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to Test Event-Driven Systems
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Abstract—System testing of software applications with a graphical-user interface (GUI) front-end requires that sequences of
GUI events, that sample the application’s input space, be generated and executed as test cases on the GUI. However, the
context-sensitive behavior of the GUI of most of today’s non-trivial software applications makes it practically impossible to fully
determine the software’s input space. Consequently, GUI testers—both automated and manual—working with undetermined
input spaces are, in some sense, blindly navigating the GUI, unknowingly missing allowable event sequences, and failing to
realize that the GUI implementation may allow the execution of some disallowed sequences. In this paper, we develop a new
paradigm for GUI testing, one that we call Observe-Model-Exercise* (OME*) to tackle the challenges of testing context-sensitive
GUIs with undetermined input spaces. Starting with an incomplete model of the GUI’s input space, a set of coverage elements
to test, and test cases, OME* iteratively observes the existence of new events during execution of the test cases, expands the
model of the GUI’s input space, computes new coverage elements, and obtains new test cases to exercise the new elements. Our
experiment with 8 open-source software subjects, more than 500,000 test cases running for almost 1100 machine-days, shows
that OME* is able to expand the test space on average by 464.11%; it detected 34 faults that had never been detected before.

F

1 INTRODUCTION

1.1 Motivation & Background

Consider how graphical-user interface (GUI)-based
software applications are tested today [1], [2], [3], [4].
Most often, a tester is given a set of tasks with the job
of verifying that these tasks can be performed using
the software; and that the software does not “behave
badly”. Sometimes, the tester is also given a set of use
cases with high-level descriptions of their steps (e.g.,
“save the file”, “load the document”). The tester executes
these high-level steps by using GUI widgets on which
events can be performed. The tester does this either
manually, or by writing test scripts using tools such as
jfcUnit [5], Abbot Pounder [6], UI Automation classes
in the .NET Framework1, and Quality Test Pro (QTP)2,
or by using capture/replay (record/playback) tools
such as Marathon3 and Jacareto4, or a combination
thereof. The choice of which widgets/events5 to exe-
cute is most often left to the tester. For example, the
tester may perform “save the file” in one of three ways:

• The authors are with the Department of Computer Science, Uni-
versity of Maryland, College Park, MD 20742. E-mail: {baonn,
atif}@cs.umd.edu.

1. http://msdn.microsoft.com/en-us/library/ms747327.aspx
2. http://en.wikipedia.org/wiki/HP QuickTest Professional
3. http://www.marathontesting.com/
4. http://jacareto.sourceforge.net
5. An event (e.g., click-on-Cancel-button, select-Radio-button) is the

action that a user performs on a widget (e.g., Cancel button, Radio
button). Whenever the context is clear, we use the terms “event” and
“widget” interchangeably; e.g., when we say “the user performs the
Cancel event” we actually means that “the user performs the action
click-on the Cancel button widget.”

(1) click on the Save icon in the toolbar, (2) use menu
items File!Save, or (3) use alternative menu items
File!Save As followed by a file name in the text-box.
During this process, the tester may “discover” new
ways to combine certain events to perform a task.

The tester does not have a complete picture of the
GUI’s input space, i.e., the set of all possible sequences
of user-interface events. The tester is never supplied a
blueprint of the GUI or its set of allowable workflows.
In principle, the tester has no idea of what event
sequences were missed during the testing process.
End users may execute untested event sequences and
encounter failures. Moreover, the implemented GUI
may allow event sequences that the designers never
wanted to allow. But there is no way for a tester
to determine which sequences are missed and which
should not be allowed.

Human testers have the experience and domain
knowledge to navigate through and verify the cor-
rectness of such systems with unknown or partially
known input spaces; i.e., systems that lack the afore-
mentioned blueprint [1]. For example, a human tester
who clicks on a button labeled Close expects some-
thing (most often the current window) in the GUI
to close, and all its constituent events to become
subsequently unavailable. Similarly, in MS Word 2010,
Figure 1(a), a human tester creating a new document will
expect the menu structure (and hence set of available
events) to be different for a blog type of document
versus a conventional blank document.

However, automated test harnesses/tools lack the
experience and domain knowledge of humans. With-
out a representation of allowed and disallowed work-
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(a) Create (top) is context-driven; document type, either Blank document or Blog post creates different
events (bottom-left for Blog; bottom-right for document).
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(b) The partial event-flow graph.

Fig. 1. MS Word 2010 motivating example.

flows, they are unable to reason their way out of an
unexpected situation. This causes many GUI testing
tools to (1) rely on a human tester: for example,
capture/replay to recreate manually pre-recorded (or
programatically coded) event sequences; (2) perform
very limited automated testing tasks: for example,
tools such as Android’s Monkey6 and Eclipse-based
GUIdancer7 perform simple random walks of the user
interface, executing events as they encounter them;
and detect crashes. These approaches are insufficient
with the result that GUI quality is often compromised
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [2], [19], [20], [21].

6. http://developer.android.com/guide/developing/tools/
monkey.html

7. http://www.guidancer.com

1.2 Our New Approach – OME*

We have been developing a third type of approach
based on a model of the GUI. In earlier work, we
developed a directed graph model, called event-flow
graph (EFG) [22]. An EFG is essentially a formal
model of the GUI – a type of blueprint. Such a
blueprint contains all the workflows allowed, and
in some sense, disallowed, by the GUI’s structure
and events. More specifically, it is a directed graph
structure with nodes that represent events, and edges
that represent the follows relationship; “event e

x

follows event e

y

” means that e

x

may be executed
immediately after e

y

along some execution path in the
GUI. This is represented as an edge from node n

y

to n

x

, where n

x

represents e

x

and n

y

represents e

y

.
Part of the EFG for the GUI of Figure 1(a) is shown
in Figure 1(b). We see edges from Create to Publish,
Home Page, and Insert; and to Page Layout, References,
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Mailings, Review, Insert, and View; each of these events
may be executed immediately after Create in the GUI.

It is not easy to create a complete and accurate EFG
for a GUI. In past work, we developed a technique
called GUI Ripping to create an approximation of the
EFG [23]. The GUI Ripper dynamically traverses the
GUI, opening windows, performing events, keeping
track of all windows seen, and using algorithms to
construct an EFG. The goal of Ripping is not to test
the GUI’s events; rather, it attempts to open as many
windows as possible, extracting events from each, and
computing the follows relationship.

Our most successful Ripper to date uses a depth-
first traversal (DFS) of the GUI, i.e., it starts with the
Main window, extracts the set of all the widgets on
which events can be performed, stores this set, and
performs one of these events. If this event invokes a
new window, then it is recursively processed; other-
wise the next event is executed. If no new windows
open, then the Ripper closes the current window and
restarts, using the previously saved sets of events to
explore alternate parts of the GUI.

In our example of Figure 1(a), starting with the top-
most window, the Ripper would select Blank document
(because it is the first icon in the list) and then perform
Create. This opens a new window. After the Ripper
has finished interacting with this window and all
of its sub-windows, it returns to the top window
and performs all events that it had missed earlier.
Because it has already performed Create, it will not
do so again. Hence, the bottom-right state of the
window will never be reached; events Page Layout,
References, Mailings, Review, and View will be missed.
In general, because the Ripper performs a generalized,
fully automatic traversal, it may miss application-
specific parts of the GUI that are “guarded” with
very specific inputs, such as a password; or behavior
that requires very specific combinations of inputs, e.g.,
context-sensitive menu items.

Having encountered the above situation, one could,
in retrospect, redesign the Ripper to handle it. How-
ever, there are many such situations and it is impos-
sible to devise a general algorithm that works for
all. The only general algorithm that will work in all
situations will need to use exhaustive search strategy,
e.g., one that enumerates all non-cyclic paths between
the 2 GUI parts, in which case the bottom-right state of
the window in Figure 1(a) may be reached. However,
although exhaustive search seems to be feasible in a
relatively simple event-flow graph like Figure 1(b), is
not applicable in real-world applications, as we will
show in subsequent sections.

In this paper, we tackle the challenges presented
by the context-sensitive behavior of GUIs. To provide
focus, we only consider the behaviors directly caused
by the order of GUI events. Other potential causes
of “context-sensitivity” such as timing and multiple-
user profiles are left for future work. Specifically, we

develop a new paradigm for GUI testing, one that we
call Observe-Model-Exercise* (OME*). The key feature
of OME* is its opportunistic use of test execution for
model enhancement. More specifically, we now ob-
serve the existence of new events either during Ripping
or test execution, create or enhance our EFG+ model –
an extension of our EFG model, and exercise the newly
observed GUI events in test cases using test adequacy
criteria. As new test cases are generated and executed,
their executions are simultaneously used to observe
new events, which are added to the model and used
to compute new test requirements, and subsequently
obtain additional tests. The “*” is due to the iterative
nature of the entire approach. The iteration ends when
no new enhancements are made to the model.

Our paper makes 5 intellectual contributions, cor-
responding to 5 challenges:

Challenge 1: It is challenging to generate particular
event sequences to replicate context-sensitive behav-
iors. Because events and event sequences are context
sensitive, they may have been observed due to the
execution of particular prior event sequences. Con-
tribution 1: We make use of a new context-aware
mapping that maintains information about the event
sequences that were used to reach model elements.

Challenge 2: It is challenging to devise new event
sequences that reveal new parts of the input space
and enhance the model. Contribution 2: We simultane-
ously extract new GUI model elements—events and
follows relationships—during test execution.

Challenge 3: It is challenging to identify new events,
i.e., to determine whether an event has already been
seen before. Contribution 3: We develop a unique
signature for each widget and matching heuristics to
help detect new widgets.

Challenge 4: It is challenging to incrementally make
changes to the model to add new elements. Contri-
bution 4: We develop new operations on the EFG+ to
incrementally enhance it as new information becomes
available.

Challenge 5: It is challenging to incrementally gen-
erate new test cases. Contribution 5: We develop an
algorithm to compute new test requirements from
recent model enhancements and generate test cases
to satisfy the requirements.

