
The First Decade of GUI Ripping:
Extensions, Applications, and Broader Impacts

(Invited Paper)

Atif Memon, Ishan Banerjee, Bao N. Nguyen, Bryan Robbins
Department of Computer Science,

University of Maryland,
College Park, MD 20742, USA

{atif, ishan, baonn, brobbins}@cs.umd.edu

Abstract—This paper provides a retrospective examination
of GUI Ripping—reverse engineering a workflow model of
the graphical user interface of a software application—born a
decade ago out of recognition of the severe need for improving
the then largely manual state-of-the-practice of functional GUI
testing. In these last 10 years, GUI ripping has turned out to
be an enabler for much research, both within our group at
Maryland and other groups. Researchers have found new and
unique applications of GUI ripping, ranging from measuring
human performance to re-engineering legacy user interfaces. GUI
ripping has also enabled large-scale experimentation involving
millions of test cases, thereby helping to understand the nature
of GUI faults and characteristics of test cases to detect them. It
has resulted in large multi-institutional Government-sponsored
research projects on test automation and benchmarking. GUI
ripping tools have been ported to many platforms, including
Java AWT and Swing, iOS, Android, UNO, Microsoft Windows,
and web. In essence, the technology has transformed the way
researchers and practitioners think about the nature of GUI
testing, no longer considered a manual activity; rather, thanks
largely to GUI Ripping, automation has become the primary
focus of current GUI testing techniques.

I. INTRODUCTION

System functional testing—testing the system as a whole—of
a software system under test (SUT) that contains a graphical-
user interface (GUI) front-end requires that test cases, repre-
sented as sequences of events, be executed on the SUT and
its functional correctness verified for each test case [1], [2],
[3], [4], [5]. The events are actions that may be performed
by a user on the GUI, e.g., clicking on a button, entering
text in a text-field, rotating a mobile device, clicking on the
Back button in a browser, or using the swipe gesture on a
tablet. Because end-users perform sequences of events on a
GUI-based application, so too must system testing in order to
evaluate the SUT’s compliance with its specified requirements.

Before our first report of the design and development of
the GUI Ripping technology 10 years ago [6], the term GUI
test automation had a very specific meaning – “automatically
executing manually developed test cases.” That is, a tester
would create GUI test cases by hand; these test cases would be
automatically executed by a test harness on the SUT [7]. Test
cases would be programmed or coded using platform-specific

libraries such as JFCUnit1 or WebDriver.2 Or test cases would
be captured/recorded using capture/replay (record/playback)
tools such as WinRunner3 (product has been renamed since)
and Rational Robot.4 Because of the resources required for
manual creation of GUI test cases, testers would end up with
very few test cases, leading to inadequate testing.

Much has changed for GUI test automation in the last
decade, largely due to the GUI ripping technology that has
been an enabler for research in this field. Numerous advances
in model-based GUI testing have been reported [8], [3], [9],
[4]. Most importantly, GUI ripping has caused a semantic shift
for researchers and practitioners. They have now come to view
GUI test automation as automatic creation of test cases, not
just their automatic execution.

Our own group at Maryland has leveraged the GUI Ripper
and its associated workflow for model-based GUI testing to
develop techniques to automatically generate millions of test
cases for real-world SUTs. With the Ripper’s ability to reverse
engineer GUI models as a foundation, we have developed a
broader framework for GUI testing as enabled by the Ripper’s
support for constructing models of GUI applications [10], [11],
[12]; conducted large-scale empirical studies to investigate a
number of impactful questions relevant for software testing as
a whole [13], [14], [15], [16], [17]; developed and evaluated
enhanced models and workflows for automated test case
generation and execution as applied to the challenges of smoke
and regression testing [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [30], [34],
[35], [31], [36]; and addressed various additional challenges
in model-based testing, such as test suite reduction [37], [38],
similarity [39], and meta-analysis [40]. We discuss some of
these extensions and applications in Section III.

The GUI Ripper technology has been embraced by other
researchers and extended for multiple studies that span a broad
range of research domains; including extending the GUI ripping
algorithm for multiple platforms [41], [5], [42], [43], [44],

1http://www.jfcunit.sourceforge.net
2http://www.seleniumhq.org/projects/webdriver
3http://www.hp.com/functionaltesting
4http://www.ibm.com/software/awdtools/tester/robot

978-1-4799-2931-3/13/$31.00 c© 2013 IEEE WCRE 2013, Koblenz, Germany
Invited Paper

11

[45], [46], developing new GUI models [47], [48], [49], [50],
improving GUI space exploration strategies [51], [52], [53],
using reverse engineering for non-GUI testing [54], [55], [56],
[57], [58], and developing experimentation benchmarks [52],
[59], [60]. We summarize these broader impacts in Section IV.

The GUI Ripper has been realized as a tool in the
GUI Testing frAmewoRk (GUITAR) open-source project,5

hosted on SourceForge.net. In addition to the GUI Ripper,
GUITAR contains a suite of tools—most enabled by the GUI
Ripper—for automated model-based GUI testing. We elaborate
on these tools in Section V.

The GUI ripping technology has led to several Government-
sponsored research projects: Enhancing Testing Techniques
for Event-driven Software Applications (CCF-0447864) that
resulted in the development of core algorithms and tools for
GUI testing, COMET-COMmunity Event-based Testing (CNS-
0855055) to investigate the requirements for a community
infrastructure of event-based testing researchers to provide
uniformity in experimentation, and COMET: A Web Infrastruc-
ture for Research and Experimentation in User Interactive
Event Driven Testing (CNS-1205501) that aims to reduce
experimental mismatch in testing and advance user interactive
event driven testing research by developing a shared research
and experimentation web infrastructure called COMET. Our
most recent findings from these projects suggest the constant
need to improve the GUI ripping technology in the face of
new human-computer interaction modalities and diverse sets
of platform configurations [61].

