the right-hand side.

We implemented GeneralTabAdapter, which follows the specific logic of
GeneralTab to extract the previously missed components. When the Ripper en-
counters a GeneralTab object, this adapter automatically searches for the location
of the GeneralTab’s children and redirects the ripping of the tab to the new loca-
tions, as appropriate.



Autom Softw Eng (2014) 21:65–105 97

Table 7 Custom components and event types

Original CC CE CC & CE

Component 1,285 1,709 1,285 1,709

Window 40 40 40 40

EFG node 376 483 380 489

EFG edge 15,562 38,555 15,680 40,355

CC = Customized Component; CE = Customized Event type

5.4.2 Custom event types

The GUITAR architecture manages GUI events separately from GUI components.
GUITAR supports the implementation of customized event types for interacting with
GUI components in custom ways. All event types in GUITAR extend the abstract
GEvent class. There are two main methods in GEvent to implement:

– isSupportedBy: defines the class of components that support this event type.
– performs: defines what the event type actually performs on the components

specified by the isSupportedBy method.

The existing JFC toolchain only supports a basic method to enter text at the begin-
ning of a JTextArea. GUITAR can also be extended with a custom event to enter
text at a specified position in the JTextArea. In this case, a GEvent class should
provide an isSupportedBy method which recognizes JTextArea objects and a
performs method which invokes the low-level methods of JTextArea to insert
the input text at the specified position. This additional event complements the JFC
toolchain’s default text interaction of modifying the entire text of the component.

5.4.3 Results

By adding the custom component and event type described above, the quality of
the GUI Tree and resulting event model obtained by GUITAR for JabRef improves.
Table 7 contrasts the number of Components, Windows, EFG Nodes, and EFG Edges
obtained by the Ripper when utilizing the custom component (CC), custom event
(CE) and both (CC & CE), respectively. Recall that EFG nodes represent events and
EFG edges represent inferred follows relationships.

As expected, including the custom component improves the number of compo-
nents in the GUI tree by a large margin. By implementing GeneralTabAdapter,
we gained over 400 previously missed GUI components. The Ripper already sup-
ported interaction with these child components, but previously missed them entirely
because of not interacting properly with their parent. The new components led to over
100 new events in the EFG and increased the number of follows relationships by
over a factor of 2. We see a slight improvement due to the custom event alone of only
4 EFG nodes, but this new event led to 118 new EFG edges. The combined effect
of the custom event and component provides the most complete picture of the GUI
input space to be tested.



98 Autom Softw Eng (2014) 21:65–105

Table 8 Mapping the internal GUI objects

JFC platform Web platform

GApplication Application’s main class Selenium WebDriver object and the root page

GWindow Java Window object A Web page URL

GComponent Java Component object Selenium WebElement object

In our use of GUITAR tools, we consider the implementation of custom widgets
and events to be a part of the manual Ripper configuration process, though this must
be accomplished by implementation.

As mentioned previously, the manual process of configuring and evaluating Rip-
per output is problematic, and the potential need for custom components and events
can initially increase the manual workload. However, we note that both types of ex-
tensions can potentially be reused across applications, to the same extent that ap-
plications reuse components and events. For example, if a developer keeps a library
of custom widgets for use in many applications, a corresponding library providing
GUITAR support for these components and their events would be just as portable.
This observation also sets up our forthcoming case study of supporting entirely new
platforms of applications with GUITAR in Sect. 5.5.

In summary, Case Study 4 finds:

1. Support for GUI components and events can greatly affect the GUITAR Ripper
algorithm.

2. Ripper extensions for component and event support require implementation of
classes for GUITAR, as well as code-level knowledge of both GUI classes and
automation libraries.

3. GUI extensions in GUITAR may prove useful across applications, to the same
extent that components and events themselves are reused.

5.5 Case study 5: GUI platform extension

The new toolchain applies GUITAR’s algorithms to the testing of websites by lever-
aging browser automation. We compare the new Web toolchain to the JFC toolchain.