Our final contribution is our experiment, involving
8 open-source applications on which we executed
over 500,000 test cases that consumed almost 1100
machine days. We compared OME* with the current
state-of-the-art. We saw significant improvements,
both in terms of new areas of the input space that
we explored (1044% for one subject application), and
fault detection – we fully automatically detected 34
new faults in these applications that manifested as
crashes.

In the next section, we present a step-by-step
overview of OME* via an example. In Section 3,
we present the new algorithms developed to realize
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OME*. We then discuss our experiment in Section 4,
present related work in Section 5, and finally conclude
with a discussion of future work in Section 6.

2 OVERVIEW
Because this work leverages several of our previously
reported techniques [23], [24], [25], [26] we feel that it
is appropriate to present an overview, with a running
example, to demonstrate the prior work as well as the
new OME* paradigm. Figure 2(a) presents the GUI
of our running example, motivated by the MS Word
example that we showed in the previous section. It
consists of four events in the New document window.
Events e1, e2, and e3 are non-structural events—they
do not open/close windows/menus—that manipu-
late radio buttons and checkbox states. Selecting the
Blog post radio button enables e3. Event e4 opens a
new modal window8 entitled either Blog post or Blank
document depending on the states of the radio buttons
in the New document window. If the new window’s
title is Blog post, then it is shown with non-structural
events e5, e6, and e7. Otherwise, when its title is Blank
document, it is shown with non-structural events e5

and e8. Note that event e5 is available in both states.
Finally, checking the Already have a home page check
box enables e7.

Our overall goal is to test this running example. We
summarize our process using the following steps:
Step 1: Running the Ripper: We start by running our
Ripper on the application—in its start state—to obtain
its EFG. Events e1, e2, e3, and e4 are all available in the
main window; their states, each represented as a set
of triples of widget, property, and value, are shown in
Figure 2(a). Because of their availability in the GUI’s
start state, these events form the initial nodes set, I . The
Ripper incorporates these nodes into the EFG; they are
shown as shaded ovals in Figure 2. The Ripper then
starts executing the encountered events one by one:
e1 followed by e2, then e3, and e4. After events e1,
e2, and e3, the Ripper determines that they are non-
structural events because no window is opened or
closed; the follows relationships are then computed
according to the algorithms presented in earlier work
[23] and added to the EFG. Event e4 opens a new
window; because of the selected state of the Blog
post radio button and checked state of e3, the new
window is titled Blog post with three events e5, e6,
and e7, all enabled. They are all executed but no new
window opens. Their follows relationships are then
computed and added to the EFG. The final EFG after
the Ripping phase is shown in Figure 2(c).
Step 2: Generating and executing test cases: In this
example, we will assume that we want to cover all
EFG edges as our test criterion; we have used this
criterion in earlier work (e.g., [22], [24], [25]). There

8. A modal window, once invoked, restricts the focus of the user
to the events within the window, until explicitly closed.

are 24 edges in the EFG of Figure 2(c), yielding 24 test
cases. The process for test case generation has been
explained in earlier reported work [23]. Edges are
selected one by one; for each edge (e

x

, e

y

), a path is
computed—using a method called prepend context()—
from one of the initial nodes to (e

x

, e

y

), yielding a test
case.

In previous work, because we lacked specific infor-
mation about the events, our prepend context() method
could only rely on the EFG’s topology to obtain a
path from one of the nodes in the initial nodes set
to the edge in question. For efficiency reasons, we
used the shortest path. For example, if we select the
edge (e5, e7), the shortest path to its first event is he4i,
yielding a test case he4, e5, e7i. However, execution of
this test case stops at e5 because e7 is disabled. This
presents us with Challenge 1 mentioned in Section 1:
it is challenging to generate particular event sequences to
replicate context-sensitive behavior of events.

In our work presented in this paper, we now main-
tain a context-aware mapping between edges and
paths to edges that have previously been seen to be
executable. This mapping, together with our previous
EFG model forms our new EFG+ model. Using the
mapping, partly seen in Figure 2(b), the entry for
edge (e5, e7) is he1, e2, e3, e4i because this was the
executable path seen during Ripping. Hence, we will
get he1, e2, e3, e4, e5, e7i as our test case. All 24 test
cases are generated in this fashion, guaranteeing that
all 24 EFG edges will be covered. These 24 test cases
are then executed.

From our knowledge of the GUI, we know that we
have yet to test event e8. However, our Ripper does
not even know of the existence of e8. We need ways
to drive the GUI into such a state that e8 is exposed,
tested, and added to our EFG model. To do so would,
in principle, require that we traverse all possible paths
in the GUI. This presents us with Challenge 2: it is
challenging to devise new event sequences that reveal new
parts of the input space and enhance the model.

In our work presented in this paper, our approach
to handle this challenge is to simultaneously use test
execution for model enhancement. For example, one
of our 24 test cases is he1, e4i, whose execution will
open the Blank document window with events e5 and
e8. If at this time, we can recognize e8 as a new yet-
to-cover event, we can devise ways to cover it. We
have developed mechanisms to add newly discovered
events during test execution to our EFG. This presents
us with Challenge 3: it is challenging to identify new
events/widgets, i.e., to determine whether an event/ widget
has already been seen. For example, we know that e5

is the Insert button that we have seen earlier. On the
other hand, we have never seen e8 before, the Page
Layout button. Do we make a determination based
solely on the “text labels” of these widgets? This
would cause problems as many widgets in the GUI
have the same text label (e.g., OK, Cancel). We have
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e1
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e4

e2

e8

S0 ={(BlankDoc, Class, Radio);

(BlankDoc, Enabled, True);

(BlankDoc, Selected, True);

(HaveHomePage, Class, CheckBox);

(HaveHomePage, Enabled, False);

...

}

S1 = { (Insert, Class, Button); 

(Insert, Enabled, True);

(HomePage, Enabled, False);

...

}

S2 = { (Insert, Class, Button); 

(Insert, Enabled, True);

(PageLayout, Enabled, True);

...

}

e5e5 e6 e7

(a) GUI of running example

Edge Path to edge
. . . . . .
(e1, e2) NONE
(e2, e3) he1i
(e3, e4) he1, e2i
(e4, e5) he1, e2, e3i
(e5, e7) he1, e2, e3, e4i
. . . . . .
. . . . . .

(b) Context-Aware Mapping
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(d) EFG after e8 is observed
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(e) EFG after e8 is executed

Fig. 2. Running example.

developed mechanisms to assign unique signatures to
each widget; and heuristics to determine the unique-
ness of the signatures.
Step 3: Iteratively enhancing the EFG model, and generat-
ing and executing new test cases: Having developed the
ability to identify newly encountered widgets during
test execution, we face Challenge 4: it is challenging
to incrementally make changes to the model to add new
elements. To date, we have developed algorithms to
create the EFG in one pass. In our work presented
in this paper, we develop techniques to incrementally
enhance the EFG. The new EFG after the addition of
e8 is shown in Figure 2(d). Because we observed e8

after the execution of e4, we know that “e8 follows
e4” which is why we have a new edge from e4 to
e8. Moreover, because we know that e5 is not a struc-
tural event, i.e., it does not open a new window nor
does it close the current window, e8 could potentially
follow e5; hence, we also add the edge (e5, e8) to the
EFG.

Now that we have two new not-yet-covered edges,
(e4, e8) and (e5, e8), we need to generate test cases to
cover them so that we can satisfy our test criteria.
This presents us with Challenge 5: it is challenging to
incrementally generate new test cases. In our work pre-
sented in this paper, we have developed an algorithm
to compute new test requirements from changes to

the EFG+ model and generate test cases to satisfy the
requirements. Using that algorithm, assume that we
get test cases he1, e4, e8i and he1, e4, e5, e8i, to cover
(e4, e8) and (e5, e8), respectively. These test cases are
executed; e8 is determined to be a non-structural
event; two new follows relationships are added;
these are new EFG edges (e8, e8) and (e8, e5) (new
EFG shown in Figure 2(e)). As before, we now need to
cover these new edges via new test cases. No changes
are made to the EFG model during the execution of
these test cases, and so the test process is complete,
having satisfied the test criterion of covering all edges.

Even though we used a small example, we were
able to show how OME* is used to discover new parts
of the input space and exercise them. However, as
we will see in our evaluation, Section 4, it is possible
that we may not be able to automatically exercise
all model elements that we observe; in such cases,
manual intervention is needed.

3 REALIZING THE OME* PARADIGM

We now discuss the new models, algorithms, and
techniques that we developed to realize the new
OME* paradigm. We structure our discussion around
the contributions listed in Section 1.
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3.1 Contribution 1: Context-Aware Mapping

In our past work, we relied on the “shortest-path
algorithm” to obtain a sequence of events starting
with a node in I , the initial nodes set, to the model
element (e.g., EFG nodes, edges) that we are trying
to exercise. This is because of the limitation of the
EFG model, which does not maintain context for each
event, a deliberate design decision in order to keep the
model compact and scalable. Such a design worked
well in practice in our past work because of the
non-context-sensitive nature of the applications we
tested. However, as demonstrated by the example of
edge (e5, e7) in the previous section, the shortest path
does not always yield an executable event sequence,
especially when GUI behavior is extremely context
sensitive. To address this problem, we now maintain a
new context-aware mapping between model elements
and executable event sequences that have previously
been successfully used to exercise these elements.
Intuitively, during Ripping and test case execution, if
we observe a certain model element is available after
the execution of a particular event sequence, we create
a new mapping to use later to reach the element.

Consider, for example, the execution of event se-
quence he2, e3, e4i on the GUI of Figure 2(a). Recall
that our coverage elements are EFG edges; hence
our mapping will be between EFG edges and event
sequences used to reach them. We start with the
execution of e2, after which the events e1, e2, e3,
and e4 are available for execution. We execute e3,
which does not change the set of available events.
We execute e4, after which events e5, e6, and e7 are
available. The same information, put in terms of the
model elements, EFG edges, can be thought of as:
“edges (e4, e5), (e4, e6), and (e4, e7) are reachable via
the event sequence he2, e3i.” If, in the future, we want
to cover these edges, we can use this information. This
is precisely what we record in our mapping. Hence we
see entries for the edges (e4, e5), (e4, e6), and (e4, e7)
in our partial mapping shown in Table 1; there are
several more, e.g., (e3, e4), which needs e2. There are
also several NONE entries, which means that the first
element in the edge is in I , and the edge is enabled,
making it trivial to reach it from the initial state.