II. OVERVIEW OF THE GUI RIPPER

At a high level, the GUI ripping technology takes as input
an executing GUI-based application and produces, as output,
its workflow model(s). We first discuss the models and then
describe the algorithms used to obtain them.

A. GUI Models

GUIs have a common property of possessing a hierarchical
structure. Microsoft Windows and modern Linux distributions
use GUIs consisting of windows that contain widgets. Invoking
a widget may create more windows with widgets. Web-based
GUIs consist of a web-page with graphical components such as
hypertext. Invoking a hypertext in turn leads to more web pages.
Modern GUIs on mobile platforms (such as Android-based
apps) consist of activities, each containing widgets which may
create more activities.

The invocation of one GUI container, from a widget in
another container, is the basis for the hierarchical structure
of most GUI-based applications. The original design of the
GUI Ripper [6] was based on this hierarchical nature of
contemporary GUIs. This design has proven flexible enough to
work with today’s GUIs that continue to be hierarchical. The
GUI Ripper was initially implemented for Java SWT-based
GUIs. It was subsequently extended to web-based GUIs, iOS,
Android, Java JFC, Java SWT (Eclipse) and UNO (Open Office)

5http://guitar.sf.net

w
4

w
5

w
8

w
6

w
7

w
2

w
1

w
0

w
3

reset

create

square

exit

circle

checkbox

noyes

Radio Button Demo

Exit Confirmation

terminal

event

follows relation

initial

event

Fig. 1: GUI Tree and Event-Flow Graph for the Radio Button
Demo application.

frameworks. The core of the GUI Ripper for each platform is
based on the original design.

Two models of the GUI are created by the GUI Ripper –
GUI Tree and Event-Flow Graph. The GUI Tree represents
the hierarchical nature of the GUI. Each node of the GUI Tree
represents a window in the GUI. A window consists of:

• W = {w1, ..., wl}, a set of widgets contained in the GUI
window – for example, {OK, Cancel, Save}.

• P = {p1, .., pm}, a set of properties for each widget in
W – for example, {width, color}.

• V = {(v11, ..., v1m), ..., (vl1, ..., vlm)}, a set of values for
each property of each widget – for example, {(100, black),
(200, grey), (300, white)}.

One GUI window at any instant can be described by its state,
given by the triple {W , P , V }. The GUI Tree is composed
of all windows in the GUI. It is represented by the triple

12

{Ψ, τ , ε}, where Ψ is the set of all windows {W1, ..., Wn}
in the GUI, τ ⊆ Ψ is a set of top-level windows and ε =
{(x1, y1), ..., (xe, ye)} is a set of e directed edges. A directed
edge exists from a window x to a window y if an event executed
on x causes the SUT to create the window y.

GUI windows can be categorized into two types, based on
widgets that are executable when that window is created –
modal and modeless windows. When visible, modal windows
force the user to execute an event from within the modal
window – for example, the Save window in Microsoft’s
WordPad software. Modeless windows, on the other hand,
expand the set of executable events on the existing GUI – for
example, the Replace window in Microsoft’s WordPad.

The Event-Flow Graph (EFG) represents the sequences of
executable events on the GUI of an SUT. A node in the Event-
Flow Graph is an event executable on the GUI. An edge
ex→ey from event x to y indicates that event y is executable
immediately after executing event x. The edge models the
follows relation between events x and y. The Event-Flow Graph
of the GUI of an SUT may be inferred from its GUI Tree.
This is done by identifying an executable widget, represented
as event x, on a window W and identifying the set of all
executable widgets on all visible windows, after executing x.
The Event-Flow Graph will contain an edge from x to all
events in this set.

Figure 1 shows the example of a toy Java-JFC based
application called Radio Button Demo. The figure on the
top shows the GUI Tree of the application while the bottom
figure shows its Event-Flow Graph. The GUI Tree consists of
two windows, Radio Button Demo whose Exit button
invokes the Exit Confirmation modal window. The EFG
shows the initial, terminal events and the follows relation
between events.

B. Ripper Algorithm

The GUI Ripper automatically creates a model of the GUI of
an application-under-test (SUT) from its executable binary form.
The GUI Ripper launches the SUT, identifies its initial GUI
windows, automatically extracts each window’s GUI properties,
widgets and their properties, automatically invokes each widget
and repeats the process recursively for new windows that
may be created. The GUI Ripper essentially traverses the
hierarchical GUI in a top-down manner, extracting properties.
These properties and the observed hierarchical relationships
between windows are used to construct models of the GUI.

The steps executed by the GUI Ripper are given by the
procedure RIP in Figure 2. In this procedure, the SUT is
launched in line 1, and its top-level GUI windows are identified;
in lines 3–4, the procedure RIP-RECURSIVE operates on each
top-level GUI window. The RIP-RECURSIVE procedure acts
on a given GUI window. In line 5, it extracts all widgets and
their properties using platform-dependent APIs; in line 6, it
identifies a subset of extracted widgets which are executable;
for each executable widget, line 8 executes the widget’s event;
line 9 detects if additional GUI windows were created due
to the widget execution; and line 10 updates the set of GUI

windows of the SUT. Lines 10–11 recursively process the
invoked windows C.

GUI = φ
PROCEDURE RIP (SUT A)
τ = get-top-level-windows(A) 1
G = τ 2
FORALL t ∈ τ DO 3
RIP-RECURSIVE(t) 4

PROCEDURE RIP-RECURSIVE (Window t)
Ψ = extract-widgets-and-properties(t) 5
ε = identity-executable-widgets(Ψ) 6
FORALL e ∈ ε DO 7
execute(e) 8
C = get-invoked-windows(e) 9
GUI = GUI ∪ C 10
FORALL c ∈ C DO 11
RIP-RECURSIVE(c) 12

Fig. 2: Pseudo-code for the GUI Ripper. A hierarchical GUI
is recursively extracted from the executable binary of the SUT
A. GUI contains the resulting GUI structure.