As mentioned in Sect. 5.4, the JFC toolchain leverages the Java Accessibility
Framework to monitor and drive interaction with a JFC GUI. The Web platform uses
Selenium WebDriver for the same purposes. Supporting a new platform requires ex-
tension of the Executor API of GUITAR, as described in Sect. 4. More precisely,
extending Executor requires three steps:

Step 1: Mapping the platform’s native objects to GUITAR’s abstract objects. Each
native GUI automation library (e.g., Java Accessibility Library, Selenium Web-
Driver) should have mechanisms for monitoring GUIs on the platform. This step
involves identifying native objects in the platform which correspond to the abstract
objects GApplication, GWindow and GComponent of the Executor API. Ta-
ble 8 shows this mapping for both JFC and Web platforms. For example, in the JFC
platform, GApplication only needs to know the tested application’s main class.



Autom Softw Eng (2014) 21:65–105 99

Ta
bl

e
9

A
cc

es
si

ng
G

U
I

co
m

po
ne

nt
in

fo
rm

at
io

n

In
te

rf
ac

e
M

et
ho

d
D

es
cr

ip
tio

n
JF

C
pl

at
fo

rm
W

eb
pl

at
fo

rm

G
A
p
p
l
i
c
a
t
i
o
n

c
o
n
n
e
c
t

E
st

ab
lis

h
a

co
nn

ec
tio

n
w

ith
th

e
ap

pl
ic

at
io

n
un

de
r

te
st

an
d

st
ar

tt
es

tin
g

U
se

re
fle

ct
io

n
to

fin
d

an
d

in
vo

ke
th

e
m
a
i
n

m
et

ho
d

in
th

e
m

ai
n

cl
as

s

U
se

th
e
W
e
b
D
r
i
v
e
r

to
st

ar
tt

he
br

ow
se

r
an

d
lo

ad
th

e
ro

ot
pa

ge

t
e
r
m
i
n
a
t
e

D
is

co
nn

ec
tw

ith
th

e
ap

pl
ic

at
io

n
un

de
r

te
st

In
vo

ke
Ja

va
S
y
s
t
e
m
.
e
x
i
t

m
et

ho
d

In
vo

ke
q
u
i
t

m
et

ho
d

fr
om

th
e

W
e
b
D
r
i
v
e
r

g
e
t
A
l
l
W
i
n
d
o
w
s

G
et

al
lw

in
do

w
s

cu
rr

en
tly

av
ai

la
bl

e
R

et
ur

n
th

e
va

lu
es

of
F
r
a
m
e
.
g
e
t
F
r
a
m
e
s

R
et

ur
n

al
lo

pe
n

pa
ge

s

G
W
i
n
d
o
w

i
s
M
o
d
a
l

C
he

ck
if

th
e

w
in

do
w

is
m

od
al

or
no

t
In

vo
ke

th
e
i
s
M
o
d
a
l

m
et

ho
d

in
W
i
n
d
o
w

A
lw

ay
s

re
tu

rn
s

f
a
l
s
e

g
e
t
C
o
n
t
a
i
n
e
r

G
et

th
e

w
in

do
w

’s
to

p
le

ve
lc

om
po

ne
nt

R
et

ur
n

th
e

w
in

do
w

’s
to

p
J
P
a
n
e
l

ob
je

ct
R

et
ur

n
th

e
to

p
le

ve
l

‘b
od

y’
ta

gs

G
C
o
m
p
o
n
e
n
t

g
e
t
T
i
t
l
e

G
et

tit
le

of
co

m
po

ne
nt

R
et

ur
n

te
xt

la
be

lo
r

ic
on

na
m

e
of

th
e

C
o
m
p
o
n
e
n
t

R
et

ur
n

ta
g

(e
.g

.,
h1

,
im

g)
of

th
e

W
e
b
E
l
e
m
e
n
t

g
e
t
C
l
a
s
s
V
a
l

G
et

cl
as

s
of

th
e

co
m

po
ne

nt
R

et
ur

n
cl

as
s

na
m

e
of

th
e
C
o
m
p
o
n
e
n
t

R
et

ur
n

ta
g

ty
pe

of
th

e
W
e
b
E
l
e
m
e
n
t

g
e
t
G
U
I
P
r
o
p
e
r
t
i
e
s

G
et

al
lG

U
I

pr
op

er
tie

s
an

d
th

ei
r

va
lu

e

U
se

Ja
va

re
fle

ct
io

n
to

fin
d

an
d

in
vo

ke
al

l
be

an
m

et
ho

ds
of

C
o
m
p
o
n
e
n
t

U
se

th
e

g
e
t
A
t
t
r
i
b
u
t
e
s

m
et

ho
d

to
ge

ta
ll

at
tr

ib
ut

es
of

W
e
b
E
l
e
m
e
n
t



100 Autom Softw Eng (2014) 21:65–105

Table 10 Performing GUI events

GEvent JFC platform Web platform

Supported by Implementation Supported by Implementation

Click Components
implementing the
Accessible
Action interface

Invoke the
doAccessible-
Action method in
Accessible-
Action

The ‘a’, ‘href ’ tags
and the ‘input’ tags
having type
‘checkbox’ or ‘radio’

Invoke the
click method in
WebElement

