Relationships Between Test Suites, Faults, and Fault Detection in GUI Testing

Jaymie Strecker Atif M Memon
University of Maryland University of Maryland
College Park, MD, USA College Park, MD, USA
strecker@cs.umd.edu atif@cs.umd.edu
Abstract not reliably be generalized to a wider range of contexts. On

the other hand, the common research practice of assuming

Software-testing researchers have long sought recipesthat all faults are equally severe and finding how many of
for test suites that detect faults well. In the literaturey-e a “representative” sample of faults a testing technique de-
pirical studies of testing techniques abound, yet the ideal tects (e.g., [6, 14, 16, 18]) also ties the results to a spe-
technique for detecting the desired kinds of faults in amive cific context, since it is not clear what a truly representa-
situation often remains unclear. This work shows how un- tive fault set looks like or what class of contexts it would
derstanding the context in which testing occurs, in terms of represent[1, 7, 13, 17].
factors likely to influence fault detection, can make evalu- Thus, it is unclear how data points from software-testing
ations of testing techniques more readily applicable to new studies relate quantitatively to each other, and it is un-
situations. We present a methodology for discovering which predictable how they relate qualitatively to real situasio
factors do statistically affect fault detection, and we-per This work addresses both issues. We show how to evalu-
form an experiment with a set of test-suite- and fault-mdat ate testing techniques so that the results can be more read-
factors in the GUI testing of two fielded, open-source appli- ily generalized to new test subjects and interpreted in new
cations. Statement coverage and GUI-event coverage aresituations. The key is, first, to understand the influences
found to be statistically related to the likelihood of deétec on testing technigues’ effectiveness that can vary across
ing certain kinds of faults. testing instances and, second, to characterize the environ
ment in which an evaluation is performed with respect to
those influences. A researcher or practitioner in a differ-
ent environment—with a different test subject or different

A fundamental question in software testing is how to assumptiorjs about fault seve_rity, for example—could then
build a good test suite. It is a complicated question, since Petter predict, based on the differences between the two en-
the term “good” unpacks into so many competing qualities: vironments, how the evaluated technique would perform in
quick to create, quick to execute, easy to maintain, effec-her case.
tive at detecting faults, and many more. From the results Some past work has started in this direction by studying
of myriad empirical studies, we have accrued a wealth of how certain characteristics of the application under tedt a
data points (e.g., iy seconds, techniqué& detects on av- its coverage during testing influence fault detection [3, 12
erageX faults in versior” of applicationZ). However, the ~ Overall, however, the relationship between applicatioth an
data points come from many different test suites, faultd, an test-suite characteristics has been sparsely exploretic-Pa
applications, and differences among the study subjects mayularly obscure is the way characteristics of the faults iwith
have affected the results in ways we do not yet understandan application and characteristics of a test suite inteact
This makes us hesitate to predict from the existing data howaffect fault detection. With few exceptions (e.g., [2, 7]),
well a technique will perform in a new situation—for exam- empirical studies of testing techniques typically repairim
ple, on a new application. bers of faults detected and faults missed but do not charac-

To make the problem of building good test suites even terize those faults. Yet testers could benefit from such an
more complex, a data point may mean different things qual- analysis.
itatively to people in different contexts. Some research ha The following example, based on a study by Basili and
addressed this by employing metrics that account for suchSelby [2], shows one way that testers could benefit. An em-
qualitative factors as fault severity [4]. But becausetfaul pirical study finds that techniqu€$ and7» each detect, on
severity is a subjective measure, results in these terms canaverage, 54%-55% of a sample of faults. A break-down of

1. Introduction

the results by fault class shows thgt detects fewer faults contributions to research on software testing and software
of classC thanT, does (42.8% vs. 66.7%), but more faults defects, including:
of classC’ (46.7% vs. 30.7%). Suppose that a tester wants e a methodology for studying statistical relationships be-

to know which ofT’ and7?; would likely reveal more faults tween test-suite and fault characteristics and fault de-
in a certain application. In earlier versions, faults ofssla tection and

(1 caused twice as many user-reported failures as faults of o zn experiment that uses the methodology to show
classC,. Considering these facts, the tester optsTar If which of a set of test-suite and fault characteristics are

the tester had not understood how her environment differed statistically related to fault detection for two fielded
from the study’s, she could easily have missed out on the applications.

advantages df>. The next section catalogues prior work relevant to this
Of course, this example makes some assumptions. Foktudy. In Section 3, we build upon prior work in identifying

the tester to truly benefit from the break-down of results by the set of test-suite and fault characteristics to invassig

fault class, the fault classification must be automatabie (u experimentally. Section 4 describes the experiment design

like the classification on which the example is based [2]), Section 5 presents the results, while Section 6 discusses

and the relationship between fault classgsand C> and their implications. In Section 7, we state our conclusions

test suites produced by techniqi@sand7> must be known and point to opportunities for future research.

to persist from the study’s context to the tester’s context.