The procedure RIP creates the GUI Tree that represents
structural information about the GUI, such as (1) the set of
GUI windows, (2) the set of widgets and their properties in
each GUI window, and (3) the set of GUI windows appearing
after executing a widget.

Semantic information between widgets is inferred from the
GUI Tree and stored in the Event-Flow Graph. For a given
widget w in the GUI Tree, the set of widgets, {w1...wn}, that
are executable immediately after executing w are identified and
edges {w→w1, ..., w→wn} are added to the EFG.

III. RIPPER AS A GUI TESTING ENABLING TECHNOLOGY

The introduction of GUI ripping methodology and its
associated tools has enabled a large body of research on GUI
testing as a whole over the past decade. First, we focus on the
line of research at the University of Maryland which directly
extends from the original GUI ripping work.

Figure 3 highlights the key role played by GUI ripping in a
number of model-based GUI testing techniques developed at
the University of Maryland since its inception. The standard
workflow from the original work produces artifacts of a
GUI tree, EFG, test cases, and test results, in that order.
This workflow has been expanded in two major ways. Some
techniques now incorporate a feedback loop to iteratively
enhance models based on data collected during test case replay.
Moreover, some models collect user profiles as an alternative
method of reverse engineering. Below, we expand on the
development of these techniques and their research results.

A. Open-Source Tools for Testing

Perhaps the most visible results from the GUI ripping work
come in the form of software artifacts. The testing workflow of
GUI ripping, model construction, test case generation, and

13

WCRE 2013

System

Under Test

GUI Tree

GUI

Replayer

Test

cases
Test

Cases

Log

Analysis

Graph

Converter

(EFG)

GUI

Ripper
EFG

Test Case

Generator

Logs

Results

Usage

Profiles

Collector

Usage

Profiles
(EFG2EIG)

Graph

Convertor

(EFG2EIG)

EIG
EIG

Annotator

Standard workflow

Probabilistic EFG extension EIG extension

F
e

e
d

b
a

ck

StopStart

Fig. 3: Model-based GUI testing techniques enabled by the GUI Ripper.

test case replay provide the basis for GUITAR, an open-
source framework for model-based GUI testing developed at
the University of Maryland and now available for a growing
number of application platforms [10]. The GUITAR tools
directly implement the GUI ripping methodology. Researchers
and practicing testers can leverage GUITAR to perform model-
based testing as enabled by the Ripper.

Architecturally, GUITAR supports plugins at every phase of
its default model-based GUI testing process: ripping, model
construction, test case generation, and replaying. GUITAR
supports customization of widgets (e.g., tabs in a window)
events (e.g., text entry), data collection (e.g., code coverage and
error logs) and entire application platforms (e.g., Web, Mobile
[11], SWT, UNO, and others) by supporting Java extensions
to its Ripper and Replayer tools. Similarly, customizations to
the model construction and test case generation process [12]
support new models and coverage criteria, respectively.

Over the years, we have performed a large body of research
by extending GUITAR and applying customized tools to real-
world applications. A great deal of this work has only been
possible due to the Ripper’s ability to reverse engineer useful
models of applications in an automated way.

B. Support for Large-scale Empirical Studies

GUITAR’s plugin-based architecture and ability to integrate
with other test harnesses has helped researchers conduct large-
scale experiments investigating important GUI testing activities.

Xie et al. examine the characteristics of a “good” GUI
test suites, considering the effects of event-composition, test
case length, and event context on test case execution and
effectiveness [13]. This foundational work would inform a great
deal of future work on incorporating event context into GUI
testing techniques (see, for example, the model and workflow
enhancements with this same goal outlined below). Later, Xie
et al. [14] used GUITAR to investigate the effects of GUI

oracle specificity, proposing 6 types of GUI oracles and using
a series of experiments on four fault-seeded Java applications
to evaluate their strengths and weaknesses. Their work showed
that choice of oracle type indeed has large effects on fault
detection ability, which not only highlights the importance
of addressing oracle specification in automated model-based
testing, but also reinforces the differences between a test suite’s
ability to meet coverage criteria and its ability to find faults.

McMaster and Memon developed and evaluated an improved
notion of fault detection capability to support later experi-
mentation with test suite reduction techniques [15]. Similarly,
Strecker et al. [16], [17] leveraged GUITAR to investigate the
relationships between testing techniques and the characteristics
of faults detected. This very large scale empirical study involved
the execution of 100 test suites on 2 fault-seeded open-source
applications, consuming nearly 100 machine-days and offering
a number of important conclusions about proper evaluation of
empirical results in software testing experiments.

C. GUI Testing Workflows

A number of empirical investigations carried out within our
group focus on the evaluation of specific techniques for GUI
testing. These techniques leverage and improve upon the GUI
ripping methodology’s original automated testing workflow.

In 2005, Memon et al. proposed the DART QA process for
rapidly evolving software [18], [19]. DART uses a Ripping-first
workflow very similar to the original Ripping methodology
we proposed, as supported by GUITAR tools. DART aims to
automate regression testing tasks, including model construction,
test case generation, and analysis of test results. Xie and Memon
proposed the use of a Ripper-first workflow for crash testing
of rapidly evolving activities [20], noting that automated crash
testing is capable of detecting interesting bugs. Memon and
Xie further concluded that the DART workflow can be applied
to daily smoke testing tasks, concluding that more advanced

14

oracles can be used to compensate for any lack of longer test
cases or large numbers of test cases [21]. Later, the authors
showed that a multi-paradigm approach of crash testing, smoke
testing, and comprehensive GUI testing can support open-
source software projects with distributed teams [22].