EnterText Components
implementing the
Accessible-
EditableText
interface

Invoke the
setTextContents
method in
Accessible
EditableText

The ‘input’ tags
having type ‘text’
and the ‘textarea’
tags

Invoke the
sendKeys method in
WebElement

Submit Not available Not available The ‘input’ tags
having type ‘submit’

Invoke the
submit method in
WebElement

In the Web platform, a WebDriver instance and the URL of the site’s root web
page provides analogous information.

Step 2: Accessing GUI properties. This step requires implementing methods for
GApplication, GWindow, and GComponent objects to access GUI function-
ality. Columns 2 and 3 in Table 9 detail the required methods, with reference imple-
mentations in Columns 4 and 5 for the corresponding platforms. As we can see, the
platform-specific implementation details can be very different, as long as they pro-
vide the correct functionality to the Executor API. For example, in the JFC platform,
the connect method call invokes the main method in the main class, which starts
the GUI application. In the Web platform, a WebDriver object handles the con-
nection by starting the browser, loading the root URL, and setting up the connection
between the Executor and the web site under test.

Step 3: Implementing event types. Finally, the platform needs support for any rele-
vant event types. These extensions are similar to those for the custom event type
described in Sect. 5.4.2. The event types extend the GEvent interface. For each
event type, we need to specify the classes of GUI components supporting the event
and how the event is actually performed in the supported components. Table 10
shows the summary of the event types implemented for our two example platforms.
As we expect, some event types (e.g., submit) are platform-specific.

GUITAR has been extended with Executor implementations for several common
GUI platforms. Table 11 shows all platforms currently supported by GUITAR and
the underlying native GUI automation library used. The human effort required for
these platform-specific extensions varied considerably. For example, iOS, UNO, and
Web implementations took considerably longer than their Java counterparts (typically
one month by 4-member teams of undergraduate software engineering students). We
attribute this difference primarily to the extra implementation required to interface
between the Java core of GUITAR and the platform’s native implementation.

In summary, we observe the following about GUITAR through our experiences
with Case Study 5:



Autom Softw Eng (2014) 21:65–105 101

Table 11 GUI platforms
supported by GUITAR

ahttp://wiki.eclipse.org/
Accessibility
bhttp://developer.apple.com
chttp://openoffice.org/ui/
accessibility

GUI platform Native GUI automation library

Java JFC Java Accessibility Framework

Web Selenium Web Driver

Java SWT Java SWT Accessibility Frameworka

Android Robotium Framework

iOS iOS Simulatorb

UNO (Open Office) UNO Accessibility Frameworkc

1. GUITAR supports high levels of code reuse across different platforms.
2. Architecturally, GUITAR isolates platform extensions from core tool algorithms

to minimize dependencies.
3. Platform extension depends on available GUI automation libraries.
4. GUITAR currently supports six different GUI platforms, demonstrating its flexi-

bility.

