
Faults’ Context Matters

Jaymie Strecker
University of Maryland
College Park, MD, USA

strecker@cs.umd.edu

Atif M Memon
University of Maryland
College Park, MD, USA

atif@cs.umd.edu

ABSTRACT
When choosing a testing technique, practitioners want to
know which one will detect the faults that matter most to
them in the programs that they plan to test. Do empiri-
cal evaluations of testing techniques provide this informa-
tion? More often than not, they report how many faults
in a carefully chosen “representative” sample the evaluated
techniques detect. But the population of faults that such a
sample would represent depends heavily on the faults’ con-
text or environment—as does the cost of failing to detect
those faults. If empirical studies are to provide informa-
tion that a practitioner can apply outside the context of the
study, they must characterize the faults studied in a way
that translates across contexts. A testing technique’s fault-
detecting abilities could then be interpreted relative to the
fault characterization. In this paper, we present a list of
criteria that a fault characterization must meet in order to
be fit for this task, and we evaluate several well-known fault
characterizations against the criteria. Two families of char-
acterizations are found to satisfy the criteria: those based
on graph models of programs and those based on faults’ de-
tection by testing techniques.

1. INTRODUCTION
Among software testing researchers, a popular way to eval-
uate a testing technique is to find how many faults, out of a
carefully chosen “representative” sample, the technique de-
tects. In response to such evaluations, testing practitioners
have been known to ask, “But does the technique detect
the most severe faults?” These two points of view, the re-
searcher’s and the practitioner’s, are at odds; neither can be
inferred from the other.

It is not that researchers do not know or do not care about
fault severity [4]. Rather, because severity ratings are highly
subjective, it is impossible for a researcher to answer the
practitioner’s question without individually studying each
of the programs and associated sets of severity-rated faults
that the practitioner has in mind. Obviously, this point-wise

approach is impractical. But, fortunately, the dichotomy
here between research and practice is an illusion. By taking
into account the context in which faults occur, the researcher
and the practitioner can reconcile their points of view.

The context of a fault determines how likely it is that the
fault would occur and how important it is to eliminate the
fault. Sometimes the context even decides what counts as
a fault. (“It’s not a bug; it’s a feature.”) Many factors can
contribute to a fault’s context: the requirements and speci-
fications of the program containing the fault; the nature of
the program, including its application domain, its design,
and its connections to other programs; the way the program
is developed, used, and maintained; characteristics of the or-
ganization developing the program; and more. Although the
notion of fault context as presented here is fuzzy, it should
be clear that every fault has a context, whether explicitly
stated or not.

Each of the two supposedly irreconcilable points of view de-
scribed earlier implies a context. The researcher’s “represen-
tative” sample of faults assumes a knowledge of the kinds
of faults that occur, and in what proportions, for the pro-
gram under test [5, 9]. Whether an evaluation of a test-
ing technique considers all faults to be equally important
or “severe” faults to be more important, some system of
importance ratings is implied. The second case is especially
context-sensitive because the definition of “severe” depends,
among other factors, on the program’s users and developers.
The perspectives of a researcher and a practitioner—or two
researchers, or two practitioners—come into conflict when
each assumes a different context.

How can we avoid this conflict? Among researchers, a partial
solution would be for everyone to study testing techniques
within the same context, i.e., a set of benchmark programs
with known faults, like Space and the Siemens programs [1],
and a common set of assumptions about fault severity, user
behavior, and so on. But foremost among the many prob-
lems with this approach is the practitioner’s still unanswered
question: How will the technique perform in my context? A
better solution, which addresses this question, is to charac-
terize the faults that a testing technique detects in a way
that meets the following criteria:

1. provides useful information about the prevention, de-
tection, repair, or cost of the faults,

2. is consistent and objective,



3. can be automated, and

4. does not rely on formal specifications or other infor-
mation that may not be available.

The following example, based on an actual study [2], demon-
strates how a fault characterization that meets the above cri-
teria could be used to translate between disparate contexts.
An empirical study finds that techniques T1 and T2 each
detect, on average, 54%-55% of a sample of faults. A break-
down of the results by fault class shows that T1 detects fewer
faults of class C1 than T2 does (42.8% vs. 66.7%), but more
faults of class C2 (46.7% vs. 30.7%). Suppose that a tester
wants to know which of T1 and T2 would likely reveal more
faults in a certain program. In previous versions of the pro-
gram, faults of class C1 caused twice as many user-reported
failures as faults of class C2. Considering these facts, the
tester opts for T2. What if the tester had not understood
how her context and the study’s context differed? Under the
mistaken assumption that the two techniques would perform
equally well, the tester could easily miss out on the advan-
tages of T2.