Yuan and Memon developed the ALT workflow, which
progressively improves test cases by alternating between test
case generation and execution iteratively [23], [24]. Memon
also developed a workflow which included automated detection
and repair of unusable test cases, a common problem in
the model-based regression testing of GUI-based software as
supported by the original Ripper methodology [25]. Later,
Huang et al. developed a similar tool employing genetic
algorithms for repair instead [26]. Yuan et al. also similarly
proposed an evolutionary algorithm for test case repair [27],
and Cohen et al. proposed the combination of test case repair
with covering arrays to address incomplete specification in
GUI models [28].

McMaster and Memon approached the problem of GUI test
case maintenance with a heuristic-based framework, which used
an approach similar to the GUI Ripper to build and compare
models of applications [29].

Enhanced workflows often work in combination with cus-
tomized GUI models to improve GUI testing approaches. The
EIG and ESIG models (described in more detail below) both
incorporate some type of test case feedback (i.e., data collected
from the execution of test cases) to improve on the basic
EFG [30], [31]. The grey-box testing technique of Arlt et
al. augments Ripper output with information from a data
dependency model to improve test case generation [32].

D. Enhanced Models

The event-flow graph (EFG) proposed in the original GUI
Ripper work has proven to be a very fundamental model in
much of our research on model-based testing since that time.
In 2007, Memon more formally outlined the event-flow model
[33]. Test case generation operating over the event-flow model
is now a core component of the GUITAR framework and
its standard Ripper-first workflow as well, with a series of
Model Converters applied to convert Ripper output into a
desired model prior to test case generation. Researchers have
developed and evaluated a number of alternative models, based
largely on the EFG, which show improved testing capability.

One line of research in model-based GUI testing involves
improving upon the EFG directly to identify events and
event relationships most likely to find faults. Xie and Memon
developed the event-interaction graph (EIG), which focuses
on identifying and leveraging within test cases interacts-with
relationships between events [30]. The interacts-with relation
leverages the Ripper output’s knowledge of modal window
terminating events, which the authors show greatly impacts
the fault detection capability of event sequences. The authors
also demonstrated automated model construction and test case
generation algorithms for the EIG which build on the Ripper’s
reverse engineering capabilities. Yuan et al. later develop a
covering array model for GUI test case generation [34] and

several additional coverage criteria which improve upon the
standard test case generation methods originally applied to the
EIG [35].

Similar to the EIG, the event-semantic interaction Graph
(ESIG) model described by Yuan and Memon [31] further
reduces the EIG by supplementing its structural information
from the Ripper with semantic relationships learned through
test case execution. The ESIG captures and leverages an event-
semantic interaction (ESI) relation also shown to be more
effective at detecting faults in GUI-based applications.

Brooks and Memon incorporated actual usage data for an
application into a probabilistic EFG, which showed the ability
to detect faults which were undetected by user sequences alone,
even with small test suites [36].

E. Additional Support for Model-based Testing

In addition to the enhanced workflows, models, and their
associated coverage criteria outlined above, we have also used
the Ripper to investigate additional techniques and factors in
model-based testing.

McMaster and Memon developed and evaluated a test suite
reduction technique based on an adequacy criteria of call-stack
coverage [37], [38]. This technique involved collecting call
stack information during test case execution and showing that
test cases which duplicate existing call stack coverage do not
tend to contribute to fault detection capability.

Bryce and Memon showed the application of event-
interaction coverage to test suite prioritization, evaluating
existing test suites on the basis of their coverage of interacts-
with relations from a model. Brooks and Memon developed
a test suite similarity metric, CONTeSSi, based on the con-
sideration of event context when comparing test cases [39].
Elsaka et al. applied network analysis techniques to models,
discovering various techniques for test case prioritization and
for the decoupling of tests [40].

IV. RIPPER’S BROADER IMPACTS

Research enabled by the GUI Ripper has also effectively
impacted efforts beyond our research at the University of
Maryland, as other researchers continue to assimilate GUI
Ripping into their GUI testing work. Since our original
work, others have done related work which (1) extends the
GUI Ripping algorithm to additional platforms, (2) develops
alternative, EFG-like GUI models, (3) improves the GUI space
exploration strategy used by the GUI Ripper, (4) applies similar
reverse engineering outside of the GUI-testing domain, and (5)
develops benchmarks for empirical research.

A. Extending GUI Ripping to Other Platforms

Our original GUI Ripping algorithm [6] was implemented
only for Java Swing applications. Based on this work, other
researchers have implemented this algorithm for additional
GUI platforms outside of our work in developing GUITAR.

Mesbah et al. [41], [5] extend the concept of GUI Ripping
to crawl Rich Internet Applications (RIAs). Unlike a traditional
web page, which is typically static, a single RIA page may

15

consist of multiple states. On the client side, a user can
transform between these states by performing events on the GUI.
Hence, a simple hypertext-based algorithm for discovering the
GUI hierarchy cannot be directly applied. To solve this problem,
the authors develop a tool called Crawljax. Crawljax identifies
all clickable elements on the website and triggers clicks on
them to automatically reveal different hidden web elements.
Similar in nature to the GUI Ripper, Crawljax traverses a
website in a depth-first order until no new GUI elements are
found. The result is analyzed to infer a state machine model
called a state-flow graph. Duda et al. [42] propose a similar
approach, but use a breadth-first strategy to support parallel
crawling and speed up the reverse engineering process.

Amalfitano et al. [43], [62] use the concept of ripping
to reconstruct a finite-state machine model representing its
behaviors from multiple execution traces. The reconstruction
process consists of two steps. First, the RIA is executed, by the
user, in a controlled environment to capture execution event
sequences in different usage scenarios. Then, from these event
sequences, an abstract FSM is derived by leveraging a data
clustering technique.