More generally, for conclusions about fault detection draw 2. Related work

from a sample of faults and a sample of test suites to be . . . ,
generalizable to other sets of faults and other test siitgs, When applying a testing technique to a piece of software,

measurable characteristics of faults and test suites thgt m a tester may be surprised to find that the test suite produced
be related to fault detection must be identified, (2) the in- performs better or worse than she had expected, based on

fluence of these characteristics, independently or jointly ~ €XPerience with the technique in other contexts. This sec-
fault detection must be validated in a small set of contexts, ion discusses variables that have been shown or conjekcture
and (3) the influence on fault detection must be established!® influence a test suite’s effectiveness and efficiency at de
empirically or analytically (or preferably both) on a large tecting faults.

set of contexts. 2.1. Test-suite variables

This work makes progress on (1) and (2), focusing on probably the most studied way that test suites can dif-
GUI testing, in which test cases consist of sequences offer s in the technique used to make or vet them. In many
events that a user might perform on a GUI. First, we iden- studies, a sample of test suites yielded by a technique is
tlfy a set of characteristics of faults and test suites that w used to evaluate the technique empirica"y against otlser te
expect may affect fault detection: for faults, branch peint ing or validation techniques. Techniques that have been
nearby, probability of detection by other techniques, and compared in this way include code reading, functional test-
type of mutant (method- or class-level); and for test suites ing, and structural testing [2]; data-flow- and control-flow
length of test cases, size, event-pair coverage, and eventhased techniques [9]; regression test selection techsique
triple coverage. We emphasize that this study is a first step|6]; variations of mutation testing [14]; and strong and wea
in a direction requiring much future research, so the set oftest oracles for GUIs [11].
characteristics studied is not meant to be comprehensive, Eyen when produced by the same testing technique, test
only sufficient to demonstrate a methodology for studying suites can differ in important ways. Rothermel et al. [16]
such characteristics. Second, we statistically analyzesh jnvestigate how two test-suite characteristics, in additd
|ati0nShip between these characteristics and fault detect testing technique, affect the number of faults detected On
for two fielded, open-source, Java applications, usinglogi - characteristic igranularity, a measure of the amount of in-
tic regression analysis to isolate the effect of each. The re put given by each test case. The otlygquping describes
sults show that a fault’s detectability by statement-cager the content of each test case and its meaning to testers (e.g.
adequate test suites and, for one application, a fault's mu-fynctional grouping, random grouping). For the applica-
tant type, a test suite’s event-triple coverage, and the-int tjons studied, granularity significantly affects the numdfe
action between mutant type and detectability by statement-faylts detected. Grouping (functional vs. random) may also
coverage-adequate suites, are significantly related to thehyaye an effect, though weaker.
probability of fault detection by GUI test suites. Xie and Memon [18] investigate granularity and other

Although this work focuses on GUI testing so that our test-suite traits in the arena of GUI testing. The variabfes
experimental infrastructure can sit atop the existing GUI interest are the number of test cases and granularity of test
Testing Framework (GUITAR) [18], our approach is not cases, which they catest-suite sizendtest-case length
limited to this domain. In fact, this work makes several respectively. Test-suite size is found to affect the number

of faults detected, while test-case length affects the kind of faults found in earlier versions of the file) predicts whic
faults detected: some faults can only be reached by longeffiles contain the greatest number or highest density offault
test cases. The authors conjecture #tetllow faultsthose If a test suite targets those files, rather than spreadingreov
that can be detected by shorter test cases, lie in event hanage evenly across the system, then it is likely to detect more
dlers with less complex branching thdeep faultsthose faults.

that can only be detected by longer test cases.)

In another study of GUI testing, McMaster and 23+ Fault variables
Memon [10] show that the coverage criterion used in test- ~ Section 1 argued that empirical evaluations of testing
suite reduction affects the size of the reduced test suitesechniques are often more generalizable if the reported re-
and the number of faults they detect. The effect on fault- sults for fault detection are broken down by fault type. A
detection effectiveness may be indirect, however, becausdew studies do this, including Basili's and Selby’s [2] com-
the criteria that produce more effective test suites alse pr parison of code reading, structural testing, and functiona
duce larger test suites. The study shows that test suites retesting. Two orthogonal fault taxonomies are used to char-
duced using call-stack coverage detect many more faultsacterize the faults studied. One classifies faults as either
than randomly reduced suites of the same size. Whetheiomissive or commissive; the other, as initialization, coht
the same is true for the other criteria studied (statement,data, computation, interface, or cosmetic faults. In some
method, event, and event-pair coverage) for GUI-based ap-cases, like the example given in Section 1, the validation
plications remains to be studied. technique and the fault type appear to interact in theirinflu

A study by Elbaum et al. [3] applies principal compo- ence on fault detection.
nent analysis and regression analysis to a large set of test- In a study comparing data-flow and mutation testing,
suite characteristics related to regression testing. ©f th Harrold et al. [7] classify detected faults using a diffdren
characteristics studied, two related to coverage—ntean taxonomy. In it, classes of faults are distinguished byrthei
percentage of functions executed per test casittheper- effect on the program dependence graph, a representation
centage of test cases that reach a changed funetioest of the data and control dependencies in the application un-
explain the variance in fault detection. The other characte der test. At a coarse level, the taxonomy classifies faults as
istics studied (which include the number of test cases in theeitherstructural—altering the structure of the program de-
suite, the number of functions and statements executed pependence graph—atatement-level-altering a statement
test case, and the number of changed functions and statebut leaving the graph structure unchanged. Unfortunately,
ments executed per test case) turn out to be less influential to our knowledge, no tools that implement this analysis for
Java applications are currently available.