TABLE 1
Partial Mapping.

Edge Path to edge
(e4, e5) he2, e3i
(e4, e6) he2, e3i
(e4, e7) he2, e3i
(e2, e1) NONE
(e3, e4) he2i
(e3, e1) he2i
(e2, e2) NONE
(e2, e4) NONE
. . . . . .

We now describe the mapping formally and present
an algorithm for its construction.

Definition: A Context-aware Mapping CM is a table
of key-value pairs {me; he

i

, . . . , e

j

i}; where me is a
model element and he

i

, . . . , e

j

i is an event sequence
after which me was previously observed to be avail-
able for execution, where event e

i

2 I , the initial event
set for the GUI. The entry is NONE if me is executable
and the first event in me is in I , i.e., no sequence is
required to reach me.

As alluded to previously, the context-aware map-
ping is constructed from event sequence execution.
During the execution of each sequence, we maintain
an explicit structure to compute the context-aware
mapping. Figure 3 shows the structure for the exam-
ple discussed above. At the very top is the executing
event sequence he2, e3, e4i. The set of enabled events
after each executed event is enclosed in a dotted oval.
The shaded nodes are events in I . Solid arrows show
the sequence executed; a dashed arrow from event e

x

to e

y

shows that e
y

was available and enabled after the
execution of e

x

. To obtain the context-aware mapping,
one needs only to trace each edge back to the starting
event. For example, the edges (e4, e5), (e4, e6), and
(e4, e7) have a path he2, e3i from the left-most node.
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��
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��
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��

Fig. 3. Available Events Observed During Execution.

Algorithm 1 shows how this structure, T , is con-
structed and used to create/update the mapping, CM.
The algorithm takes three inputs: (1) a sequence of
executed events, each paired with a set of events avail-
able and enabled after its execution, (2) the context-
aware mapping available thus far (from previously
processed event sequences), and (3) the set of events
enabled in the initial state I . Lines 1–6 create the struc-
ture T . Edges are added from each executed event e

i

to all events e

j

that are available and enabled after e

i

.
Lines 7–23 use the structure to create the mapping.
First, all the model elements ME are obtained from
T (Line 7); for our example, this is the set of edges.
Then each element me is processed using one of two
cases: (1) if the first event of me is enabled in the initial
state, as is the case for edge (e2, e2), the mapping entry
is set to NONE (Line 10), (2) otherwise a searchPath()
function is used to find a sequence from the left-most
element of T to me (Line 12). For example, for the
edge (e4, e7), the path returned is he2, e3i.

Because event sequences may be long, it is possible



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2300857, IEEE Transactions on Software Engineering

SUBMIITED FOR REVIEW TO IEEE TSE 7

that the GUI is driven back to its initial state multiple
times during execution. In such cases, the path may
become unnecessarily long, which is why we use
truncate() to remove leading events (Line 14). Lines
15–22 update the mapping CM. If an entry for me

does not already exist in CM, the key-value pair
{em, contextSeq} is simply added. Otherwise, if an
entry exists, the lengths of the existing and new path
are compared; the shorter is retained for efficiency
reasons.

Algorithm 1 Construct Mapping
Input: h(e1,↵(S1)) . . . , (en,↵(Sn

)i: executed sequence
Input: CM: Context-aware mapping
Input: ↵(I): Events enabled in initial state

1: T = ;
2: for i = 1! n do
3: for all e

j

2 ↵(S
i

) do
4: T.addEdge(e

i

, e

j

)
5: end for
6: end for
7: ME getModelElements(T )
8: for all me 2ME do
9: if firstEvent(me) 2 ↵(I) then

10: contextSeq = NONE
11: else
12: contextSeq = searchPath(me, T )
13: end if
14: truncate(contextSeq)
15: if me /2 CM then
16: CM.addEntry(me, contextSeq)
17: else
18: contextSeq

old

 lookUp(CM,me)
19: if |contextSeq

old

| > |contextSeq| then
20: CM.updateEntry(me, contextSeq)
21: end if
22: end if
23: end for
24: return CM: Updated context-aware mapping

3.2 Contribution 2: Simultaneously Extracting
New Model Elements During Test Execution
We define a GUI test case as a pair
(S0, he1; e2; e3; . . . ; eni), where S0 is a designated start
state of the GUI for this test case; and each e

i

2E,
the set of events in the GUI. Our test executor (or
Replayer) starts executing the test case by launching
the GUI under test in start state S0, and executes each
event one by one. It determines the correctness of the
GUI by using a test oracle [27]. Consider the GUI of
our running example shown in Figure 2(a). The start
state is marked S0. All test cases start in this state.
During test execution, the GUI transitions through
a sequence of states where each state is obtained
after the execution of an event. In our work, we
assume that the outcome of an event in a given state

is deterministic. In our running example, once e4 is
executed, the GUI changes to state S1 or S2 based on
the states of widgets corresponding to events e1 and
e2.

We define a GUI state as the full set of all triples
(w

i

, p

j

, v

k

), where w

i

is a widget currently extant in
the GUI, p

j

is a property of w
i

, taken from a designated
set of properties, and v

k

is a value for p

j

, taken from
a set of possible values. We see some such triples in
Figure 2(a) for our running example. The GUI states
S0, S1, and S2 would need to contain such triples for
all widgets, all their properties, and values.

We augmented our test executor to collect the state
of the GUI after the execution of each event. There
are several ways to implement this functionality, in-
cluding inserting hooks in the code to extract object
state, invoking methods in the underlying code, and
reflection9. In our implementation, we use reflection to
obtain the object class for each widget as well as the
set of methods associated with the class. If the method
name starts with the get, (e.g., getLabel(), getX(), getY()),
we invoke it to dynamically obtain the value of the
property. The part of the method name immediately
following get becomes the name of the property. This
approach is useful because it is impossible to predict
the list of all properties of all possible widget types.
For example, the label property is available for a
JButton but not for a JTextField. Similarly, if the method
name starts with the is, (e.g., isEnabled(), isVisible()),
we assume that it returns a boolean value that is also
added to our properties. Figure 4 shows part of our
Java code used to collect states for GUI widgets.

Method [ ] methods = widget . ge tClass ( ) . getMethods ( ) ;
for ( Method m : methods ) {

S t r i n g methodName = m. getName ( ) ;

i f (methodName . s t a r t s W i t h ( ” get ” ) ) {
property = methodName . su b s t r ing ( 3 ) ;
value = m. invoke ( widget , new Object [ 0 ] ) ;

}

i f (methodName . s t a r t s W i t h ( ” i s ” ) ) {
property = methodName . su b s t r ing ( 2 ) ;
value = m. invoke ( widget , new Object [ 0 ] ) ;

}
. . .

}

Fig. 4. Code to collect GUI widget states.

We note that the above described process of col-
lecting GUI widget states using get methods may not
be entirely safe. It may accidentally invoke methods
with side-effects and change the current object states.
Although we did not encounter this situation in our
work, there is no guarantee that we will not do so
in the future. In the future, we will explore better
ways of collecting states, e.g., by using a lightweight
side-effect analysis [28] or by borrowing approaches

9. A process by which a computer program can access the object
methods at runtime without knowing its implementation or type.
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from specification mining [29] to first identify a set
of side-effect-free methods, and use those methods as
inspectors to obtain the current object states.

Once we have the sequence of states, one state after
each event, we developed a post-processing step to
pass it for addition to the EFG model, which we
discuss in Section 3.4.

3.3 Contribution 3: Unique Widget Signatures
So far, we have conveniently referred to individual
widgets by their text labels, e.g., Insert. Although this
is fine for informal discussion in this paper’s text so
long as the context is clear, use of a text label to
identify a widget is insufficient for our tools such as
the Ripper or Replayer. One cannot expect to perform
an event on a widget, for example, using a method
invoke(“Insert”), and expect it to work correctly in all
contexts; for instance, there might be two widgets, a
button and a pull-down menu, in the current window
with text label “Insert”; an automated tool does not
know which one to execute. In such a situation, one
might disambiguate by adding the “widget type”
to the call, e.g., invoke(“Insert”, Button). But this too
would not work if both widgets were buttons. One
may specify additional widget attributes, e.g., widget
coordinates to the invocation to further disambiguate.

The above discussion is moot if each widget in
the GUI had a unique identifier, perhaps assigned
when programming the GUI, that remains unchanged
across application runs. Such identifiers may be used
by testers/tools to identify a widget, e.g., during
the ripping and test generation phases, and then
again later during test execution. Several researchers
and practitioners have advocated the need for such
identifiers for good testability of GUI software [30],
[31]. However, in practice, such identifiers are rarely
used [32]. In all fairness, there are situations in which
it becomes difficult to use identifiers for widgets. For
example, widgets may be dynamically generated based
on some underlying data, e.g., one widget for each
item available in an online store’s database.

Whatever the reasons for not having widget iden-
tifiers in practice, the problem of not being able to
uniquely identify widgets severely complicates our
new work. Consider the Insert button in our running
example. Our tools (Ripper and Replayer) may en-
counter it in two different contexts: first in the modal
window entitled Blog post and second in the window
entitled Blank document. These tools need to determine
whether both these encounters were for the same
widget or two different widgets; the determination
will result in either one or two nodes in the EFG.
Because we created this running example, we know
that it is the same Insert in both instances, which
is why we gave it the unique identifier e5. In fact,
we know that Blog post and Blank document are two
instances of the same modal window. However, a tool

has no way of automatically acquiring this knowledge
(e.g., using object identifiers or source code locations)
for a number of reasons. First, the OME* model is
developed during multiple test runs – the execution
environment will generate new object identifiers for
GUI objects. Second, a GUI object may be created
and destroyed multiple times during a test case’s
execution – a number of new object IDs may be given
to the same GUI object. Finally, two GUI objects may
be created by the same underlying source code.