The GUI ripping idea is also extended for mobile appli-
cations. The main challenge to performing traditional model-
based testing for mobile applications is the requirement of
working in heterogeneous environments, where UI automation
across in all possible environments is often not trivial or feasible
to maintain. Joorabchi et al. [44] implement a tool called
iCrawler to automatically reverse engineer the structure of
the GUI of an iPhone operating system (iOS) application. The
authors use a low-level Objective-C runtime reference library to
hook into the executing iOS application. iCrawler automatically
sends events to the user interface to cover the interaction state
space, resulting in a state model representing all possible GUI
states of the application. Amalfitano et al. [63], [45] apply a
similar approach for Android applications. However, instead of
directly accessing low-level functions to interact with the GUI,
they use a higher-level automation library called Robotium.6

B. Developing EFG-like Models
Researchers have enhanced the GUI Ripper’s models with ad-

ditional information to implement specific use cases. Huang et
al. [47] introduce a weighted EFG model for test case genera-
tion. Testers first use the GUI Ripper to obtain a non-weighted
version of the EFG. Then, based on domain knowledge of the
SUT, the testers manually assign weights for each node in the
EFG. With the enhanced EFG, test case generation focuses on
weighted portions of the GUI. An empirical study with 3 open-
source applications showed that this method can obtain a better
fault detection rate than the standard, EFG-only workflow.

Huang et al. [48] develop an automatic strategy to dynam-
ically assign weights for the GUI Ripper’s models. An “ant
colony” algorithm is applied to dynamically adjust the weights
on-the-fly during test case execution.

To complement the dynamic approach of the GUI Ripper,
Arlt et al. [46] perform a light-weight static analysis of

6http://code.google.com/p/robotium/

the source code of the GUI application to extract code-
level dependencies between GUI event handlers. The inferred
dependencies are used to construct a new model called Event
Dependency Graph (EDG). Using this model, the authors are
able to generate better test cases to find previously undetected
bugs in four open-source Java applications.

The GUI Ripper’s model has also been tailored to work with
mobile applications. Yang et al. [49] proposed an improved
EFG model for the Android event system. They apply static
analysis to the Java source code of Android apps to detect
actions associated with each GUI state. They enrich the EFG
with this information to enable better test case generation. This
model is implemented in a tool called ORBIT and evaluated
against 8 Android applications. Tanzirul et al. [50] propose a
similar approach, but the information used to enrich the EFG
is extracted from the bytecode instead of source code.

C. Improving GUI Input Space Exploration

Fundamentally, the GUI Ripper uses dynamic analysis to
model a GUI’s input space. This idea has been explored and
expanded by several researchers. Paiva et al. [64] [65] propose
a series of semi-automated techniques to incrementally reverse
engineer the GUI structure. A skeleton of a state machine
model is first obtained by automatically exploring the GUI to
discover as much as possible the GUI structure and behaviors.
This automatic exploration process is augmented with manual
exploration to enable accessing parts of the GUI that are not
accessible automatically. The combined model is validated
manually by the tester. This approach of interleaving automated
and manual reverse engineering helps minimize model creation
effort while incorporating the domain knowledge, of the
human tester into the final model. AutoBlackTest [52] and
EXSYST [66] are two recent tools which apply machine
learning techniques to learn test case generation models. The
testing process starts by executing a small, manually-created
seed test suite. The results from test executions are then used
to infer a state machine to generate additional test cases.

Other authors also leverage a variety of reverse engineering
techniques to construct the GUI model and enable automated
GUI testing. These techniques include static analysis [67], sym-
bolic execution [68], concolic testing [69], model-checking [70],
and computer vision [71].

D. Reverse Engineering for Non-GUI Testing

Motivated by the idea of reverse engineering for testing,
researchers in other domains have also proposed testing tech-
niques based on reverse engineering. In unit testing, Pacheco
et al. [54] develop a random testing technique for object-
oriented applications. Their technique starts by dynamically
reverse engineering the list of all possible method calls of the
class under test. Test cases are then generated by randomly
combining the method calls into sequences. As the test cases are
executed, feedback is collected to incrementally infer relations
between methods. These inferred relations are used to avoid
generating test cases which are not executable. Zhang et al. [55]
improve this technique further by incorporating static analysis

16

techniques to effectively select parameter values. Dallmeier et
al. [56] propose a similar technique but in a more systematic
way. By analyzing the execution traces from previous test cases,
they incrementally learn a state machine model representing
the class under test. This state machine is then used to generate
additional, complementary test cases.

Wang et al. [57] apply a similar idea to automatically
generate test cases for context-driven applications, such as
those in cell phones, PDAs, and portable consoles. Due to
the high complexity level of these applications, adequately
identifying and developing models of their behaviors is difficult.
The authors propose a new adaptive behavior model called
Adaptation Finite State Machine (A-FSM). This model is
incrementally refined during the application’s execution. With
an A-FSM, the authors were able to automatically generate test
cases to cover a large spectrum of the application’s behaviors.
An empirical study of the A-FSM model identified a number of
fault patterns describing classes of faulty behaviors in context-
driven applications [72].

Swearngin et al. [58], [73] use the GUI Ripper to construct a
model for predicting human performance in Human-Computer
Interaction studies. They implement a tool called CogTool-
Helper that leverages the GUI Ripper as a back-end component.

Researchers have also developed similar ideas in other
areas, including web compatibility testing [74], automated
debugging [75] and validation of legacy software [76].

E. Developing Benchmarks for Empirical Research
Various researchers have also used the GUI Ripper (often

combined with other tools from GUITAR) to develop bench-
marks for empirical studies. Mariani et al. [52] introduced
a new model-based approach to address the new challenges
in testing modern GUI applications. The authors replicate a
Ripper-first testing workflow on four open-source applications
and use the results as a baseline to compare with their own
techniques. In a similar effort, Belli et al. [59] use GUI Ripper
to evaluate a new event model called the Event-Sequence Graph.
A case study of applying the GUI Ripper to two large modules
of a commercial web portal ISELTA was conducted to compare
their new model to the EFG.