) Offutt and Hayes [13] recommend that faults be charac-
In the study by Elbaum et al. [3] described above, char- (grized by theisemantic sizevhich can be thought of as the

acteristics of the application under testare also inve&ty opapility that a random test case detects the fault. Smil
The characteristics describe the size and complexity of ap-easures have been used in empirical studies by Andrews

plications and changes made to them. Of the characteristicg 4. [1] and Rothermel et al. [16] to characterize faults’

studied, thenean function fan-ouand thenumber of func- ¢55e of detection with respect to the test pools used in the
tions changedogether explain the most variance in fault gy,dies. This study leaves out semantic size because it is

detection. , _ o confounded with test-suite size: the greater a fault's sema
Morgan et al. [12] also investigate how application char- iic size, the more likely that smaller suites detect it.
acteristics and test-suite characteristics jointly inflce

fgult detectpn. Here, t.he yanab_les of mterest_m-swte 3. Variables of interest
size proportion of application unitgblocks, decisions, and
variable usesyovered and application sizemeasured in As Section 1 noted, this work focuses on GUI testing
lines and application units. In quadratic models fit to the so that we can take advantage of existing infrastructure for
data set, each characteristic by itself (i.e., linear terthé performing empirical studies. In GUI-based applications,
model) and some squares or products of characteristics (i.e a user sends input by performing GeVvents(e.g., click-
guadratic terms) are found to contribute to the variance ining on a button, typing in a text box) and receives output in
fault detection, although the influence attributed to teste the form of changes to the visible GUI windows and wid-
size alone is slight. gets, whose properties together make up the GUI state. The
A study by Ostrand et al. [15] of several sizable software portion of the application code that executes in responae to
systems suggests another way in which application and testGUI event is called thevent handlerAs in prior work [18],
suite characteristics can interact. In this study, a s$iedis ~ we define a test case to be a sequence of GUI events and its
model whose parameters are properties of individual files in output to be the sequence of GUI states that the application
the system (e.qg., file age, number of lines of code, numberpasses through. The GUI state is checked after each GUI

2.2. Application variables

event. A test case detects a fault if the actual state is not as

expected at any of those checks. GUI test cases are actually: Table 1. Study variables

system tests, as they exercise the whole software, indudin Abbrev. Description
non-GUI code. L_en Lf_ength of test cases
Test Size Size (number of events)
As research into factors affecting fault detection ma- | suite E2Cov | Event-pair coveragg size
tures, we hope that a paradigm for selecting charactegistic E3Cov | Event-triple coverage event-pair cov-
to study will emerge. But for now, while our selection is erage
rooted in the literature, it must remain somewhat ad hoc. Mut Mutant type (method- or class-level)
To make our work more replicatable, we chose characteris{ Fault Branch | Branch points in faulty method's byte-
tics that could be measured objectively, automaticallg an code _ _
without special artifacts such as specifications [17]. StmtDet | Estimated probability of detection by
statement-coverage-adequate test suife

Section 2.1 named several characteristics of GUI test
suites that can affect the number and kinds of faults a _
suite detects. This study examines four such characteris4. Study design

tics: length of test case&n), size Gize), event-pair cov- We want to know which of the variables listed in Ta-
erage divided by test-suite sizBZCov), and event-triple 6 7 affect the likelihood that fault detection occurs in a
coverage divided by event-pair coveragg8Cov). These et suite, faultpair. In doing this analysis, there are sev-
are summarized in Table 1. The length of a test case isg4) tricky points. First, to isolate the effect of each indi
the number of events it contains; in our study, all of the |5 variable, the values of the remaining variables must
test cases in a suite have the same length. (This assUmpse accounted or controlled for in some way. This presents
tion would not necessarily hold for real test suites, but it 4 challenge because several of the variables (E2Lov)
allows us to isolate length as a variable for the purposes of 4, take on hundreds of values (theoretically), and any cat-

the experiment.) The size of a test suite is the total NUM- o4 orization of these values (e.g., into “low”, “medium”dan

ber of events the test suite executes, counting duplicates;‘high,, event-pair coverage) would be artificial. Secoimd

the suite size of ten length-two test cases would be twenty.;araction effectmmong variables may occur. For example,

Event-pair coverage and event-triple coverage are the nuMjncreasing the values of two variables at once may either

bers of unique length-two and length-three event sequences, ity or suppress the variables’ individual effects oa th
respectively, in the test cases that comprise a suite. Thesﬂependent.

two variables are normalized by test-suite size and event- 1 aqe points have led us to conduct our study by collect-
pair coverage, respectively, to avoid confounding their in ing a random sample dfest suite, fault pairs; measuring
fluence on fault detection with that of test-suite size and of {4, \alues of the variables in Table 1. as well as fault de-
each other. We could have looked at coverage of length-¢(ion (a4 boolean value) for each pair; and analyzing the
four and longer event sequences but chose not to until Wega, set with logistic regression to test hypotheses aheut t

had verified that coverage of shorter sequences was rEIate?hdependent variables. We now explain each of these steps
to fault detection. Since all test suites in the study contai .

each event at least once, no information about the events,

such as their complexity or content, is included among the 4-1. The Sample of (Test Suite, Fault Pairs
variables. Subject applications. Two open-source applications

from SourceForgeserve as subjects for this study: Cross-
fault'’s chances of detection. Table 1 summarizes the fauItV;’:O'\;ldsage (ICfWS)’ a c;rossword—deagn Tlcxzjl;“ar?ddFreeMlPd
variables studied. As Section 2.1 mentioned, it has beené trz’ a t0o lor cretagr_]gJ ocumzn:\s ca eGUIIT“'Ir']h maps .I'
speculated that the number of branch points in an event han- Ot' ar,e 'mpl eg_ﬁnf tlr? a"abl‘?‘” (?\t/ﬁ a - | Nese appll-
dler Branch) together with test-case length is related to the cations' avaliabiiity 10 th€ public and Ih€ir use in prevsou
probability that a fault in the event handler is detected. In research [_19] make them gttrgctwe ganqmates for thigstud
prior work [17], we have asserted that an effective way to TabI(EIZ gkl\ll_es eafch gpplllcoagon sd§|ze||n non-étl)mmented,
characterize the faults detected by a testing technigue is i noguﬁ]AF;n?rio code (. f) andinc ":.ISS(;TQ‘ (S('j)'

terms of their detection by other techniques. Hence, we con- - The (test suite, fault pairs in this study are

sider the ability of statement-coverage-adequate testssui built from test cases that exe_cuf[e the SUbj.ECt appl@cat?ons
(StmtDet) to detect a fault. The faults used in this study are and faults that are embedded inside the subject application

generated by class-level and method-level mutation 0pera-T00|S 'rr]' the GL_Jl Testlljng Framewo:ck (GUITAR) [12] ?]uto-
tors, which change the structure of the program differently mate the creation and execution of test cases and the com-

in ways that may affect fault detection, so we classify each parison of test outputs (i.e., the oracle procedure). GRTA
fault accordingly Mut). Lhitp://sourceforge.net