Admittedly, it is impossible to devise a general
unique widget identification scheme that works for
all possible GUIs. Any solution will have to be
application-specific. In this section, we describe a gen-
eral mechanism that must be manually fine-tuned on
a per-GUI basis. Our mechanism is based on using a
combination of certain parts of the state of the widget
and its container (e.g., window). We cannot use the
entire state for identification because it will contain
some property values that change during the GUI’s
execution but do not play any role in identifying that
widget. For example, the value of the text property for
a JTextField object will change when the text changes;
the enabled property changes when the object is en-
abled/disabled. Such properties cannot be used for
our signature because any change to their values will
indicate a new widget, which would be incorrect. We
are, in some sense, defining equivalent states of widgets
by using a subset of properties to uniquely identify
widgets.

More formally, we define the signature, C
sig

, for a
container C as follows:

C

state

 h(p1, v1), (p2, v2), . . . , (pn, vn)i (1)
hv

i

, . . . , v

k

i  select(filter
p

, C

state

) (2)
C

sig

 �(�
i

(v
i

), . . . ,�
k

(v
k

)) (3)

where the user defines, per GUI, filter
p

, a specification
of a subset of the container’s properties and transfor-
mations �

i

. . .�

k

on the values of the properties. The
function select returns the values of the properties
specified by filter

p

and function � is a hash function
on the transformed values.

Along similar lines, we define the signature, w

sig

,
for a widget w in a container with signature C

sig

, as
follows:

w

state

 h(p1, v1), (p2, v2), . . . , (pn, vn)i (4)
hv

i

, . . . , v

k

i  select(filter
p

, w

state

) (5)
w

sig

 �(C
sig

, �

i

(v
i

), . . . , �
k

(v
k

)) (6)

where filter
p

and �

i

. . . �

k

are user-defined; and func-
tion � is a hash function on the transformed values
and the container’s signature.

In Section 4, we give examples of these user-defined
functions and transformations, and empirically show,
for our subject GUI applications, that they help to
uniquely identify widgets.
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3.4 Contribution 4: Incremental EFG+ Enhance-
ments
Once a new widget/event is identified, it is used
to enhance the EFG+ model. We have already dis-
cussed, in Section 3.1, how to incrementally update
the context-aware mapping, which is an important
part of the EFG+ model. We now discuss how to
incrementally enhance the EFG.

We have already informally discussed EFG en-
hancement in Section 2 and illustrated it in Fig-
ures 2(d) and 2(e). These figures actually show the
three important steps for incremental EFG enhance-
ment: (1) add a node to represent the new event; (2)
add edges to the new node and (3) add edges from the
new node to other nodes.

To explain these steps, we revisit two important
terms in GUIs: modal and modeless windows. At any
time during GUI interaction, a user is allowed to exe-
cute events within a modal window and any modeless
window that was opened from the modal window. At
no time can the user jump between modal windows
without explicitly terminating them. Moreover, the
user cannot interleave events that belong to modeless
windows associated with different modal windows.
Again, the user must explicitly terminate the modal
window that is associated with the modeless window,
explicitly invoke the other modal window, open the
modeless window, and invoke any of its constituent
events. A part of MS Word’s window hierarchy is
shown in Figure 5. Edit Picture and Edit Chart are
modal windows whereas Format Picture, Help Picture,
Manage Template, and Help Chart are modeless. Con-
sider events x, y, z, a, b, and c. A user may execute
x, y, and z together because they are all contained
in Edit Picture’s window group; similarly, events a, b,
and c may be executed together. However, these two
sets of events cannot interleave without their modal
windows being explicitly invoked and terminated.

Help
Picture

Format
Picture

Edit
Picture

Edit
Chart

Main 
Window

Format
Chart

Help
Chart

Fig. 5. A partial window hierarchy of MS Word.

The above behavior of GUI windows to restrict sets
of events leads to the definition of a new term that
we call the scope of an event. We define the scope of
an event e as the set of events contained in the group
of modal and modeless windows to which e belongs.

We use scope in an algorithm to incrementally and
efficiently enhance the EFG model.

More formally, we use Algorithm 2 to enhance our
EFG. The algorithm is invoked after each event, e, is
executed. It takes two parameters: (1) the EFG, and
(2) the executed event. The set of all events available
(enabled or disabled) is first obtained (Line 1). For
each event, e

i

, in this set, three steps are performed.
First, if e

i

has never been seen before (as was the case
with e8 in Figure 2(d)), then it is added to the set of
nodes in the EFG (Line 4). Second, if the edge that
was used to get to e

i

was never seen before, then it is
added as an edge (Line 7). This was the case for the
edge (e4, e8) in Figure 2(d). Third, the set of events
in e

i

’s scope are obtained (Line 9). Those that are not
structural, i.e., do not open/close modal windows, are
used to add edges to the newly observed event e

i

(Line 13). This is what we used for edge (e5, e8) in
Figure 2(d).

Algorithm 2 Enhance EFG Model
Input: (N,E): EFG
Input: e: event executed

1: AE getAllEventsAfter(e)
2: for all e

i

2 AE do
3: if e

i

/2 N then
4: N.addNode(e

i

)
5: end if
6: if (e, e

i

) /2 E then
7: E.addEdge(e, e

i

)
8: end if
9: scope

i

 getScope(e
i

)
10: for all e

ij

2 scope
i

do
11: if not (structural(e

ij

)) then
12: if (e

ij

, e

i

) /2 E then
13: E.addEdge(e

ij

, e

i

)
14: end if
15: end if
16: end for
17: end for
18: return (N,E): Updated EFG

The same algorithm is also used to add new edges
from newly discovered events, as we saw in Figure 2(e)
for e8. However, this is done in a separate invocation
of Algorithm 2, after the event is executed. Consider
the invocation where the second parameter, e is the
event e8. The events available after e8, Line 1, are
{e5, e8}. Because there are no outgoing edges from e8

in the EFG so far, Line 7 will add two new edges
(e8, e5) and (e8, e8).

3.5 Contribution 5: Incremental Test-Case Gener-
ation
The new elements added to our model (e.g., EFG)
may create new test requirements. For example, if a
new edge has been added to the EFG and our test
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criterion is “cover all edges at least once,” then we
need to cover the new edge via a new test case.
Hence, we need new ways to incrementally generate
test cases to cover new model elements. Note that
not all changes to the model will create a need for
new test cases. For example, if the criterion is “cover
all nodes,” then newly added edges in the model
may not require additional test cases. The need for
additional test cases is dictated by the test criteria,
not new model elements.

To incrementally generate test cases, we maintain a
set of model elements that have already been covered.
Another set of model elements (the complete set –
covered and not covered) is obtained from the latest
EFG. These two sets give us the set of model elements
that still need to be covered. For each not-yet-covered
model element, we generate a test case to attempt to
cover it. We first try to get a path from the initial state
to the element using the context-aware mapping; this
test case is guaranteed to be executable. If there is
no mapping entry, then a path is generated using the
shortest-path algorithm.

4 EXPERIMENTS
We now empirically determine whether the OME*
paradigm improves the state-of-the-art, called the
baseline (BL), in GUI testing. We will also compare
the performance of OME* and BL against that of
a random traversal (RND)—inspired by the RAN-
DOOP [33] approach for test generation—of the GUI’s
input space. To this end, we will select several soft-
ware subjects to test, and generate and execute test
cases (for BL and OME*) that attempt to satisfy pre-
determined adequacy criteria. We will also execute the
RND approach. We will then compare the outcomes
of the test runs.

4.1 OME* Implementation
We implemented the OME* testing paradigm in an
experimentation tool. The tool is written in Java,
consisting of two main components: The platform-
specific component consists of modules to interact with
a specific GUI platform. These modules automatically
send events to the GUI (e.g., clicks, type-in-text),
collect GUI states and store them in XML files. The
platform-independent component implements the algo-
rithms presented in Section 3, which, among other
things, generate abstract test cases to supply to the
platform specific component.

We highlight two aspects of our implementation.
First, our tool implements a fully-automatic workflow
for test case execution and analysis. An important
part of this implementation is a distribution and
consolidation algorithm to execute our test cases in
parallel over a number of slave machines. The test
suites are split into batches by a controller machine
and sent to multiple remote slaves in a computing

cluster. Upon completion of test case execution, the
results are sent back to the controller machine where
they are consolidated and analyzed (e.g., the model is
updated and new test cases are generated).

Second, our RND implementation works as follows.
It starts in the Main window and obtains the state of
all widgets, their properties, and values. It then gets
the set of all enabled and visible widgets on which
events can be performed. It randomly selects one
event, executes it, and obtains the resulting state. If
this state is different from all previously encountered
states, it is recorded. This process is repeated until a
failure is encountered. In our experiments, each event
executed always led to a new state; we attribute this
to the richness of GUI states.

4.2 Research Questions and Metrics
More specifically, we are interested in answering the
following two research questions:
RQ1: How effective is OME* when compared with
BL and RND? We will measure the fault detection
effectiveness (FDE), event coverage (EC) [34], and code
coverage (CC) of these three approaches.
RQ2: By how much does the context-aware mapping
improve the OME* approach? We will implement
OME* in two ways—one with the context-aware map-
ping and the other without—and compare their FDE,
EC, and CC.
Metrics: For FDE, we count the number of faults.
Our test oracle was based on the software crashing
(terminating abnormally or throwing an uncaught
exception). For EC, we measure EFG node coverage
(E1) and EFG edge coverage (E2). For CC, we measure
statement (stmt.), branch, method, and class coverage.

4.3 Selecting & Setting Up Software Subjects
We select eight subject applications from two popu-
lar open-source communities Tigris.org10 and Source-
Forge11.