In the rest of this paper, we evaluate a variety of ways of
characterizing faults against the list of criteria above. This
paper aims to convince the reader of the following points:

• Empirical results regarding fault detection in testing
can be applied in other contexts only if the faults in the
study are characterized following the criteria above.

• Several well-known ways to characterize faults—including
semantic size, syntactic characteristics, and taxonomies
like the IEEE standard classification—fail to meet all
four criteria.

• Faults can be characterized with respect to their detec-
tion by well-defined testing techniques or their effect
on certain program models, in ways that satisfy the
criteria.

2. SYNTACTIC AND SEMANTIC VIEWS OF
FAULTS

Offutt and Hayes [9] distinguish between syntactic and se-
mantic characterizations of faults. Syntactically, a fault is
a difference in source code between a correct and an in-
correct version of a program. The fault’s syntactic size is,
roughly speaking, the size of the textual difference in source
code. The categories of mutation faults are a prime exam-
ple of a fault characterization based on a syntactic perspec-
tive. Semantically, a fault is a difference in the input-output
mappings that the correct and incorrect program versions
induce, and its semantic size is, again, the size of the differ-
ence.

As Offutt and Hayes [9] point out, of the two views, the
semantic view is more closely related to program execution
and, hence, to testing. Yet the syntactic view persists in
the testing literature, perhaps because it aligns with a pro-
grammer’s perspective during debugging. The trouble with
syntactic characterizations of faults is that their relation to
fault detection does not translate across contexts, or even

1 x = null;

2 if (false) {

3 if (x == null) // if (x != null)

4 x.foo();

5 }

6 if (x == null) // if (x != null)

7 x.foo();

Figure 1: In lines 3 and 5, the same mutation op-

erator has been applied, changing != to ==. The

program never fails at line 3 but always fails at line

5.

1 print("Pick a number between 1 and 100.");

2 read(number);

3 if (number == 4058295011)

4 launchMissiles(); // Oops

Figure 2: The fault in line 4 is semantically small

but potentially costly.

across different parts of the same program—failing to meet
Criterion 1. Figure 1 demonstrates this.

As a schema for characterizing faults, semantic size also
presents problems. In an empirical study, Offutt and Hayes [9]
measure the semantic size of faults by executing the correct
and faulty programs with a random sample of inputs. The
main problem with this measure is that it is poorly defined,
in that it does not specify how many inputs should be sam-
pled. A secondary problem is that a fault’s semantic size is
not necessarily related to its elusiveness, assuming one is us-
ing a technique more sophisticated than random or weighted
random testing. Nor is semantic size necessarily related to
cost, as Figure 2 shows. This is true even if the random
sampling of inputs is based on operational profiles. To sum-
marize, semantic size fails to meet Criterion 2 and, arguably,
Criterion 1.

3. VIEWING FAULTS VIA PROGRAM
MODELS

Along the spectrum from syntactic to semantic views of
faults lie interpretations of faults based on program mod-
els. Like the syntactic perspective, these interpretations are
based on static properties of a faulty program, but, like the
semantic perspective, the properties of interest are closely
related to the program’s dynamic behavior. Harrold et al. [5]
offer a prime example of such an interpretation. Refining a
fault model by Howden [6], which classifies faults by their ef-
fect on the paths followed and the function computed by the
program, they further classify faults as either structural or
statement-level for the purpose of fault seeding. The latter
classification is based on the way a fault affects the pro-
gram dependence graph, a representation of the control and
data dependencies in the program: structural faults alter
the graph, while statement-level faults leave it unchanged.

It should be clear that the approach of Harrold et al. meets
Criteria 2, 3, and 4. What about Criterion 1? This approach
may indeed provide useful information about the cost of de-
tecting and repairing a fault. For example, an abundance
of faults of class Incorrect Expression in Predicate in a pro-



gram’s latest release may persuade its testers to use a more
rigorous predicate-coverage criterion for the next version.
As for the cost of repairing a fault, the program dependence
graph provides the information needed to perform a change-
impact analysis of the faulty node(s).