In a similar effort, Michail and Xie [60] use the GUI Ripper
to evaluate their research tool called Stablizer, which helps the
user effectively when working with unstable GUI applications.
The tool monitors a user’s actions in the background and gives
a warning as well as the opportunity to abort the action, when a
user attempts certain unstable actions previously encountered by
other users. The authors develop an experimentation benchmark
consisting of four fault-seeded open-source applications. To
minimize the threats of validity caused by the artificial fault
seeding process, the GUI Ripper was used to eliminate what
the authors considered to be obvious and easy-to-detect faults
in the benchmark.

V. USING THE RIPPER FOR TESTING: A USE CASE

We now demonstrate a simple use case for the GUI Ripper
as implemented within the GUITAR model-based testing frame-
work. Following from the original GUI ripping methodology,

GUITAR (1) uses reverse engineering to automatically create
the structural and semantic model of a GUI from the executable
binary of the SUT, (2) automatically generates test cases using
different test case generation methods, and (3) automatically
executes these test cases on the GUI. As enabled by the GUI
Ripper, GUITAR does not require a specification of the GUI
from the user, but works with the executable binary of a SUT.

GUITAR has been extended for multiple GUI application
platforms, including Java (JFC, SWT), Web, iOS, Android
and UNO. GUITAR can be integrated into automated testing
harnesses to satisfy GUI testing requirements of real-world
applications. Below, we describe a simple GUI regression
testing workflow which uses GUITAR, known as GUITAR’s
standard workflow.

The standard workflow, shown in Figure 3, consists of four
GUITAR components – the GUI Ripper, Graph Converter,
Test Case Generator and Replayer. This workflow of GUITAR
can work with GUI applications on different platforms. To
work with a specific platform, platform-specific plugins are
required for the GUI Ripper and Replayer. Similarly, the Graph
Converter and Test Case Generator can be used to derive
different semantic models and use different test-case generation
algorithms. A toolchain can be created by combining these four
components as customized for platform-specific and algorithm-
specific scenarios.

A JFC toolchain for testing JFC-based applications is
developed by first combining JFC-specific plugins for the
GUI Ripper and Replayer to create the JFCGUIRipper and
the JFCGUIReplayer. These tools use the Java Accessibility
framework to extract widgets and their properties from the
GUI of a Java Swing application. A standard Graph Converter,
the EFGConverter, produces an EFG from a GUI tree, creating
the EFGConverter. Similarly, a standard Test Case Generator,
SequenceLength Generator, provides test case generation from
an EFG. The SequenceLength Generator generates all possible
test cases of a given length (L), prefixing a path to an initial
event if necessary. In terms of test oracle, a simple script-based
analysis of the JFCReplayer’s logs provides a simple oracle
to identify SUT crashes during replay, which are assumed to
have revealed faults.

We recently applied the standard workflow to two popular
JFC-based applications – ArgoUML7 and JabRef.8 Supported
by the JFC toolchain described above, the JFCGUIRipper’s
structural information was converted into an EFG, allowing
the generation and replay of all event sequences of length 2 in
the resulting model. After initial configuration of the SUT, this
process proceeded in a fully automated manner. A machine
with single core, 2GHz CPU and 1GB memory running Redhat
Enterprise Linux 5 was used for ripping, graph conversion and
test case generation. A cluster of the same identical machines
was used for replaying.

Table I(a) shows information retrieved at each of the four
steps of the standard workflow. From this table, both ArgoUML

7http://argouml.tigris.org
8http://jabref.sourceforge.net

17

and JabRef are non-trivial applications, with 69K and 44k
lines of code. The GUI Ripper extracted 30 and 40 windows,
1548 and 1285 widgets respectively. The JFCGUIRipper was
configured to ignore some of each SUT’s windows to avoid
complications such as unknown widgets or events and unwanted
side effects (e.g., printing). The EFGConverter produced
EFGs with 328 and 376 nodes, and 4468 and 15, 652 edges
respectively. The SequenceLength Generator then produced
4468 and 15, 652 test cases respectively, matching the number
of edges in the EFG. (Note that length-two sequences represent
EFG edges).

The JFCReplayer, detected and recorded in a log any
exceptions which occurred during test case replay. These
logs were automatically analyzed to identify crashes. In all,
execution of the test cases detected 3 unique faults in ArgoUML
and 4 unique faults in JabRef which could be manually verified
as application bugs. Table I(b) lists the faults detected in
ArgoUML and JabRef.

VI. SUMMARY AND CONCLUSIONS

The GUI ripping technology developed a decade ago was
the first to use reverse engineering to build a model of a
software system under test (SUT) and subsequently use the
model for testing. The idea of “using a software to test itself”
has many skeptics, for good reason. After all, how can one
test software without using its specifications or use cases?
System testing needs to evaluate the SUT’s compliance with its
specified requirements. The approach of rip-model-test enabled
by the GUI Ripper is not meant to replace requirements- and
specifications-based testing. Rather, it provides an additional
tool for the tester’s toolbox. We have shown this to be effective
at finding faults via multiple empirical studies.

The rip-model-test approach is fully automated, and hence
can be used without any human intervention throughout the
software development lifecycle to detect catastrophic failures,
such as crashes. Once the software’s GUI has stabilized,
additional test cases may be developed manually to detect
bugs due to deviation from requirements.

Our earlier systematic mapping study on GUI testing [77]
showed that while there is sufficient interest in model-based
GUI testing amongst academics, most popular commercially
available tools are not model-based. We feel that this technology
gap is due to the complexity of model-based techniques; and
lack of testers’ knowledge of models. The automatic model
extraction and use process enabled by the GUI Ripper will
ultimately help to bridge the gap between research and practice.