1) ArgoUML: A CASE tool for UML diagram de-
sign, code generation and reverse engineering;

2) Buddi: A financial tool for personal budget man-
agement;

3) CrosswordSage: A tool for creating and solving
crosswords;

4) DrJava: An advanced integrated development
environment (IDE) for Java programs;

5) JabRef: A database management tool for bibli-
ographies management;

6) OmegaT: A language tool for automated trans-
lation;

7) PdfSam: An office utility for advanced pdf files
manipulation;

10. http://www.tigris.org
11. http://sourceforge.net
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8) Rachota: A time management tool for project
time tracking;

They are all implemented in Java and rely on the
GUI for user input. Table 2 summarizes their charac-
teristics. The applications span a variety of domains,
ranging from games to office utilities and software
development tools. We selected the most recent re-
leased versions at the time the study was conducted.
All of them are widely used, demonstrated by the
high numbers of downloads, and have broad user
communities, demonstrated by the multiple numbers
of languages available. They are all mature applica-
tions, in that they have been around for at least 5
years. They also have non-trivial code sizes in terms of
the numbers of non-comment statements (S), branches
(B), methods (M), and classes (C). Over the years, a
large number of bugs have been reported by their
respective communities and fixed by the developers
in response.

Having identified the study subjects, we now pre-
pare our tools to use them.

4.3.1 Defining Functions for Unique Signatures

Our first preparation step is to ensure that we cor-
rectly identify each window and widget in the ap-
plications. As described in Section 3.3, we develop
functions for windows (our containers) and widgets
for this purpose. We start with windows, for which we
need to develop filter

p

, to select a subset of window
properties, and �() and �() to generate a unique
window signature. It turns out that our study subjects
only require the use of one window property, namely
“window title.” The value of this property is the title
of the window, which, for the most part, are already
unique. The exceptional cases are handled by map-
ping a few titles to regular expressions. For example,
the title of the window “Save file” in ArgoUML can
change dynamically during its execution; it always
starts with the string Save followed by the full path
to the file’s location. The title changes when the
user saves the file in another location. Hence, if we
rely solely on window title, there is a danger that
we consider each instance with a different title as a
new window. To ensure that our tools recognize that
all instances of this Save file window, with different
titles, are in fact the same window, we map the title
string, via the �() function, to the regular expression
‘Save (/.*)*’. We did this for a few windows. This
process took less than 5 minutes per application; the
vast majority of this time was spent recognizing that
titles of certain windows change.

The case for widgets is more complex. The title of
widgets in our study subjects is repeated many times
in the application. For example, many buttons share
the title OK. For this reason, we use three proper-
ties to identify widgets, namely title, icon, and class,
representing the main title/label of the widget, the
file-name of the icon labeling the widget if it exists,

and the object class used to implement the widget,
respectively. The values of these three properties are
used in the Java HashCodeBuilder utility to generate a
hash code for each widget. The manual effort required
for this step was less than a few minutes.

We verified that our signatures are indeed unique.
We manually examined each application and counted
all its widgets and windows; we show the numbers in
Table 3 under “Manual Oracle”. We then used our tools
to do the same. Our tools first extracted the Unique
Title Strings and used our �() function to map some
of them to regular expressions. Similarly, our tools
extracted the Text Titles for widgets, determined the
image used for the Icons, and the Java Classes used
to implement the widgets. These were then mapped
to Widget Hash codes. Combined with their associated
window hashes, we obtained unique Mapped Widget
Signatures. As Table 3 shows, the resulting numbers
matched our manual oracle exactly.

4.3.2 Sandbox and Text Parameters

Our second preparation step for testing the appli-
cations included setting up a sandbox. The key role
of this sandbox was to ensure that each run of the
application was independent of all prior runs. We
defined a default configuration for each application,
e.g., when possible, we bypassed the splash screen,
or we specified a delay time to allow the splash
screen to disappear. Before a test case is executed,
the application is reset to its default configuration.

Finally, our third preparation step involved setting
up data for parameterized events. A general parame-
ter populating strategy was used. For events requiring
a text input (e.g., text field, text area), a database that
contains one instance for each of the text types in
the set {negative number, real number, zero, long random
string, empty string, string with special characters} was
used. All instances in the text type set were tried in
succession for each test case.

4.4 Running the Experiment
Having prepared the study subjects, we are now ready
to run the experiment, first establishing the baseline
(BL) followed by the 2 instances of OME* (with and
without the context-aware mapping), and finally the
random (RND) traversal. For each, we record cover-
age (E1, E2, Stmt., Branch, Method, Class), number of
Nodes and Edges in the EFGs, and number of test cases
that were Generated, and—for BL and OME*—those
that executed to completion (Feasible), and number
of faults found. The code coverage is obtained by a
code coverage measurement tool called Cobertura12.
Other data is obtained by our tool as discussed in
Section 4.1.

More specifically, for each study subject, we per-
form the following steps:

12. http://cobertura.sourceforge.net
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TABLE 2
Subject applications

Name Abbreviation Version Downloads
Languages
Translated Year

Bug Reports Size⇤⇤

Fixed Total S B M C

ArgoUML AU 0.33.1 N/A⇤ 11 1999 N/A⇤ N/A⇤ 69,954 32,084 16,091 1,891

Buddi BD 3.4.0.8 897,520 13 2006 279 304 9,588 3,711 2,318 384

CrosswordSage CS 0.3.5 4,623 1 2005 1 8 1,826 456 336 34

DrJava DJ r5004 1,227,393 1 2002 966 1091 64,994 17,485 15,229 2,394

JabRef JR 2.7b 1,173,313 4 2003 564 768 44,522 18,176 7,502 1,267

OmegaT OT 2.1.3 254,559 29 2002 462 503 19,756 6,772 4,519 714

PDFSam PS 2.2.1 2,548,362 21 2006 71 87 6,097 2,043 1,504 194

Rachota RC 2.3 74,107 11 2003 124 174 11,183 2,837 1,898 320
⇤ The all-time statistics for ArgoUML are not publicly available. However, its popularity and maturity are partially demonstrated by the
current more than 19,000 registered users and over 150 active developers (http://www.isr.uci.edu/tech-transition.html).
⇤⇤ S = Statements; B = Branches; M = Methods; C = Classes

TABLE 3
Automated Widget/Window Identification vs. Manual Oracle.

(a) Window Identification.

SUT
Manual Oracle Automated

Numbers of
Windows

Unique
Title
Strings

Mapped
Title
Strings

AU 28 38 28

BD 20 24 20

CS 9 9 9

DJ 38 44 38

JR 52 56 52

OT 30 31 30

PS 6 6 6

RC 12 18 12

(b) Widget Identification.

SUT
Manual Oracle Automated

Numbers of
Widgets

Text
Titles

Icons Classes Widget
Hash-
codes

Mapped
Widget
Signatures

AU 1040 710 20 113 1023 1040

BD 728 410 0 119 697 728

CS 137 111 0 40 130 137

DJ 1144 742 16 114 1132 1144

JR 1600 1127 30 134 1511 1600

OT 824 539 6 96 801 824

PS 323 272 18 72 315 323

RC 462 361 6 65 453 462

1) Create EFG using the Ripper.
2) Generate tests from EFG, execute them, and

record all metrics. This forms our BL.
3) As discussed in Section 3.2, new model elements

are extracted during Step 2 above.
4) As per Section 3.4, enhance the EFG model.
5) Generate test suite from new EFG and execute

them. Record all metrics for this suite. This
forms our first implementation of OME* that
does not use the context-aware mapping. We call
this noMap.

6) As per Section 3.1, the context-aware mapping
is created. Together with the EFG from Step 4,
this forms the EFG+ model.

7) Generate test suite from new EFG+ and execute
them. This forms one iteration of our withMap
approach. Record all metrics for this suite and
extract new model elements.

8) Enhance both EFG and mapping. Repeat Step 7
until the EFG+ model does not change.

The RND process was run completely indepen-
dently of the above process. The total number of test

cases and their execution times (in hours) are shown
in Table 4. Note that we executed over 500,000 test
cases in almost 1100 machine days. We used 120 2.8
Ghz P4 Linux nodes running in parallel.

4.5 Threats to Validity
As is the case with all empirical studies, our experi-
ments suffer from several threats to validity. Threats to
external validity are factors that may impact our ability
to generalize our results to other situations. We have
used eight open-source Java applications. Although
carefully selected, they do not reflect the spectrum of
all possible GUIs that are available today. Moreover,
the applications are extremely GUI-intensive, i.e., most
of the code is written for the GUI. We expect that
results may be different for applications that (1) have
complex underlying business logic and a fairly simple
GUI, (2) are developed using other programming
paradigms, and (3) are tested in-house for commercial
applications. Finally, we initialized various values for
text-fields manually and stored them in a database.
We may see different results for different values.
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TABLE 4
Test Cases Generated and Execution Time

BL withMap noMap RND

SUT Test
cases

Exec
time (h)

Test
cases

Exec
time (h)

Test
cases

Exec
time (h)

Test
cases

Exec
time (h)

AU 4,468 192.9 22,086 1,726.7 9,782 248.7 3,191 57.6

BD 2,890 32.5 32,712 399.7 8,204 63.0 6,274 125.8

CS 266 1.1 333 1.3 333 1.9 29 0.4

DJ 5,842 206.4 34,702 1,514.1 18,141 48.5 4,250 126.4

JR 39,555 2,372.7 170,809 7,639.2 54,516 3,028.8 22,888 588.8

OT 3,605 60.9 18,275 282.4 9,581 110.6 2,205 58.0

PS 6,856 48.9 9,135 85.9 9,135 71.9 444 5.0

RC 1,456 3.5 8,504 122.3 4,784 40.6 966 57.5

Total 64,938 2,918.8 296,556 11,771.6 114,476 3,614.1 40,247 1,019.5

Threats to internal validity are possible alternative
causes for experimental results. Because we wanted
to achieve full automation, we developed functions to
identify widgets/windows uniquely. The instruments
used for run-time state collection of GUI widgets were
based on Java Swing API. These widgets may have
additional properties that are not exposed by the API.
Hence the states captured may be incomplete, causing
us to map different windows/widgets into the same
unique element. Moreover, because GUI execution re-
quires frequent painting/repainting of windows, the
captured state will be inaccurate if captured too early
in the painting process; we set long artificial delays
to allow the GUI to finish repainting. For RND, we
tried to reduce the effects of randomness by running
the algorithm 5 times and averaging the results.