We also investigate the influence of fault variables on a

enables us to produce much larger data sets than would be
feasible using other, more labor-intensive approaches suc Table 2. Size of applications, test suites, and
as capture-replay tools. Since GUITAR itself contains some test pools.
faults, we manually examine the test results to weed out
many of GUITAR’s false reports of test-case failure. App. | LOC [Cls. | TS(l) | TS() | TP(2) | TP(20)
Sample size. The sample oftest suite, fault pairs must CWS | 3220] 36 8 46 402 226
. - ! . FM 24665 | 858 117 424 | 1093 455
be large enough to provide the desired levels of significance
(e« = 0.05) and power { — § = 0.80) when the inde-
pendent variables’ influence on the dependent variable is
not too faint. The faintest detectable influence is a func-
tion of theeffect sizethe minimum coefficient magnitude
of interest in the logistic regression model (Section 4.3).
Typically, a researcher fixes the effect size at the smallest
value of practical significance. Having no precedent in the
software-testing literature, we select an effect size 8f 0.
which seems reasonable and results in a feasible sampl
size. The levels of significance and power limit the prob-
abilities of Type | and Type Il errors t0.05 and0.20, re-
spectively. Both errors have to do with “unlucky” samples.
A Type | error occurs when a relationship in the sample data
can be found, but no such relationship exists in the popula
tion (i.e., the null hypothesis is spuriously rejected). yb&
Il error occurs when a relationship does exist in the popula-

tion, butit cannot be fqund in the sample (|.e_., the research test suites picked from the pool would share more than a
erroneously fails to reject th? m_m hypothe3|s) [5] i small percentage of test cases. After the test cases were ex-
The necessary sample size is estimated by applying thescyted, however, the pool size was reduced: test cases that
procedure outlined by Hsieh et al. [8] to data from a pilot fajled spuriously on théth event (as determined by exam-
study. In the pilot study, a sample of 1Q@st suite, fault jning statement coverage of lines with seeded faults) were
pairs is analyzed for one subject application, CWS, follow- removed frombucket; t0 bucketso. Table 2 shows the re-
ing procedures for test-pool generation, test-suite coost sulting number of length-two and length-twenty test cases
tion, and fault seeding similar to those described in the res i, the pool (TP(2) and TP(20)).

of this section. From this data, for the significance level, 104 giites. Each test suite is constructed by randomly
power, and sample size noted above, the sample size UMSgecting test cases from some fixed, randomly chosen

out to be 146. Details of the sample-size calculation are p,c1et in the test pool until the test suite covers all GUI

given in Appendix A. events that the test pool covers. A test case is only added to

Test pool. As just explained, over 100 test suites must the suite if it contains some event that the suite does not yet
be run for each subject. A test suite can consist of hundredsgyer.

of test cases, and each length-twenty test case takes a few payjts So far, we have explained how the test suites in

mi_nutes to run. If each _a.dditional test suite in the study re- ihe (test suite, fault pairs are generated. To obtain a set of
quired hundreds of_addmonal test cases to be selected fro”?aults, experimenters typically use one of three apprasiche
the test-case domain and run, evaluation of the 100-plus tesigentifying actual faults inserted by the developers of the
suites would be infeasible. The task is made feasible by re-subject application, seeding faults by hand, or seedirlgsfau

stricting the test-case domain to a relatively small sdedal ,rogrammatically. Each approach has its pros and cons, dis-
thetest pool The test pool must be small enough that all ¢\;ssed more thoroughly elsewhere [1].

of its test cases can be executed in a reasonable amount gacause of the large number of faults needed for this
of time, yet large enough that test suites picked from the study, we opt for the third approach, automatic seeding,
pool are sufficiently different from one another. The latter using MuJavd The oracle problem—classifying a test-

requirement depends on the number of test cases per test,sa execution as “passed” or “failed’—is made tractable

suite. Table 2 lists the minimum and maximum number of y, creating multiple faulty versions of the applicationgea
test cases per test suite (THand TS()) for each applica- geeged with just one fault. If the output of a test case dif-

tion. . fers when it is run on a faulty version and on the “clean”
Figure 1 shows the algorithm used to construct the test

pool, which results in nineteen “buckets” of test cases, one 2http://www.ise.gmu.edu/ ofut/mujava/

for each length. Test cases do not exceed twenty events
because GUITAR often fails spuriously from timing prob-
lems with longer test cases. The minimum test-case length
is set at two, rather than one, because we anticipated that
the sufficient test-pool size for some applications would ex
ceed the number of possible length-one test cases—yet we
wanted each bucket in the test pool to initially contain an
%qual number of test cases with no duplicates. The test cases
are built such that each length-two to length-nineteen test
case is a prefix of a length-twenty test case, which permits
a time-saving shortcut in test-case execution: we need only
run the length-twenty test cases, checking the GUI state af-
“ter each intermediate event, to obtain results for the kengt
two to length-nineteen test cases as well. The number of it-
erationsjters, was chosen to limit the probability that two