Faults may be characterized in terms of other graph models
as well. For example, Dinh-Trong et al. [3] propose a tax-
onomy of mutation faults for UML class diagrams. One can
imagine a rudimentary fault taxonomy that would apply to
any kind of graph model, with categories like Extra Node
(and Edge), Missing Edge, and Intra-Node Fault. Whether
such a taxonomy would meet our four criteria depends in
part on the taxonomy’s relationship to development or main-
tenance tasks (Criterion 1) and the graph model’s ability to
be generated automatically from the program (Criterion 3).

4. FAULTS AS THEY RELATE TO TEST-
ING TECHNIQUES

One problem with characterizing faults by their semantic
size, as Section 2 noted, is that its empirical measurement
is loosely specified and, hence, prone to inconsistency. A
simple improvement would be to specify how many random
inputs should be tried—say, enough to cover all functions
in the program at least once. This suggests a more general
way to characterize faults: by the testing techniques that
detect them.

By testing technique, we mean any process that yields a test
suite (an ordered list of test cases) and a test oracle. Faults
may be characterized in terms of their detection by testing
techniques, either in an absolute sense (e.g., technique T can
never detect fault F ) or a probabilistic sense (e.g., 60% of
a large sample of test suites produced by T detect F ). The
first case can arise in GUI testing, for example, in which
the test oracle looks only at the state of the GUI [11]. For
some programs, such an oracle would not be able to observe
failures that corrupt the file system or an external database.

More refined fault characterizations can be created by con-
sidering several testing techniques at once. Fault F1 may
always be detected by technique T1 but never by technique
T2. Techniques T3, T4, and T5 may detect fault F2 20%,
50%, and 80% of the time, respectively. This perspective on
faults is reminiscent of relations like More Powerful, Better,
Probbetter, which compare two coverage criteria by compar-
ing their likelihood of including failure-causing inputs [10].

At first, the idea of using testing techniques to characterize
faults in studies of testing techniques may seem like circular
reasoning. However, consider how such a characterization
could be used in comparing a new testing technique, T1, to
two established techniques, T2 and T3. Let us say, arbitrar-
ily, that a testing technique consistently detects a fault if at
least 80% of a sample of test suites produced by the tech-
nique detect the fault. Suppose that T1 consistently detects
90% of the faults that T2 consistently detects but only 30%
of those that T3 consistently detects, and T1 is cheaper to
apply than the combination of T2 and T3. A tester who has
been using T2 and T3 in tandem to test a program would
have more reason to switch to T1 if T3 has revealed only a
few faults than if T3 has revealed many faults that T2 has
not.

Any characterization of faults in terms of their detection by
certain testing techniques should satisfy all of our criteria,
assuming that the testing techniques themselves meet Cri-
teria 2–4 and are commonly used in practice (Criterion 1).
This family of characterizations could be further generalized
by allowing validation and verification techniques other than
testing.

5. OTHER WAYS TO CHARACTERIZE
FAULTS

In an empirical comparison of structural testing, functional
testing, and code reading (upon which the example in Sec-
tion 1 was based), Basili and Selby [2] classify the faults
studied using two orthogonal schemes. One scheme has the
categories Omissive and Commissive; the other, categories
Initialization, Control, Data, Computation, Interface, and
Cosmetic.

Both schemes miss some of our criteria. To decide whether
to label a fault Omissive or Commissive, one has two op-
tions: analyze the fault’s relation to the program’s speci-
fication, either by obtaining it or by inferring it (violating
Criteria 4 or 2, respectively), or look at syntactic character-
istics of the fault, i.e., whether code was added or modified
in to fix it (violating Criterion 1). (The second option is rem-
iniscent of Munson’s and Nikora’s [7] method for counting
faults.) In the second fault-classification scheme, the bound-
aries between some of the six categories are fuzzy, leaving
them open to interpretation (violating Criterion 2). For ex-
ample, passing an array of uninitialized values to a function
that assumes the array is initialized with zeros could be ei-
ther an Initialization fault or an Interface fault. Basili and
Selby [2] themselves note that their classification schemes
are somewhat subjective.

Parts of IEEE Standard 1044-1993 (“IEEE Standard Clas-
sification for Software Anomalies”) suffer from similar prob-
lems. Of the high-level categories in this classification, those
that pertain to faults are Logic, Computation, Interface/Timing,
Data Handling, and Data. Each category is further divided
into sub-categories. The illustration above of the ambigu-
ity between the Initialization and Interface categories ap-
plies here as well (violating Criterion 2), since Data Han-
dling and Interface/Timing have equivalent sub-categories.
Some other sub-categories could not always be identified ob-
jectively and automatically (violating Criteria 2 and 3), at
least not without detailed change logs (violating Criterion
4). These sub-categories (and their parent categories) in-
clude Misinterpretation (Logic), I/O Timing Incorrect (In-
terface/Timing), Data Referenced Out of Bounds (Data Han-
dling), and Output Data Incorrect or Missing (Data).