Threats to construct validity are discrepancies be-
tween the concepts intended to be measured and the
actual measures used. We used the number of crashes
as our fault detection effectiveness metric; event and
code as coverage metrics; these might not be useful
metrics in all situations.

4.6 Results

We summarize our results in terms of the metrics that
we collected for all 4 suites, i.e., BL, noMap, withMap,
and RND, in Table 5. We also break up the results of
withMap by iteration so as to see the effect of OME*.
From this raw data, we want to bring several points
to the reader’s attention.
Number of Iterations: Technique noMap has a single
iteration as opposed to several for withMap. This
is because even though new model elements were
discovered during test execution in BL and used in
Iteration 1 of noMap, very few of them were in fact
reachable because of the absence of the mapping. This
led to a large number of “infeasible” test cases that
did not execute to completion. We revisit this point
in more detail later. Note that there are no infeasible
sequences for RND because of the nature of running

the test cases directly on the GUI; if a widget is
enabled, only then it is executed.
EFG: The EFG+ model improves—gets bigger in
size—with each iteration of withMap. In most cases,
the number of EFG edges is significantly larger (e.g.,
1044% for Buddi) compared to BL, showing that we
were able to observe, model, and exercise a larger
number of GUI events, hence test more functionality.
The number of entries in the context-aware mapping
also grows steadily with each iteration, indicating
that we are able to reach and execute new coverage
elements. This is all directly reflected in improved
fault-detection effectiveness and increased event and
code coverage.

We pictorially examine and explain the growth in
the EFG model via an example. Figure 6 shows a
bird’s eye view of the EFGs of our subject application
Buddi for BL and 5 iterations of withMap13. Our goal
is not to show details of the EFGs; rather, we want to
show very high level pictures of the EFGs so that the
reader can visually appreciate the changes from one
EFG to the next. The EFGs have been drawn in such
a way that the (x, y) location of each node in the EFG
is fixed across iterations. For example, the OK event
labeled in Figure 6(a) is in the same location, relative
to all other nodes in Figures 6(b) through 6(f). We add
labels to highlight specific parts that we discuss in the
text.

At a high level, there are stark differences between
the EFGs of Figure 6(a) (BL technique) and Figure 6(f)
(final iteration of withMap). For example, the Language
Items, New Account, Edit Account Types clusters and
a large number of edges do not even appear in
Figure 6(a); all these are observed only during the
OME* process. Hence, BL has no way to cover these
events/edges.

Buddi has a context sensitive GUI, which changes
the set of available events based on the end-user’s

13. Additional visualizations of the EFGs, detailed code
coverage reports, and actual fault reports are available at
https://www.cs.umd.edu/users/atif/tse2012



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2300857, IEEE Transactions on Software Engineering

SUBMIITED FOR REVIEW TO IEEE TSE 14

TABLE 5
Data for RQ1 and RQ2.

RND RND
1 2 3 4 5 1 2 3 4 5

# Nodes 328 372 385 418 473 - 372 398.4 # Nodes 249 297 344 412 457 500 297 221.8
# Edges 4,468 9,062 11,731 17,147 20,485 - 9,062 5,069.4 # Edges 2,890 7,129 11,011 17,019 24,396 30,196 7,129 4,003.2

Mapping # Entries 8,485 11,014 15,600 18,481 - - - Mapping # Entries 5,486 8,130 13,993 20,661 25,369 - -
# Gen. 4,468 5,314 3,911 6,621 4,772 - 5,314 3,191 # Gen. 2,890 4,289 4,271 6,757 7,943 6,562 4,289 6,274.4
# Feas. 3,763 4,771 2,743 5,376 3,223 - 556 - # Feas. 2,324 3,721 3,434 5,966 7,094 5,577 2,471 -
% E1 66.81 84.78 86.47 88.16 89.01 - 69.40 83.59 % E1 40.00 48.20 56.60 65.40 68.60 72.00 31.01 47.92
% E2 18.37 41.66 55.05 81.29 97.03 - 19.21 36.64 % E2 7.70 20.02 31.39 51.15 74.64 93.11 15.88 10.67
% Stmt 22.45 24.87 24.89 24.91 24.91 - 24.15 27.71 % Stmt 38.54 47.61 48.90 49.04 49.19 49.34 38.67 44.01
% Brnch 10.31 11.83 11.86 11.88 11.88 - 11.29 14.75 % Brnch 17.06 21.77 22.42 22.50 22.90 22.96 17.08 18.41
% Mthd 26.21 28.22 28.23 28.23 28.23 - 27.59 30.48 % Mthd 36.45 42.23 42.92 43.18 43.27 43.49 36.71 38.87
% Class 52.09 54.63 54.63 54.63 54.63 - 53.83 56.51 % Class 64.06 75.00 75.78 75.78 76.30 76.30 64.32 74.22

- 2 2 0 0 - 0 1.2 - 4 3 0 0 0 0 0.4
4 6 8 8 8 - 4 3.4 1 4 7 7 7 7 1 0.4

RND RND
1 2 3 4 5 1 2 3 4 5

# Nodes 40 40 - - - - 40 31.6 # Nodes 275 399 462 523 - - 399 380.0
# Edges 266 330 - - - - 330 174.6 # Edges 5,842 12,299 19,876 30,613 - - 12,299 20,322.8

Mapping # Entries 283 - - - - - - Mapping # Entries 9,614 17,260 28,272 - - - -
# Gen. 266 67 - - - - 67 29 # Gen. 5,842 9,120 8,189 11,551 - - 9,120 4,250
# Feas. 230 64 - - - - 7 - # Feas. 4,237 6,108 7,256 11,359 - - 2,094 -
% E1 97.50 97.50 - - - - 97.50 65.50 % E1 46.85 69.41 78.78 82.22 - - 33.25 59.43
% E2 69.70 89.09 - - - - 71.82 35.03 % E2 13.84 33.79 57.50 94.60 - - 20.68 18.33
% Stmt 25.19 26.62 - - - - 25.19 26.28 % Stmt 26.09 27.70 28.95 29.63 - - 26.30 26.44
% Brnch 8.55 8.77 - - - - 8.55 7.19 % Brnch 17.74 19.90 21.11 22.08 - - 18.17 10.30
% Mthd 25.60 28.27 - - - - 25.60 27.68 % Mthd 28.28 29.58 30.61 31.26 - - 28.43 27.31
% Class 41.18 41.18 - - - - 41.18 44.12 % Class 51.92 52.80 54.51 55.18 - - 51.96 49.49

- 3 - - - - 0 0.8 - 1 0 0 - - 0 0.0
5 8 - - - - 5 4.6 3 4 4 4 - - 3 2.2

JabRef
RND RND

1 2 3 4 5 1 2 3 4 5
# Nodes 483 603 830 1,058 1,177 - 603 525.0 # Nodes 309 333 337 347 - - 333 301.0
# Edges 39,555 54,272 68,063 123,757 168,658 - 54,272 55,066.0 # Edges 3,605 7,705 10,988 15,961 - - 7,705 4,471.8

Mapping # Entries 45,622 62,960 109,672 145,840 - - - Mapping # Entries 4,716 8,065 13,652 - - - -
# Gen. 39,555 14,961 14,686 56,199 45,408 - 14,961 22,888 # Gen. 3,605 5,976 3,517 5,177 - - 5,976 2,205
# Feas. 30,850 21,164 14,302 53,607 44,601 - 12,248 0 # Feas. 2,712 4,308 3,356 5,001 - - 2,730 0
% E1 39.25 50.89 70.18 88.62 98.81 - 28.00 23.87 % E1 81.56 93.08 94.81 96.54 - - 86.05 44.73
% E2 18.29 30.84 39.32 71.10 97.55 - 25.55 11.77 % E2 16.99 43.98 65.01 96.34 - - 49.53 12.57
% Stmt 29.12 33.70 37.16 38.36 38.63 - 29.15 26.41 % Stmt 40.97 45.96 46.44 48.31 - - 41.45 42.67
% Brnch 12.04 15.12 17.53 18.84 19.16 - 12.17 10.27 % Brnch 23.36 29.43 29.71 32.21 - - 24.08 27.16
% Mthd 29.95 34.95 38.10 39.24 39.43 - 29.95 27.29 % Mthd 38.22 41.93 42.38 43.46 - - 38.44 38.62
% Class 51.62 57.62 62.83 63.38 63.54 - 51.62 49.46 % Class 62.61 65.97 66.67 67.23 - - 62.75 63.89

- 6 3 0 0 - 1 1.0 - 1 0 0 - - 0 0.0
4 10 13 13 13 - 5 3.6 3 4 4 4 - - 3 1.0

RND RND
1 2 3 4 5 1 2 3 4 5

# Nodes 111 118 - - - - 118 105.2 # Nodes 151 167 171 185 185 - 167 135.4
# Edges 6,856 8,273 - - - - 8,273 6,842.6 # Edges 1,456 4,726 6,136 6,849 8,324 - 4,726 1,277.0

Mapping # Entries 7,557 - - - - - - Mapping # Entries 3,444 5,684 6,188 7,490 - - -
# Gen. 6,856 2,279 - - - - 2,279 444 # Gen. 1,456 3,328 1,474 739 1,507 - 3,328 966
# Feas. 6,086 1,675 - - - - 445 - # Feas. 1,107 3,288 1,451 718 1,476 - 1,237 -
% E1 94.07 100.00 - - - - 100.00 49.32 % E1 73.51 84.32 87.03 96.22 96.22 - 83.24 54.59
% E2 73.56 93.81 - - - - 91.03 7.95 % E2 13.30 52.80 70.23 78.86 96.59 - 38.10 18.78
% Stmt 41.74 42.43 - - - - 41.74 37.52 % Stmt 61.19 64.37 65.62 66.37 66.40 - 61.19 53.55
% Brnch 15.91 16.84 - - - - 15.91 13.25 % Brnch 33.45 37.12 38.14 38.74 38.88 - 33.45 25.45
% Mthd 36.97 37.50 - - - - 36.97 32.19 % Mthd 46.21 47.89 48.89 50.53 50.53 - 46.21 37.70
% Class 68.04 68.56 - - - - 68.04 65.98 % Class 81.88 85.63 86.25 86.25 86.25 - 81.88 77.88

- 5 - - - - 0 0.4 - 1 2 1 0 - 0 0.0
2 7 - - - - 2 1.2 2 3 5 6 6 - 2 0.2

ArgoUML Buddi

DrJavaCrosswordSage
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current “working perspective,” i.e., at any time during
its execution, events related to specific perspective are
displayed. For example, during the execution of the
Ripper, the Edit menu is only exercised only once in
the Report creation perspective. Hence, only the report
related sub-menu items are observed by the Ripper,
and hence the BL technique.