Algorithm 1 Algorithm for constructing the test pool. value for eachtest suite, faultpair (1 if the test suite de-
succs(event) is the set of successors of the event in the tects the fault, 0 otherwise), is straightforward to conaput

EFG. For a test case ucket;, last(testCase) is theith This leaves two of the fault variableBranch andStmt-
(i.e., last) event in the test case. atdSuccs(testCase) Det. Branch is found by noting in which method (if any) a
is the set of events such thattCaseoevent € bucket;; 1. fault occurs and analyzing the control-flow graph created
1: bucket; + {all events in applicatioh by Sofyd for that method. StmtDet is calculated using
2: i+ 0 statement-coverage traces recorded by ras$r each test
3: whiles <itersdo case is run on the clean version of the application. One hun-
4: for tc € bucket, do dred length-twenty test suites are constructed using aproc
5 tc' —te dure similar to the one described in Section 4.1, except that
6 for 4 from 2 to 20do)) the coverage criterion used here is “100%” statement cover-
;' ;]fﬁf;’o;__“g‘iigwt(tc)) — covSuces(tc’) age. The percentage is in quotes because ensuring that ev-
9 covSuces(tc) — & ery executal_:)le statement is covered is a hard problem; we
10: uncov — suces(last(tc')) merely require that each test suite cover all statements tha
11: end if are exercised at least once by the test pool.
12: e < random event inincov 4.3. Logistic Regression Analysis
13: COIUS“CCIS(tC’) « covSuces(ic’) Ue For statistical analysis in a study such as this, with a mix-
14 le—tcoe) ture of continuous and categorical independent variables
ig: eng?gfeti bucketi Utc and a boolean dependent variable, logistic regression is an
17; end for obvious choice. Logistic regression models are a variation
18 i it1 of linear regression models (e.g., best-fit lines) in whiuod t
19: end while logit of the dependent’s probability, rather than the proba-
bility itself, is expressed as a linear function of the indep
dents.

version (in which no faults are seeded), then we say that The logit function is

the test case detects the fault. For each subject applica- 2

tion, all possible mutants are created (9458 for CWS and logit(z) = 1og(1 — x)

53860 for FM); from these, mutants are randomly selected

for the(test suite, faujtpairs. Thus, the numbers of mutants Whenz ranges from 0 to 1, as bofbet and Pr(Det = 1)
of different types found in the pairs are proportional to the do,logit(x) ranges from-oo to co. Let I be the vector of
numbers of opportunities for seeding those mutants, makingindependents:

the fault set biased in the sense that some mutant types_ are p_ [Len, Size, E3Cov, E2Cov, Mut, Branch, StmtDet]
better represented than others. MuJava creates two kinds
of mutants: “traditional” or method-level (e.g., insegia The logistic regression model of interest, then, is
decrement operator at a variable use) and class-leve] (e.g. logit(Pr(Det = 1)) = a + g.T
changing the type of a data member).

. . where« is a constant angﬁ is the vector of coefficients
4.2. Measurement of (Test Suite, Fault Pairs for I. Given a data set of and Det values, a maximum

Several of the characteristics st suite, faultpairs |jikelihood estimation algorithm finds values farand 3.
listed in Table 1 can be observed before any test cases argjs is calledfitting the model to the data. In this study,
executed. This s true of all of the test-suite variabledcWh he R software environmeéis used to do model-fitting and
are straightforward to measudut is easily obtained from ,iher statistical analysis.
the output of MuJava. In a model that fits the data well, the coefficieptsn-

Once the test pool has been executed on the clean vergicate the magnitude and direction of their respective-inde
sion and on each faulty version of the subject application— pendent variables’ influence on the logit of the dependent
a task requiring hundreds of hours of computation time, yriaple. Usually, logistic regression coefficients arerin
made feasible by running test cases on the distributed SYSpreted by transforming them intodds ratios If an event

tem Condot—GUITAR's output (an XML representation occurs with probability, theoddsof its occurrence are
of the GUI state after each event is executed) from the clean P

and faulty application versions is compared for each test odds(p) = -5
case to determine if it detected the fault. When it is known P

which faults each test case dete®@st, the fault-detection “nttp://sofya.unl.edu
Shitp://www.glenmccl.com/instr/index.htm

Shttp://www.cs.wisc.edu/condor/ Shttp://www.r-project.org

This is the ratio of the probability that the event occur$io t

probability that it does not occur. It is alsap(logit(p)). Table 3. CWS: Data summary.

. - Variable Min. Q1 Med. Q3 Max.
The odds ratio fo;, StmtDet | 0.0000 | 0.0000 | 0.0000| 1.0000 | 1.0000
OR;(A) = exp(FiA) Branch 1 3 12 16 21
E3Cov | 0.7619| 1.1206| 1.1922| 1.2421 | 1.3480
is the factor by whictvdds(Pr(Det = 1)) increases when E2Cov | 0.6937 | 0.7956 | 0.8520 | 0.9491 | 2.6875
I; is increased byA and all other independents are held Size 16 253 330 391 551
constant. (For dichotomous independents sucBrasch, Len 2 7 11.5 17 20
A mustbe 1.) Variable Values
To evaluate how well the computed logistic regression Class-level (0) | Method-level (1)
models fit our data, we performchi-square test of good- Mut 86 60
ness of fit This statistical test determines whether the mag- Det Undetected (0) Detected (1)
nitude of error is acceptably low. Bgrror, we mean the 88 58
discrepancy between the predicted value®ofDet = 1),
as computed by plugging values bfrom the data into the
model, and the actual valuesDét in the data. For logistic _ Table 4. FM: Data summary.
regression models, the error metric used is calledikiee Variable | Min. Q1 Med. Q3 Max.
lihood ratio. The likelihood ratio “reflects the significance StmtDet | 0.0000 | 0.0000| 0.9800 | 1.0000 1.0000
Branch 1 4 11 19 26

of the unexplained variance in the dependent” [5] and is
computed by the R application during model-fitting. Ifthe —z5= V7735 0.8906 | 0.9065 0.9134 | 0.9260
r_nodel flts_well, then t_he d|str|bu_t|o_n of_ the I|kel|ho_od ra- Size 824 | 1468 1772 2130 | 2580
tio approximates a chi-square distribution. The chi-squar [5n 2 6 10 15 20
test of goodness of fit assesses how much the likelihood ra-
tio deviates from the expected chi-square distributiothef