In the last decade, we have developed numerous test automa-
tion processes around GUI ripping. We have also implemented
numerous tools that we have used to generate millions of test
cases and to understand the complex relationship between GUI
faults and test cases. The GUI ripping methodology has also
been embraced and extended by numerous researchers in ways
we never anticipated. We continue to improve the GUI testing
technology in various ways: new algorithms for model building,
new models, new platforms, and new testing techniques based

TABLE I: Executing the Standard workflow on ArgoUML and
JabRef

ArgoUML JabRef

Ripping

Lines of code 69, 954 44, 522

Windows 30 40

Widgets 1, 548 1, 285

Ignored 2 6

Terminal 13 14

Time (s) 231 431

Model conversion

Nodes 328 376

Edges 4, 468 15, 562

Time (s) 4 5

Test case generation
Test cases 4, 468 15, 562

Time (s) 213 875

Replaying

Statement coverage 22.45% 29.12%

Branch coverage 10.31% 12.04%

Log size (GB) 8.4 185.0

Fault detected 3 4

Time (hours) 309 1, 204

(a) Intermediate result of executing the standard workflow on ArgoUML and JabRef.

Faults detected

ArgoUML

FileNotFoundException File → Export Graphic → filename:
invalid filename → Save

FileNotFoundException File → Export All Graphics → filename:
invalid filename → Save

Incorrect log message Edit → Delete from Model

JabRef

FileNotFoundException Option → Manage journal abbreviation
→ new filename: invalid filename
→ Ok

MalformedURLException Option→ Journal abbreviation→ Down-
load → URL: invalid URL → Ok

NullPointerException Option → Manage custom imports
→ Add from folder → folder path:
non-existing folder → Cancel

ZipException Option → Manage custom imports
→ Add from jar → filename:
non-existing filename →
Select a Zip-archive

(b) List of faults detected in ArgoUML and JabRef using the standard workflow.

on the models. We feel that these exciting new developments
will yield another decade of fruitful research.

ACKNOWLEDGMENTS

This work was partially supported by grant number CNS-
1205501 by the US National Science Foundation (NSF), and
Project Number 1R01AI100947-01A1 by the US National
Institute of Allergy and Infectious Diseases (NIAID), part of
the US National Institutes for Health (NIH).

18

REFERENCES

[1] A. M. Memon, “A comprehensive framework for testing graphical
user interfaces,” Ph.D., 2001, advisors: Mary Lou Soffa and Martha
Pollack; Committee members: Prof. Rajiv Gupta (University of Arizona),
Prof. Adele E. Howe (Colorado State University), Prof. Lori Pollock
(University of Delaware).

[2] Lee White and Husain Almezen, “Generating Test Cases for GUI
Responsibilities Using Complete Interaction Sequences,” in ISSRE ’00:
Proceedings of the 11th International Symposium on Software Reliability
Engineering. Washington, DC, USA: IEEE Computer Society, 2000, p.
110.

[3] J. L. Silva, J. C. Campos, and A. C. R. Paiva, “Model-based user interface
testing with Spec Explorer and ConcurTaskTrees,” Electron. Notes Theor.
Comput. Sci., vol. 208, pp. 77–93, 2008.

[4] A. M. Memon, “An event-flow model of GUI-based applications for
testing,” Softw. Test. Verif. Reliab., vol. 17, pp. 137–157, September
2007.

[5] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-Based Automatic
Testing of Modern Web Applications,” Software Engineering, IEEE
Transactions on, vol. 38, no. 1, pp. 35–53, 2012.

[6] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
the 10th Working Conference on Reverse Engineering, ser. WCRE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 260–.

[7] A. M. Memon, “GUI testing: Pitfalls and process,” Computer, vol. 35,
no. 8, pp. 87–88, 2002.

[8] S. Dalal, A. Jain, C. Lott, G. Patton, N. Karunanith, J. M. Leaton, and
B. M. Horowitz, “Model-Based Testing in Practice,” in Proceedings of
the 21st International Conference on Software Engineering. ACM
Press, May 1999, pp. 285–294.

[9] T. Pajunen, T. Takala, and M. Katara, “Model-Based Testing with a
General Purpose Keyword-Driven Test Automation Framework,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on, march 2011, pp. 242 –251.

[10] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR:
an innovative tool for automated testing of GUI-driven software,”
Automated Software Engineering, pp. 1–41, 2013.

[11] D. Amalfitano, A. R. Fasolino, S. D. Carmine, A. Memon, and
P. Tramontana, “Using GUI Ripping for Automated Testing of Android
Applications,” in ASE ’12: Proceedings of the 27th IEEE international
conference on Automated software engineering. Washington, DC, USA:
IEEE Computer Society, 2012.

[12] D. Hackner and A. M. Memon, “Test Case Generator for GUITAR,” in
ICSE ’08: Research Demonstration Track: International Conference on
Software Engineering. Washington, DC, USA: IEEE Computer Society,
2008.

[13] Q. Xie and A. M. Memon, “Studying the Characteristics of a ‘Good’ GUI
Test Suite,” in Proceedings of the 17th IEEE International Symposium
on Software Reliability Engineering (ISSRE 2006). IEEE Computer
Society Press, Nov. 2006.

[14] Q. Xie and A. M. M. Memon, “Designing and comparing automated test
oracles for GUI-based software applications,” ACM Trans. Softw. Eng.
Methodol., vol. 16, no. 1, p. 4, 2007.

[15] S. McMaster and A. M. Memon, “Fault Detection Probability Analysis
for Coverage-Based Test Suite Reduction,” in ICSM ’07: Proceedings
of the 21st IEEE International Conference on Software Maintenance
(ICSM’07). Paris, France: IEEE Computer Society, 2007.

[16] J. Strecker and A. M. Memon, “Relationships Between Test Suites,
Faults, and Fault Detection in GUI Testing,” in ICST ’08: Proceedings
of the First international conference on Software Testing, Verification,
and Validation. Washington, DC, USA: IEEE Computer Society, 2008.