6 Concluding remarks

Given the six case studies presented, we now conclude with a consideration of con-
clusions about the GUITAR framework based on the observations from each case
study. These conclusions motivate our future work.

Considering the observations of the six case studies, we find four positive obser-
vations about GUITAR:

1. GUITAR provides a framework for model-based testing based on—(a) sampling
from graph models ensuring quantified coverage (Case Study 0), (b) testing from
implementation rather than specification (Case Study 0) and (c) integration into
larger testing workflows (Case Study 2).

2. In some cases, e.g., when terminal events and custom GUI components are similar,
manual configuration effort from the Ripper carries over across applications (Case
Study 0, Case Study 4).

3. GUITAR’s tools and algorithms (test case generation, data collection during test
execution, custom GUI components, custom GUI events) can be easily extended
and customized, requiring the extension of a single abstract class (Case Studies 1,
3, 4, and 4, respectively).

4. With the support of third-party, platform-specific GUI automation libraries, devel-
opers can extend GUITAR to support testing on alternative GUI platforms. Adding
new platforms, while tedious, supports development of all tools by extension of
a small set of abstract classes. We currently run GUITAR on six different GUI
platforms, with some being more mature than others (Case Study 5).

From these, we conclude that GUITAR provides flexible support for automation,
including support for customization, without sacrificing code and algorithm reuse.

GUITAR has certain limitations based on results from the case studies, all related
to the Ripper. These “open issues” in GUITAR can be summarized as:

http://wiki.eclipse.org/Accessibility
http://wiki.eclipse.org/Accessibility
http://developer.apple.com
http://openoffice.org/ui/accessibility
http://openoffice.org/ui/accessibility


102 Autom Softw Eng (2014) 21:65–105

1. The GUI Tree generated by the Ripper requires manual validation (possibly as-
sisted with XML parsing scripts).

2. Window and component identification issues during ripping can lead to inaccurate
GUI Trees.

3. The Ripper algorithm’s execution within a single application instance also leads
to the generation of inaccurate Gui Trees, and particularly, false positives when
using automated fault detection.

These limitations of GUITAR (and primarily the Ripper) inspire future work. Issue
1 is being addressed by developing a new tool which combines a visualization of
the GUI Tree with a visualizations of the application’s screenshots captured by the
Ripper. This new tool will help in visual identification of inconsistencies between the
application’s GUI and the GUI Tree. Custom Ripper Adapters (Sect. 3.1.1) make the
acquisition of fine-grained screenshots possible.

Issue 2 arises because the Ripper identifies GUI components based on properties
such as title and icon. For some applications, these properties can change at run-
time within the same GUI component. For example, a window title may change from
“Document1” to “* Document1”; a “play” icon may change to a “stop” icon. This
well-known problem is often referred to as the widget identification problem in GUI
testing (Ruiz and Price 2008; McMaster and Memon 2009).

One solution to solve this problem is to use regular expressions when identifying
widgets based on their properties (especially window titles). We are also exploring
integration of computer vision-based methods for window and component identifica-
tion, such as the techniques used in Sikuli Test (Chang et al. 2010).

Issue 3 arises because the Ripper operates entirely within a single application in-
stance. Executing events in every possible context is considered intractable for non-
trivial GUIs, although this approach would generate a very accurate GUI Tree. An
alternative being considered is to combine GUI Trees generated from two more Rip-
per executions which are controlled using independent configurations.

We are also developing alternative workflows that are less sensitive to the accu-
racy of GUI models. In particular, the results of test case execution (even if execution
was unsuccessful and would lead to a false positive, as seen in Sect. 3) can be used
to update the GUI Tree, EFG, and test cases. The feedback can iteratively improve
the accuracy of the model. Another possible solution is to use machine learning algo-
rithms to repair infeasible test cases (Huang et al. 2010).