E3Cov 0.3970 | 0.8643 | 0.9418 | 0.9916 | 1.0430

Variable Values
Class-level (0) | Method-level (1)

deviation is small enough, implying that the model fits well, | Mut 63 83
then_t_he chi-square test tells us as much:nigsstatistically Undetected (0) Detected (1)
significant. Det) 76

The significance of individual variables in the model can
be assessed in a similar way. In this case, two models are
fit to the data, one that includes the variable in questioa (th how much more likely it is thabet = 1 for method-level,
full mode) and one that does not (theduced modél Ex- as opposed to class-level, mutants.
cept for the variable in question, the two models must in- when variables are iteratively removed from the model
clude the same set of variables, so that the reduced modejysing likelihood ratio tests) and the reduced models
is nested within the full model. Aikelihood ratio testisa are re-evaluated until only significant variables remain,
chi-square test of the difference between the two models'the reduced model in Table 6 results. This model
likelihood ratios. If the outcome of this test ot statisti- estimates that the odds of fault detection increase by
cally significant, indicating that the two models are approx exp(0.75095) = 2.1190 whenStmtDet increases by 10%
imately equivalent, then the variable in question is superfl gnd byexp(0.76295) = 2.1446 when theE3Cov increases

ous in the full model and can be dropped from it. by 10%. Further, the odds of detecting a method-level mu-
tant areexp(0.6475) = 1.9108 times the odds of detecting
5. Results a statement-level mutant. For both the full and the reduced

Table 3 gives an overview of the data collected for CWS, model, the chi-square test of goodness of fit gives a non-
while Table 4 shows the same for FM. Although the two significant result, indicating that the models fit the datél.we
applications’ data sets have many similarities, one netabl Table 7 shows the model that results when a model in-
difference is that FM'Size values are much larger. cluding all two-way interactions is fit to the data and non-

CWS. Table 5 shows the fitted model when all indepen- significant terms are iteratively dropped, as just desdribe
dent variables but no interactions between variables are in Again, a chi-square test of goodness of fit indicates that the
cluded. In this and other figures, variables significantat th model fits adequately.

0.05 level are italicized. Recall from Section 4.3 that each FM. Table 8 shows the model built from all main ef-
coefficient estimates the log of the odds ratio of the inde- fects, while Table 9 shows the model obtained by iteratively
pendent variable’s effects on the dependent. Bechige reducing the full model until only significant terms remain,
has just two possible valueslass-levebr method-level- as was done for CWS. The reduced model estimates that
encoded as 0 and 1, respectively—its coefficient indicateswhenStmtDet increases by 10% the odds of fault detection

Table 5. CWS: All main effects.

Table 8. FM: All main effects.

Term Coef. Std. err. P

Intercept | -19.320275| 11.197035

Mut 0.845414| 1.006531 0.043
StmtDet 8.605552| 1.802348| 9.276e-32
Branch -0.005935| 0.057449 0.688
E3Cov 10.124242| 11.051126 0.006
E2Cov 1.575090| 3.083643 0.451
Size -0.009948| 0.017290 0.696
Len 0.302461| 0.250067 0.209

Term Coef. Std. err. P

Intercept | -51.632032| 33.409756

Mut -1.871670| 1.060126 0.283
StmtDet 8.286633| 1.560292| 7.662e-34
Branch -0.087791| 0.064158 0.069
E3Cov -11.276352| 15.762959 0.628
E2Cov 76.814515| 48.580206 0.125
Size -0.008781| 0.007747 0.862
Len 0.613092| 0.464744 0.170

Table 6. CWS: Reduced main effects. Table 9. FM: Reduced main effects.

Term Coef. Std. err. D Term Coef. | Std. err. D
Intercept | -13.8436| 3.7367 Intercept | -3.1243 | 0.5858
Mut 0.6475| 0.9406 0.043 StmtDet | 6.0941| 0.8067| 3.46e-33
StmtDet 7.5095| 1.2689| 9.276e-32
E3Cov 7.6295| 2.8486 0.005

high StmtDet value increases a mutant’s odds of detection.

According to the model in Table 7, increasing a test suite’s
increase byxp(0.60941) = 1.8393. Table 10 shows the eyent-triple coverage by 10% while holding other variables
reduced model created similarly from a model that includes cgnstant increases the suite’s odds of detecting a givén fau
all two-way interactions between variables. For all of thes by a factor about 2.3, and a fault that is 10% more likely to
models, a chi-square test of goodness of fit shows that theyhe detected by a statement-coverage-adequate test ssiite ha
fit the data adequately. about 1.9 times greater odds of detection by GUI testing.