In contrast, withMap is able to exercise Edit sev-
eral times in many other perspectives. As a result,

new sub-menu items are observed. As marked in
Figure 6(b), for example, three new events Edit All
Transaction, Edit account types, and Create Account are
added to the original EFG when Edit is executed in
the Account Management perspective. These events,
when performed in subsequent iterations, will in turn,
open new windows to extend the EFG even further
(marked by the ovals in Figure 6(c)).

Our example illustrations also show that changes
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(a) BL: Initial Model.
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(b) Iteration 1.
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(c) Iteration 2.
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(d) Iteration 3.
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(e) Iteration 4.
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(f) Iteration 5: Final Model.

Fig. 6. OME* sees more of the EFG with each iteration.

to the EFGs across iterations may not necessarily be
changes in events, i.e., new edges may be added
between previously observed events. For example,
events in both Edit Account Types and New Account
windows have been observed during Iteration 2 (via
menu items in the main window). However, the edges
linking these two windows are only revealed during
Iteration 3, when the New Account event in Edit Ac-
count Types is exercised (shown using a “New edges”
label at the bottom-left of Figure 6(d)). These new
edges provide a new way to exercise events in the
New Account window.

We also note that even a very small number of
newly observed events may lead to a significant
change in model size. Because Buddi allows users to
work in multiple perspectives simultaneously (e.g.,
adding a new account when generating a report), the
windows are mostly implemented as modeless. For
that reason, as soon as a new event is observed and
added to the model, it gets connected to all previously
known events, making the graph very dense. As
shown in Figure 6(d) through Figure 6(f), the edge
cluster from the All Transactions window’s events back
to all the events in the main window (the center of the
EFG) grows significantly across iterations.

Mapping and Test Case Feasibility: Our context-
aware mapping size also grows across iterations of
withMap. This mapping plays a big role in ensuring
that a larger number (compared to noMap) of test cases
remain feasible. The 4 most important data points to

illustrate this are the # Generated and # Feasible entries
under Iteration 1 of withMap, and under noMap. For
example, in ArgoUML, only 556 of 5314 test cases were
feasible, i.e., executed to completion, with noMap. In
contrast, 4771 of 5314 test cases were feasible with
withMap. This shows that by retaining when events
were observed to be executable and using this infor-
mation when exercising these events again proved to
be very successful at making test cases executable.

The JabRef data of # Generated and # Feasible en-
tries under Iteration 1 of withMap highlights another
important aspect of our mapping. Even though we
generated 14,961 new test cases during this iteration,
a total of 21,164 test cases were feasible and exe-
cuted. This is because some of the test cases from
the previous run (in this case from BL) that remained
unexecutable earlier, were now executable due to new
entries in the mapping.
Event and Code Coverage: We see that we gradually
increase the amount of code and events that we
cover across iterations. However, we never achieve
100% coverage of our criterion, i.e., cover all EFG
edges. This means that we observe edges during some
iterations but never get to reach them in subsequent
iterations. This is due to the highly context-sensitive
nature of our GUIs, where a context-aware mapping
entry is no longer valid for a subsequent iteration.
Addressing these cases is a subject for future work.

Missing event coverage causes us to lose code
coverage (our code coverage varies from 24.91% to
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66.40%). In addition, our GUI subjects have numerous
callbacks that never get invoked, either because they
are dead code or get invoked in specific environments.
Faults: Table 6 shows the list of faults detected by
OME*. Many of these faults were reported and fixed.
Because of lack of space, we will discuss the 7 new
faults that were detected in Buddi. All 7 were detected
by the withMap technique. Of these 7, one fault was
also detected by noMap. These faults are also indicated
in Figure 6. The faulty events (i.e., the last events in
the failed test cases) are solid dark nodes with their
IDs (bd1–bd7) pointed by an arrow. We now discuss
these faults and the test cases that detected them.

Fault bd1 results in an IllegalArgumentException
when setting an out-of-range proxy port for network
configuration. It is detected by a test case consisting
of 6 events: he1: Expand Edit menu; e2: Open Preferences
window; e3: Select Network tab; e4: Enable Use Proxy
option; e5: Enter a large number for proxy port; e6: Click
OKi. This fault did not occur earlier in the BL iteration
because, by default, the Proxy Port text box (i.e., e5)
is disabled. It is unable to change the proxy port
unless the Enable Use Proxy check box is checked
(i.e., performing e4). However, this information is not
available at BL. During the BL process, event e5 was
observed after the execution of event e4. Hence, a new
context aware mapping entry was created to reach e5.
In the next iteration, test cases were generated to cover
e5. One of them led to the failure. Fault bd2 is similar
to bd1 except that it throws an UnknownHostException
when using a non-existing proxy URL (with a valid
port).

This is a particularly interesting test case because
event e6, i.e., Click OK, the one that revealed the failure
had been executed several times in BL. However,
the failure was manifested only when e6 executed in
the context of e5. Moreover, e6 revealed a different
failure, bd2, when executed after setting a non-existing
proxy URL. All events in the fault-revealing test cases
were available in the initial model (as marked in
Figure 6(a)). However, the faults were revealed only
when the events were tested in specific combinations.

The remaining faults in Buddi were detected due
to the discovery of new events. For example, fault bd3
causes an InvalidValueException when saving a trans-
action with an empty name. In Buddi, a transaction
can be saved only after a document change. However,
during ripping, the events related to the save func-
tionality (e.g., Save, Save All buttons) were all executed
before any document changing event. Hence, the Save
Transaction dialog, which is opened by these events,
did not show up. In subsequent iterations, however,
it was opened and tested in new executing contexts.
As a result, the fault was detected.

Faults bd5, bd6, bd7 were detected during Iteration 2
when new events were observed and exercised. De-
tecting faults in later iterations is not uncommon, as
can be seen in Table 5. The reason for this is that ex-

ercising fault-revealing events requires going through
multiple other events, performed in a sequence. By
iteratively identifying the enabling/opening relation-
ships between events, the OME* test case generator is
able to compose test cases that reveal faults. Consider,
for instance, Fault rc7 in Rachota; this was detected
in Iteration 3. It is an uncaught NullPointerException,
thrown when simultaneously adjusting the current
date, and setting the starting time of an active task
to empty (recall that Rachota is an application for
tracking project time). The event sequence leading
to this fault is: he11: Select a task; e12: Start selected
task; e13: Expand Tool menu; e14: Open Adjust start time
window; e15: Change to a previous date; e16: Click OK to
confirm the start time adjustmenti. This sequence brings
the GUI through a series of states where events are
reached in a chain: first, e11 enables e12 in BL, and
then e12 in turn enables e14 in Iteration 1. When
performed in Iteration 2, e14 opens a new Adjust
starting time window (e13 is known earlier to expand
the Tool menu to reach e14). This window contains the
events allowing the user to adjust the starting time of
the active task (e.g. e16). Finally, the pair (e15, e16) is
exercised in Iteration 3, leading to the exception.

We conclude our discussion of these faults by not-
ing that due to the complexity of the GUI, the state-
based relationships between events that led to failures
are difficult to predict manually. Similarly, because
GUI event handlers are often spread across multiple
independent modules/classes [35], such faults cannot
be detected by code analysis techniques such as static
analysis.
Comparison with RND: The data for RND is the
average over 5 runs. In all cases, we saw RND
perform worse than OME*. We attribute this weakness
of RND to its non-systematic GUI exploration strategy.
In contrast, because OME* used the underlying crite-
rion of covering all EFG edges, its test-case generator
was forced to generate test cases that covered all parts
of the GUI, including context-sensitive parts. RND did
not have this advantage of an underlying event-based
criterion.

Going back to our research questions, we were able
to show that OME* is more effective than BL, when
using FDE, EC, and CC as our metrics, thereby ad-
dressing RQ1. Further, we implemented OME* in two
ways, with and without the mapping, and showed
that because noMap does not maintain the context-
aware mapping to reach coverage elements, it yields
many infeasible test cases. The mapping is key to the
success of OME*. This result answers RQ2.