Finally, a capture tool is being developed for GUITAR. While capture tools are
not natively model-based, they provide a direct mapping between the GUI model and
test case execution. This tool will build on GUITAR’s platform-specific models of
GUI components and events so that captured test cases can be integrated directly into
GUITAR’s existing model-based workflow.

Another area of future work is extensive comparison to other testing frameworks,
both model-based and otherwise. Research ideas such as new models (Brooks and
Memon 2007), new coverage criteria (Yuan et al. 2011), new test case generation
methods (Yuan and Memon 2010), and new testing workflows (Memon and Xie 2005)
have been the primary motivation of GUITAR’s development. While this motivation
remains, we recognize that GUITAR as a tool has reached a maturity level capable of
supporting more practical use cases. As our future work has outlined, we are currently



Autom Softw Eng (2014) 21:65–105 103

focused on adding features to GUITAR that will allow common tools (e.g., capture
tools) to leverage model-based advantages. We recognize that adding features alone
does not serve to legitimize GUITAR as a framework. Future studies should compare
GUITAR to industry-standard frameworks, focusing on aspects of the framework that
add real value for quality assurance professionals, such as GUITAR’s effectiveness at
finding faults, efficiency in executing feasible numbers of test cases with a reasonable
turnaround, and scalability in being applied to real-world applications.

References

Alfaro, L.D., Henzinger, T.A.: Interface theories for component-based design. In: Proceedings of the First
International Workshop on Embedded Software (EMSOFT ’01), pp. 148–165. Springer, London
(2001)

Amalfitano, D., Fasolino, A.R., Tramontana, P.: A GUI crawling-based technique for Android mobile ap-
plication testing. In: Proceedings of the IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW ’11), pp. 252–261. IEEE Comput. Soc., Los Alami-
tos (2011)

Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated testing of javascript web
applications. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE
’11), pp. 571–580. ACM, New York (2011)

Baresi, L., Young, M.: Test oracles. Technical report CIS-TR-01-02, University of Oregon, Dept. of Com-
puter and Information Science, Eugene, Oregon, USA (2001)

Belli, F.: Finite-state testing and analysis of graphical user interfaces. In: Proceedings of the 12th Inter-
national Symposium on Software Reliability Engineering (ISSR ’01), p. 34. IEEE Comput. Soc.,
Washington (2001)

Brooks, P.A., Memon, A.M.: Automated GUI testing guided by usage profiles. In: Proceedings of the
Twenty-Second IEEE/ACM International Conference on Automated Software Engineering (ASE
’07), pp. 333–342. ACM, New York (2007)

Brooks, P., Robinson, B., Memon, A.M.: An initial characterization of industrial graphical user interface
systems. In: Proceedings of the 2nd IEEE International Conference on Software Testing, Verification
and Validation (ICST 2009). IEEE Computer Society, Washington (2009)

Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of high-coverage tests for
complex systems programs. In: Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’08), pp. 209–224. USENIX Association, Berkeley (2008)

Chang, T.H., Yeh, T., Miller, R.C.: GUI testing using computer vision. In: Conference on Human Factors
in Computing Systems, pp. 1535–1544 (2010)

Chen, J., Subramaniam, S.: A GUI environment to manipulate FSMs for testing GUI-based applications
in Java. In: Conference on System Sciences, vol. 9, p. 9061 (2001)

Chen, W.K., Tsai, T.H., Chao, H.H.: Integration of specification-based and CR-based approaches for GUI
testing. In: Conference on Advanced Information Networking and Applications, pp. 967–972 (2005)

Cunha, M., Paiva, A., Ferreira, H., Abreu, R.: PETTool: a pattern-based GUI testing tool. In: International
Conference on Software Technology and Engineering, pp. 202–206 (2010)

Draheim, D., Lutteroth, C., Weber, G.: A source code independent reverse engineering tool for dynamic
web sites. In: Proceedings of the Ninth European Conference on Software Maintenance and Reengi-
neering (CSMR ’05), pp. 168–177. IEEE Comput. Soc., Washington (2005)