In practice, faults are often classified by their severity. Un-
fortunately, as noted in Section 1, the notion of severity
translates poorly from one context to another, as it depends
on factors such as who is using the system and how. Opera-
tional profile testing [8] may detect the faults that users are
most likely to encounter, but even these faults are not nec-
essarily the most severe (cf. Figure 2). Thus, fault severity
fails to satisfy Criterion 4.

In an interesting inversion of this paper’s point of view, An-
drews et al. [1] present evidence that, for the purpose of



testing, faults made accidentally by programmers and those
generated by mutation operators do not significantly differ.

6. CONCLUSION
In evaluating software testing techniques, researchers are, it
seems, charged with the infeasible task of choosing a sample
of faults that reflects what other researchers or practitioners
might encounter in a generic “real world”. What makes the
task infeasible is that the kinds of faults that arise and the
kinds of faults that testers want to discover are determined
by a complex set of contextual factors that vary from case
to case. Researchers can sidestep the infeasible task, how-
ever, by characterizing the faults they study in ways that
make sense across contexts. In doing so, they would reduce
threats to validity in their own studies, and they would en-
able practitioners and fellow researchers to take results from
the study’s context and interpret them in their own contexts.

For software-testing studies, some ways of characterizing
faults are more fit than others. This paper presented a list of
criteria for an effective fault characterization (Section 1) and
evaluated several well-known ways of characterizing faults
against the criteria. Two families of characterizations were
found to satisfy all of the criteria: those based on graph
models of programs (Section 3) and those based on faults’
detection by testing techniques (Section 4). Both families of
fault characterizations, we believe, address the issue raised
by Harrold et al. [5]: “Although there have been studies
of fault categories. . . there is no established correlation be-
tween categories of faults and testing techniques that expose
those faults.”

To date, the challenge of understanding how one fault differs
from another, or why one technique detects a fault that
another misses, has perhaps received less attention than it
deserves. Many areas for future work lie open. These include
developing new fault characterizations relevant to testing
(e.g., those based on graph models of programs), building
tools to characterize faults automatically, and, of course,
making it standard practice to characterize the samples of
faults used in software-testing studies.

7. REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is

mutation an appropriate tool for testing experiments?
In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 402–411,
2005.

[2] V. R. Basili and R. W. Selby. Comparing the
effectiveness of software testing strategies. IEEE
Trans. Softw. Eng., 13(12):1278–1296, 1987.

[3] T. Dinh-Trong, S. Ghosh, R. France, B. Baudry, and
F. Fleury. A taxonomy of faults for UML designs. In
2nd MoDeVa workshop - Model design and validation,
2005.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. In ICSE ’01: Proceedings
of the 23rd International Conference on Software
Engineering, pages 329–338, Washington, DC, USA,
2001. IEEE Computer Society.

[5] M. J. Harrold, A. J. Offutt, and K. Tewary. An

approach to fault modeling and fault seeding using the
program dependence graph. J. Syst. Softw.,
36(3):273–295, 1997.

[6] W. E. Howden. Reliability of the path analysis testing
strategy. IEEE Trans. Softw. Eng., SE-2(3):208–215,
1976.

[7] J. C. Munson and A. P. Nikora. Toward a quantifiable
definition of software faults. In ISSRE ’02:
Proceedings of the 13th International Symposium on
Software Reliability Engineering, pages 388–395,
Washington, DC, USA, 2002. IEEE Computer Society.

[8] J. D. Musa. Operational profiles in software-reliability
engineering. IEEE Softw., 10(2):14–32, 1993.

[9] A. J. Offutt and J. H. Hayes. A semantic model of
program faults. In ISSTA ’96: Proceedings of the 1996
ACM SIGSOFT international symposium on Software
testing and analysis, pages 195–200, New York, NY,
USA, 1996. ACM Press.

[10] E. J. Weyuker. Can we measure software testing
effectiveness? In Proceedings of the 1st International
Software Metrics Symposium, pages 100–107, 1993.

[11] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for GUI-based software
applications. ACM Trans. Softw. Eng. Methodol.,
16(1):4, 2007.