5 RELATED WORK

This work belongs to the family of model-based tech-
niques for testing GUI-based applications. A model
is developed to represent the GUIs behaviors and
the test cases are generated by traversing the model.
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TABLE 6
List of new faults detected by OME*

ID Iteration Confirmed Fixed Description

AU4 1 X X ProfileException when using ‘/crash/crash’ as name to save a user profile

AU5 2 X X NullPointerException when changing layout of an empty Activity diagram

AU6 1 X X NullPointerException when trying to ‘Revert to Saved’ an unsaved document

AU7 2 X X InvalidObjectException when keeping the ‘Open Project’ window open and saving another project

BD1 1 X X IllegalArgumentException with an out-of-range Proxy Port

BD2 1 X X IllegalArgumentException when updating with an non-existing proxy address

BD3 1 X X InvalidValueException when creating a transaction with an empty name
BD4 1 X X FileNotFoundException when saving with a non-encrypted file with name containing special

characters

BD5 2 X X FileNotFoundException when saving with an encrypted file with name containing special characters

BD6 2 X X ZipException when using a plugin name containing special characters

BD7 2 X X FileNotFoundException when configuring with a non-existing language file

CS1 1 ⇥ ⇥ FileNotFoundException when providing an invalid file name to save

CS2 1 ⇥ ⇥ NullPointerException when generating Write Clue with an empty crossword

CS3 1 ⇥ ⇥ NullPointerException when generating Suggest Word with an empty crossword

DJ1 1 X X IOException when saving file with a file name containing special characters

JR1 1 ⇥ ⇥ StringIndexOutOfBoundsException when using ”!#́” as a ‘Preview text’ in Preferences

JR2 1 X X ArrayIndexOutOfBoundsException when allowing to generate keyword for a disabled bibtex entry

JR3 1 X X ArrayIndexOutOfBoundsException when generating keyword for an already closed bibtex file

JR4 2 X X Pattern Exception when searching with an regular expression containing the special characters ‘ []’

JR5 2 ⇥ ⇥ IOException when setting default owner name containing a ‘{’ character

JR6 1 X X ClassNotFoundException when providing a non-existing class to setup the ‘Look and Feel’

JR7 1 X X ServerSocketException with an out-of-range Proxy port

JR12 1 X X ArrayIndexOutOfBoundsException when changing properties of an already closed bibtex file

JR13 2 ⇥ ⇥ StringIndexOutOfBoundsException when import with a non-exist ImportFormat plugin

OT1 1 X X NullPointerException when checking spell with a blank spell-checking plugin name

PS1 1 ⇥ ⇥ ParseException when providing a non-numeric value for the split after these pages text filed

PS2 1 ⇥ ⇥ ParseException when providing a non-numeric value for the split every “n” pages text field

PS3 1 ⇥ ⇥ ParseException when providing a non-numeric value for the split at this size text file

PS4 1 X X NullPointerException when providing an invalid split by bookmarks level

PS7 1 ⇥ ⇥ FileNotFoundException when saving with an invalid environment file name

RC1 2 X X NullPointerException when generating report with a non-existing file name

RC2 2 ⇥ ⇥ NullPointerException when adjusting time after switching to a previous day

RC3 1 X X NumberFormatException when entering a non-numberic value to the Inactivity time text field

RC7 3 ⇥ ⇥ NullPointerException when simultaneously adjusting starting time and correcting the scheduled time

X = Yes; ⇥ = No

The most popular models used are state machines.
Examples include variable FSM [15], Complete Inter-
action Sequences [16], hierarchical state-machine models
represented as UML state diagrams [2], off-normal
FSM [17], multiple FSMs called Label Transition Sys-
tems [18], and semantic models [14], [19], [20]. AI plan-
ning has also been used for test case generation [4].
A specification of the GUI is manually created by
a tester in form of planning operators. Test cases are
automatically generated by invoking a planner which
searches for a path from the initial to the goal state.
Memon et al. [36], provide a more detailed survey
on model-based testing techniques for GUI-based ap-
plications. In some proposed techniques, the event
context is partially captured in their models (e.g., in

the states or planning operators). However since the
models are manually created, those techniques suffer
from the scalability issues.

Our first reported work on GUI Ripping, already
discussed in Section 1, in the year 2003 [23] set the
stage for using the executing GUI software itself to
automatically model its own input space. In sum-
mary, the Ripper starts at the main window of a soft-
ware application under test, automatically detects all
‘clickable’ GUI widgets and exercises the application
by systematically executing these elements. The GUI
structure obtained is then converted to an EFG for test
case generation. Since then, we developed techniques
to augment the EFG model using annotations. For
example, Yuan et al. [25] annotated the EFG with
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semantic information derived from the runtime state
of the GUI. With the augmented model, we are able
to prioritize in the input space and generate longer
test cases. Marchetto et al. [37] proposed a similar ap-
proach but applied to Web testing domain. However,
none of the previous approaches was able to discover
unexplored parts of the input space. This is something
we do in the current paper.

In the context of random testing, Pacheco et al. [33]
propose an object-oriented unit testing approach
called Randoop. Similar to our approach, Randoop
starts with a seed test suite consisting of short
method-call sequences. The longer test cases are then
incrementally obtained by randomly combining the
shorter ones. The feedback from previous test exe-
cutions are used to avoid generating redundant and
illegal combinations. The key difference between Ran-
doop and our approach is that in unit testing, it
is trivial to obtain the input space, i.e., the list of
available methods. Execution feedback is primarily
used to effectively explore the input space. However,
this assumption does not hold true for the GUI test-
ing domain where GUI events are often dynamically
produced. Therefore, in our approach, the feedback is
not only used to effectively explore the input space
but also to discover it (i.e., adding new GUI events).

A technique called exploratory testing [1], [38] is
most related to our current approach. In exploratory
testing, human testers explore the system under test
without fully knowing the input space of the system
under test. As the system is being tested, they learn
the system’s behaviors and manually decide what
to do next. There is no predetermined test script
or test input. This technique takes advantage of the
testers’ experiences and provides rapid feedback to
the developers. However, because it heavily relies on
human skills, the results are often subjective, hard to
replicate [1], and do not scale to large systems [3].

Extending our work on GUI ripping, Mesbah et
al. [28], [39] leverage a crawl-based technique to reverse
engineer the structure of the website under test. A tool
called CRAWLJAX automatically detects all ‘clickable’
web elements and crawls the website by exercising
these elements. The website structure is then analyzed
to construct an intermediate abstract state machine
model, which is used as a skeleton to systematically
generate test cases. Saxena et al. [40] extend this
technique by adding a string constraint solver to the
crawler to better explore the event space.

The remainder of the papers in this section share
a common theme. During test execution, they keep
track of all new event handlers, object states, web ser-
vices, observed during execution and try to generate
additional test cases to exercise them.

In web application testing, Artzi et al. [41] use execu-
tion states to generate additional test inputs. Due to
the nature of the web applications, the event handlers
can be dynamically registered to and removed from

the client at runtime. An execution unit dynamically
monitors the set of event registered at a particular
time and attempts to exercise them.

In object oriented unit testing, Dallmeier et al. [42] dy-
namically synthesize a state-machine model by moni-
toring the object states in different executions. As test
cases are executed, new object states are observed and
incrementally incorporated into the original model.
The extended model is then used to generate addi-
tional test cases until some stopping criterion is met.
To further enhance the model, a source code scanning
technique is used to extract all available method calls
and invoke them from all obtained states, in a trial-
error process, to reveal the possibly unobserved class
behaviors. Zhang et al. [43] present a similar approach
but use some advanced static analysis techniques to
infer the constraints between method calls and their
arguments. The constraints help to avoid generating
illegal test cases as well as to direct test case gen-
eration toward the unexplored program behaviors to
achieve a higher code coverage.

In service oriented application (SOA) testing, Bar-
tolini et al. [44] introduce an approach to “whiten”
the external binary services in support for testing
the service consumers. An intermediate agent is in-
strumented to the services to expose their coverage
level as the test cases are executed. Based on the data
collected, the test case generator can infer the internal
behaviors of the services and then decides how to
generate test cases for the service consumers.

Our work differs from the above in several ways.
First, our target domain is that of GUIs, which have
enormous, even infinite, input spaces. GUI appli-
cations increasingly integrate multiple source code
languages and object code formats, along with virtual
function calls, reflection, multi-threading, and event-
handler callbacks. These features severely impair the
applicability of techniques that rely on static analysis
or the availability of language-specific and format-
specific instrumentation tools. Second, we have a fully
automated technique. Our underlying model is an
EFG, not a state machine, which, for reasons discussed
in prior work [22], [25] are more appropriate for
this domain. Third, our model enhancement is based
on new events, not states, i.e., we are extending the
input alphabet of the model. Finally, most of the
above approaches rely on code instrumentation. Our
approach, in contrast, does not require code.

6 CONCLUSIONS

As software systems have grown increasingly com-
plex, our testers are tasked with verifying that these
systems function correctly; but the testers do not fully
understand these systems’ input spaces. This problem
is severely compounded in GUIs that have immense,
even infinite, input spaces. GUI testers routinely miss
allowable event sequences, any of which may cause
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failures once the software is fielded. And the tester
may fail to discover that the softwares implemen-
tation allows the execution of some disallowed se-
quences. All this is because the tester has no knowl-
edge of softwares overall input space, i.e., the set of
all possible event sequences that may be input to the
software.

To address some of these challenges, we presented
a new paradigm for GUI testing that we call Observe-
Model-Exercise* (OME*). We described the key features
of OME* and the algorithms used to realize it. An ex-
periment on 8 open-source applications showed that
OME* did much better compared to the current state-
of-the-art. In some cases, we observed more than 200%
improvement in the set of events that we executed.
We also discovered 34 new faults that have not been
detected before.

Our work has implications on the overall GUI
testing lifecycle, which may include the development
of test cases via model-based techniques, capture/re-
play tools, and hand-coding. Armed with our OME*
model—essentially a blueprint of the GUI—the tester
now has a more complete picture of allowed/dis-
allowed sequences of events. We envision that in a
practical testing scenario, a tester will first run the
OME* approach, obtaining the complete EFG, and use
the EFG to further create test cases.

This work presents numerous opportunities for fu-
ture research. In the immediate future, we will extend
our subject application pool. In particular, we want
to use non-Java, non-desktop (e.g., web, mobile) as
well as industrial applications to reduce the external
threats to validity in our empirical studies. Further-
more, we used natural faults (i.e., crashes) to measure
fault detection effectiveness. This approach, on one
hand, provides evidence that our technique can detect
actual faults. On the other hand, we are limited in the
analysis that we can perform. For example, we cannot
examine faults that were missed. For this reason, we
will seed artificial faults in future work. We will also
develop metrics to evaluate the completeness (or more
generally, the quality) of a constructed EFG. This is
necessary because even though OME* substantially
expands the test space (measured by the size of EFG)
than other approaches, it is unclear how much the
constructed EFG can cover a perfectly completed EFG.
Finally, for input supplied to text fields, we intend
to use domain specific data instead of our current
general purpose database.

In the medium term, we will apply our paradigm to
other test case generation techniques (e.g., capture/re-
play, AI planning [4], feedback-driven [25]). Finally,
in the long term, we will apply our techniques to test
web applications and object-oriented software as they
also use test cases that are sequences of events (e.g.,
web user actions and method calls).
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