Ganov, S., Kilmar, C., Khurshid, S., Perry, D.: Test generation for graphical user interfaces based on
symbolic execution. In: Proceedings of the International Workshop on Automation of Software Test
(2008)

Grechanik, M., Xie, Q., Fu, C.: Creating GUI testing tools using accessibility technologies. In: Conference
on Software Testing, Verification, and Validation, pp. 243–250 (2009)

Hellmann, T.D., Hosseini Khayat, A., Maurer, F.: Supporting test-driven development of graphical user
interfaces using agile interaction design. In: Proceedings of the 2010 Third International Conference
on Software Testing, Verification, and Validation Workshops, pp. 444–447 (2010)

Huang, S., Cohen, M.B., Memon, A.M.: Repairing GUI test suites using a genetic algorithm. In: Proceed-
ings of the 2010 Third International Conference on Software Testing, Verification and Validation
(ICST ’10), pp. 245–254. IEEE Comput. Soc., Washington (2010)



104 Autom Softw Eng (2014) 21:65–105

Jääskeläinen, A., Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Takala, T., Virtanen, H.: Auto-
matic GUI test generation for smartphone applications—an evaluation. In: Proceedings of the Soft-
ware Engineering in Practice Track of the 31st International Conference on Software Engineering
(ICSE 2009), pp. 112–122 (companion volume). IEEE Computer Society, Los Alamitos (2009)

McMaster, S., Memon, A.M.: An extensible heuristic-based framework for GUI test case maintenance. In:
Proceedings of the First International Workshop on TESTing Techniques & Experimentation Bench-
marks for Event-Driven Software (TESTBEDS ’09). IEEE Computer Society, Washington (2009)

Memon, A.M.: An event-flow model of GUI-based applications for testing. Softw. Test. Verif. Reliab. 17,
137–157 (2007)

Memon, A.M., Nguyen, B.N.: Advances in automated model-based system testing of software applica-
tions with a GUI front-end. In: Zelkowitz, M.V. (ed.) Advances in Computers, vol. 80, pp. 121–162.
Academic Press, San Diego (2010)

Memon, A.M., Xie, Q.: Studying the fault-detection effectiveness of GUI test cases for rapidly evolving
software. IEEE Trans. Softw. Eng. 31(10), 884–896 (2005)

Memon, A.M., Banerjee, I., Nagarajan, A.: GUI ripping: reverse engineering of graphical user interfaces
for testing. In: Proceedings of the 10th Working Conference on Reverse Engineering (WCRE ’03),
p. 260. IEEE Computer Society, Washington (2003)

Memon, A.M., Pollack, M.E., Soffa, M.L.: Hierarchical GUI test case generation using automated plan-
ning. IEEE Trans. Softw. Eng. 27(2), 144–155 (2001a)

Memon, A.M., Soffa, M.L., Pollack, M.E.: Coverage criteria for GUI testing. In: Proceedings of the 8th Eu-
ropean Software Engineering Conference Held Jointly with 9th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, vol. 26, pp. 256–267. ACM, New York (2001b)

Mesbah, A., van Deursen, A.: Invariant-based automatic testing of AJAX user interfaces. In: Proceed-
ings of the 31st International Conference on Software Engineering (ICSE ’09), pp. 210–220. IEEE
Computer Society, Washington (2009)

Myers, B.A.: User interface software tools. ACM Trans. Comput.-Hum. Interact. 2(1), 64–103 (1995)
Nguyen, D.H., Strooper, P., Suess, J.G.: Model-based testing of multiple GUI variants using the GUI test

generator. In: Workshop on Automation of Software Test, pp. 24–30 (2010)
Paiva, A.C.R., Faria, J.C.P., Mendes, P.M.C.: Reverse engineered formal models for GUI testing. In: Proc.