. . There are at least two alternate explanations for class-

6. Discussion level mutants’ overall propensity for detection in CWS.

For both CWS and FM, one dominant factor affecting a ©One is that class-level mutants located outside of method
fault's probability of detection in this experimentis, paps ~ bodies (e.g.member variable initialization deletigmmay
not surprisingly, its probability of detection by staterhen be exposed by executing any of several statements, unlike
coverage-adequate test suitgngtDet). This validatesthe =~ Mmethod-level mutants, which affect just one statement. An-
common use of statement coverage in practice, but with aother is that, since coverage of mutants outside methods
caveat: statement coverage in this study may be correlateds not directly observable from statement-coverage traces
with false reports of fault detection by GUITAR, as noted Stuch coverage may be correlated with false reports of fault
in the threats to validity below. In this study, all faultsnee detection. In either case, the suspected influence of extra-
mutations of single source lines and most occurred insidemMethod mutants accounts for the fact thaft is significant

method bodies. Future work will investigate our hypothe- for CWS, which has thirteen extra-method mutants, but not
sis that statement coverage is less tightly coupled with fau for FM, which only has three. The positive coefficient of
detection for other kinds of faults. Mut x StmtDet for CWS may compensate, in a sense, for
For CWS, several additional factors are found to influ- the negative coefficient d¥lut.
ence fault detection: mutant tprQt), the ratio of event- ThatE3Cov does not bear a relationship to fault detec-
trip|e coverage to event-pair Coverag-__e\?,(:ov), and the tion in FM’s data suggests that the state spaces of FM and
interaction betweeMut and StmtDet. The results show CWS differ in some important way. More of CWS’s events
that, while class-level mutants are more likely to be deict May interact semantically with each other (as defined by

overall, the combination of being method-level and having a Yuan and Memon [19]) perhaps making it more likely that a
particular sequence of events, rather than some single,even

must be executed to expose a randomly placed fault.
Table 7. CWS: Reduced interactions.

Term Coef. | Std. err. P
Intercept -13.482| 3.944 Table 10. FM: Reduced interactions.
Mut -4.457 4.651 0.043 Term Coef. Std. err. P
StmtDet 6.202 1.198 | 9.276e-32 Intercept -3.1494 | 0.5939
E3Cov 8.276 3.122 0.005 StmtDet 11.8639| 3.5034 | 3.46e-33
Mut:StmtDet 7.496 6.425 0.046 StmtDet:Branch | -0.3023| 0.1508 0.003

The lack of relationship between test-case lengdnj ble, may violate this assumption, though negligibly if the
and fault detection partly confirms earlier results by Xie test pool is large enough [5].
and Memon [18] and Rothermel et al. [16], which show
that test-case length/granularity affects which, but mth 7. Conclusions and future work

many, faults are detected. In our resultsz test-case léagth This work explored the relationship between properties
not found to affect fault detection, but neither are any qual f 4 (test suite, fault pair and the likelihood that the test
ities of faults in tandem with test-case length. In parell gite detects the fault. We think research on this topic will
our hy_pothe5|s thaf[the level of branchln_g in t_he method SUr hot only supplement the body of empirical software-testing
rounding the fault is one of these qualities (inspired by the gy, djes, but also prove valuable to practitioners. Of the te
conjecture of Xie and Memon [18]) is not confirmed by the gyite and fault properties studied in this work—mutant type
data, although threats to validity may have interfered. Ap- detectability with statement-coverage-adequate tesesui
parently, if some variable or variables affect which faults ,,5nch points, GUI-event-pair and event-triple coverage,
are detected with different-length test cases, they remoain {oct_syite size, and test-case length—a software tesiéd co
be found. reasonably measure most with existing tools; in principle,
Threatsto validity. Threats to internal validity concern measurement of all properties could be automated. Our
factors other than the independent variables that may acexperiments with two GUI-based applications support the
count for study results. Because the GUITAR framework hypothesis that certain of these properties can influence
used to generate and run test cases is an evolving researdult detection—specifically, detectability with statemhe
tool, it sometimes generates invalid test cases or failsno r - coverage-adequate test suites, event-triple coveraganu
valid ones. We tried to minimize this threat by checking type, and the interaction between the first and third of these
GUITAR's results against statement coverage and discountyvhen these results have been replicated in a broader set of
ing spurious failures (Section 4.1). This correction ftsel testing situations, a software tester will be able to predic
may have biased the results to some degree, since test cas@gth some confidence how changes to a test suite would af-
with certain characteristics (e.g., covering a certaiméve fect its ability to detect the kinds of faults most likely te b
may be more likely to spuriously fail. Some GUITAR- present. Further, understanding the similarities aneudiff
reported failures that did not contradict statement-cager ences between her context and the context in which some
traces may still have been spurious, so easily-coveretfaul empirical study is performed, the software tester would bet
may be correlated with false reports of fault detection. ter understand how to interpret the results of the studyiin he
Threats to external validity limit the generalizability of own context.
study results. Like any study whose sample of test suites Much future work remains. This includes addressing
and faulty applications is limited, this study does not deab threats to validity encountered in this work, improving the
us to predict with any confidence what would happen with statistical model relating characteristics of testingaions
other, different test suites and faulty applications. East, to fault detection, and providing techniques and tools to
Section 1 explained, this experiment is a starting point for practitioners.
studies of a much broader sample of testing techniques and Many of the threats to validity in this work can be miti-
software. gated by performing similar experiments with different ap-
Threats to construct validity are discrepancies betweenplications, different kinds of faults, and different tesfi
the variables conceptually of interest and the variables ac techniques. If statistical models constructed from differ
tually measured in the study. The study variaBtanch is ent data sets vary widely, then additional model parameters
the number of branch points in thstecodeof the faulty may need to be sought to explain the variation. In fact, we
method but it serves as a proxy for the number of branch do not expect the set of model parameters used here to be

points in thesource codef the faultyevent handlefSec- ~ complete; they were just a starting point that allowed us to
tion 3). The latter value is hard to measure, since it is not demonstrate a general methodology for evaluating model
clear how to map source-code lines to event handlers. parameters. In the future, model parameters for classes of