of Conf. on Formal Methods for Industrial Critical Systems, 4916(1), pp. 218–233 (2008)
Robinson, B., Francis, P., Ekdahl, F.: A defect-driven process for software quality improvement. In: Pro-

ceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’08), pp. 333–335. ACM, New York (2008). doi:10.1145/1414004.1414072

Ruiz, A., Price, Y.W.: GUI testing made easy. In: Proceedings of the Testing: Academic & Industrial
Conference—Practice and Research Techniques, pp. 99–103. IEEE Computer Society, Washington
(2008)

Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.: Designing the User Interface: Strategies for Effective
Human–Computer Interaction, 5th edn. Addison-Wesley, Reading (2009)

Silva, J.L., Campos, J.C., Paiva, A.C.R.: Model-based user interface testing with spec explorer and Con-
curTaskTrees. Electron. Notes Theor. Comput. Sci. 208, 77–93 (2008)

Silva, J.C., Saraiva, J., Campos, J.C.: A generic library for GUI reasoning and testing. In: ACM Symposium
on Applied Computing, pp. 121–128 (2009)

Staiger, S.: Static analysis of programs with graphical user interface. In: 11th European Conference on
Software Maintenance and Reengineering (CSMR ’07), pp. 252–264 (2007)

Ural, H., Yang, B.: A test sequence selection method for protocol testing. IEEE Trans. Commun. 39(4),
514–523 (1991)

Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson, L.: Model-based test-
ing of object-oriented reactive systems with Spec Explorer. In: Hierons, R.M., Bowen, J.P., Har-
man, M. (eds.) Formal Methods and Testing, Chap.: Model-Based Testing of Object-Oriented Reac-
tive Systems with Spec Explorer, pp. 39–76. Springer, Berlin (2008)

Vieira, M., Leduc, J., Hasling, B., Subramanyan, R., Kazmeier, J.: Automation of GUI testing using a
model-driven approach. In: Conference on Software Engineering, pp. 9–14 (2006)

Xie, Q., Memon, A.M.M.: Designing and comparing automated test oracles for GUI-based software ap-
plications. ACM Trans. Softw. Eng. Methodol. 16(1), 4 (2007)

Xie, Q., Memon, A.M.: Using a pilot study to derive a GUI model for automated testing. ACM Trans. on
Softw. Eng. and Method. (2008)

http://dx.doi.org/10.1145/1414004.1414072


Autom Softw Eng (2014) 21:65–105 105

Yuan, X., Memon, A.M.: Generating event sequence-based test cases using GUI runtime state feedback.
IEEE Trans. Softw. Eng. 36, 81–95 (2010)

Yuan, X., Cohen, M.B., Memon, A.M.: GUI interaction testing: incorporating event context. IEEE Trans.
Softw. Eng. 37(4), 559–574 (2011)

Zhang, S., Saff, D., Bu, Y., Ernst, M.D.: Combined static and dynamic automated test generation. In:
Proceedings of the 2011 International Symposium on Software Testing and Analysis (ISSTA ’11),
pp. 353–363. ACM, New York (2011)


	GUITAR: an innovative tool for automated testing of GUI-driven software
	Abstract
	Introduction
	Background and related work
	GUI testing activities
	Test case construction
	Test suite construction
	Test execution

	Related work
	Comparing GUITAR to existing frameworks

	Using GUITAR: an in-depth case study
	Components and algorithms
	Ripper
	Graph converter
	Test case generator
	Replayer
	Oracle verifier

	JFC toolchain
	JFCGUIRipper
	EFGConverter and sequenceLength generator
	JFCGUIReplayer

	Case study 0

	Supporting extension: the GUITAR architecture
	Model core
	Platform-specific components
	The ripper
	The replayer


	Extending GUITAR: case studies 1-5
	Case study 1: a custom test case generator
	Results

	Case study 2: continuous integration testing
	Results

	Case study 3: measuring event-level statement coverage
	Case study 4: custom components and event types
	Custom GUI components
	Custom event types
	Results

	Case study 5: GUI platform extension

	Concluding remarks
	References