Threats to conclusion validity are problems with the way Software other than GUI-based, including the closely re-

the study employs statistics. The two main threats here aris lated class of event-driven software, will need to be sebect
from assumptions of logistic regression analysis that may @nd evaluated.

have been violated. First, all relevant variables are assum
to be included in the model. Of course, one goal of this 8. Acknowledgments

research is to identify the variables that are relevant- Sec This work was partially supported by the US National
ond, the data set dtest suite, fault pairs must be chosen Science Foundation under NSF grant CCF-0447864 and the
by independent sampling. Building the test suites from a Office of Naval Research grant NO0014-05-1-0421. The au-
test pool, though necessary to make the experiment feasithors thank Jeff Offutt for his help with using MuJava.

A. Calculation of Sample Size

The following formulas are due to Hsieh et al. [8] and
were implemented by this paper’s authors in the R software
environment. The sample sizerequired to test one inde-
pendentX in the presence of the other independents is

C1-R2?
wheren; is the sample size that would be required to test

X if it were the only independent.
For continuous independent variables,

(Zlfa/Q + Zl—B)2

rx(l—rg)3*?

whereZ, is theuth percentile of the standard normal distri-
bution and3* is the effect size. The value of;, the proba-
bility of fault detection at the mean value &f, is estimated
by fitting a logistic regression model to the pilot-studyalat

n

ny =

for X and the dependent variable, then plugging the sample [9]

mean ofX in for X.
For dichotomous (boolean) independent variables,

(Zl—a/2V1/2 + Zlfﬁwl/Q)Q

ny = (ro — 11201 — s1) , Where
vV o= r(l—r)
51
W = ro(l—ro)—i—rl(l_rl)(l_sl)

S1

Inthese formulass; is the proportion of the pilot-study data
with X = 1; ro andr; are the empirical probabilities of
fault detection wherX' = 0 and X = 1, respectively; and

r = (1 — s1)ro + s171 is the overall empirical probability

of fault detection.

This takes care of, leavingR?, the squared multiple
correlation coefficient relating to the rest of the indepen-
dents. Inthe R environmenk? is calculated as a side effect
of fitting a linear model, in whiclX is predicted by the rest
of the independents, to the pilot-study data.

Finally, to obtain a sample size for our study, we find
n for each independent variable and take the maximum of
these.

References

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? Hroceedings of
ICSE '05 pages 402-411, 2005.

[2] V. R. Basili and R. W. Selby. Comparing the effective-
ness of software testing strategidSEE Trans. Softw. Eng.
13(12):1278-1296, 1987.

[3] S.Elbaum, D. Gable, and G. Rothermel. Understanding and
measuring the sources of variation in the prioritizationesf
gression test suites. Proceedings of METRICS 'Opages
169-179, Apr. 2001.

S. Elbaum, A. Malishevsky, and G. Rothermel. Incorpo-

rating varying test costs and fault severities into tesecas

prioritization. InProceedings of ICSE 'QJpages 329-338,

2001.

G. D. Garson. Statnotes: Topics in multivariate analysi

2006. http://www2.chass.ncsu.edu/garson/

PA765/statnote.htm

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and

G. Rothermel. An empirical study of regression test se-

lection techniques. ACM Trans. Softw. Eng. Methodol.

10(2):184-208, 2001.

M. J. Harrold, A. J. Offutt, and K. Tewary. An approach to

fault modeling and fault seeding using the program depen-

dence graphd. Syst. Softw36(3):273-295, 1997.

F. Y. Hsieh, D. A. Bloch, and M. D. Larsen. A simple

method of sample size calculation for linear and logistic

regression.Statistics in Medicingl7(14):1623-1634, July

1998.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-

periments on the effectiveness of dataflow- and controlflow-

based test adequacy criteria. Pmoceedings of ICSE '94

pages 191-200, 1994.

S. McMaster and A. Memon. Call stack coverage for GUI

test-suite reduction. IRroceedings of ISSRE '0pages 33—

44, 2006.

[11] A. M. Memon and Q. Xie. Studying the fault-detection ef-
fectiveness of GUI test cases for rapidly evolving software
IEEE Trans. Softw. Eng31(10):884—896, 2005.

[12] J. A. Morgan, G. J. Knafl, and W. E. Wong. Predicting fault
detection effectiveness. IRroceedings of METRICS '97
page 82, 1997.

[13] A.J. Offutt and J. H. Hayes. A semantic model of program
faults. InProceedings of ISSTA '9fages 195-200, 1996.

[14] A.J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zap
An experimental determination of sufficient mutant opera-
tors.ACM Trans. Softw. Eng. Methoddh(2):99-118, 1996.

[15] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting

the location and number of faults in large software systems.

IEEE Trans. Softw. Eng31(4):340-355, 2005.

G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakur

and X. Qiu. On test suite composition and cost-effective

regression testing. ACM Trans. Softw. Eng. Methodol.

13(3):277-331, 2004.

J. Strecker and A. M. Memon. Faults’ context matters. In

Proceedings of SOQUA '07; co-located with ESEC/FSE '07

Sept. 2007.

Q. Xie and A. Memon. Studying the characteristics of a

"good” GUI test suite. IrProceedings of ISSRE 2008ov.

2006.

X. Yuan and A. M. Memon. Using GUI run-time state as

feedback to generate test casesPiaceedings of ICSE 'Q7

pages 396-405, May 2007.

(4]

(5]

(6]

(7]

(8]

[10]

[16]

[17]

[18]

[19]