[17] J. Strecker and A. M. Memon, “Accounting for Defect Characteristics
in Evaluations of Testing Techniques,” ACM Trans. on Softw. Eng. and
Method., 2012.

[18] A. M. Memon and Q. Xie, “Studying the fault-detection effectiveness of
GUI test cases for rapidly evolving software,” IEEE Trans. Softw. Eng.,
vol. 31, no. 10, pp. 884–896, Oct. 2005.

[19] A. Memon, A. Nagarajan, and Q. Xie, “Automating regression testing for
evolving GUI software,” Journal of Software Maintenance and Evolution,
vol. 17, no. 1, pp. 27–64, Jan. 2005.

[20] Q. Xie and A. M. Memon, “Rapid ”Crash Testing” for Continuously
Evolving GUI-Based Software Applications,” in ICSM ’05: Proceedings
of the 21st IEEE International Conference on Software Maintenance

(ICSM’05). Washington, DC, USA: IEEE Computer Society, 2005, pp.
473–482.

[21] A. M. Memon and Q. Xie, “Studying the Fault-Detection Effectiveness
of GUI Test Cases for Rapidly Evolving Software,” IEEE Trans. Softw.
Eng., vol. 31, no. 10, pp. 884–896, 2005.

[22] Q. Xie and A. M. Memon, “Model-Based Testing of Community-Driven
Open-Source GUI Applications,” in ICSM ’06: Proceedings of the 22nd
IEEE International Conference on Software Maintenance. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 145–154.

[23] X. Yuan and A. M. Memon, “Alternating GUI Test Generation and
Execution,” in TAIC PART ’08: Proceedings of the IEEE Testing:
Academic and Industrial Conference 2008. Washington, DC, USA:
IEEE Computer Society, 2008.

[24] ——, “Iterative execution-feedback model-directed GUI testing,”
Information and Software Technology, vol. 52, no. 5, pp. 559 – 575,
2010.

[25] A. M. Memon, “Automatically Repairing Event Sequence-Based GUI
Test Suites for Regression Testing,” ACM Trans. on Softw. Eng. and
Method., 2008.

[26] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test suites
using a genetic algorithm,” in Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation, ser. ICST
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 245–254.

[27] X. Yuan, M. Cohen, and A. M. Memon, “Towards Dynamic Adaptive Au-
tomated Test Generation for Graphical User Interfaces,” in TESTBEDS’09:
Proceedings of the First International Workshop on TESTing Techniques
& Experimentation Benchmarks for Event-Driven Software. Washington,
DC, USA: IEEE Computer Society, 2009.

[28] M. Cohen, S. Huang, and A. Memon, “AutoInSpec: Using Missing Test
Coverage to Improve Specifications in GUIs,” in ISSRE’12 Proceedings
of the 23rd IEEE International Symposium on Software Reliability
Engineering. Washington, DC, USA: IEEE Computer Society, 2012.

[29] S. McMaster and A. M. Memon, “An Extensible Heuristic-Based
Framework for GUI Test Case Maintenance,” in TESTBEDS’09: Pro-
ceedings of the First International Workshop on TESTing Techniques &
Experimentation Benchmarks for Event-Driven Software. Washington,
DC, USA: IEEE Computer Society, 2009.

[30] Q. Xie and A. M. Memon, “Using a Pilot Study to Derive a GUI Model
for Automated Testing,” ACM Trans. on Softw. Eng. and Method., 2008.

[31] X. Yuan and A. M. Memon, “Generating Event Sequence-Based Test
Cases Using GUI Runtime State Feedback,” IEEE Transactions on
Software Engineering, vol. 36, no. 1, pp. 81–95, 2010.

[32] S. Arlt, I. Banerjee, C. Bertolini, A. M. Memon, and M. Schaf, “Grey-
box GUI Testing: Efficient Generation of Event Sequences,” CoRR, vol.
abs/1205.4928, 2012.

[33] A. M. Memon, “An event-flow model of GUI-based applications for
testing,” Software Testing, Verification and Reliability, vol. 17, no. 3, pp.
137–157, 2007.

[34] X. Yuan, M. Cohen, and A. M. Memon, “Covering Array Sampling
of Input Event Sequences for Automated GUI Testing,” in ASE ’07:
Proceedings of the 22nd IEEE international conference on Automated
software engineering. Washington, DC, USA: IEEE Computer Society,
2007.

[35] X. Yuan, M. B. Cohen, and A. M. Memon, “GUI Interaction Testing: In-
corporating Event Context,” IEEE Transactions on Software Engineering,
vol. 37, no. 4, pp. 559–574, 2011.

[36] P. Brooks and A. M. Memon, “Automated GUI Testing Guided by
Usage Profiles,” in ASE ’07: Proceedings of the 22nd IEEE international
conference on Automated software engineering. Washington, DC, USA:
IEEE Computer Society, 2007.

[37] S. McMaster and A. M. Memon, “Call Stack Coverage for GUI Test-Suite
Reduction,” in Proceedings of the 17th IEEE International Symposium
on Software Reliability Engineering (ISSRE 2006). IEEE Computer
Society Press, Nov. 2006.

[38] ——, “Call-Stack Coverage for GUI Test-Suite Reduction,” IEEE Trans.
Softw. Eng., 2008.

[39] P. Brooks and A. M. Memon, “Introducing a Test Suite Similarity Metric
for Event Sequence-Based Test Cases,” in ICSM ’09: Proceedings of the
23rd IEEE International Conference on Software Maintenance. Alberta,
Canada: IEEE Computer Society, 2009.

[40] E. Elsaka, W. E. Moustafa, B. Nguyen, and A. M. Memon, “Using
Methods & Measures from Network Analysis for GUI Testing,” in
TESTBEDS 2010: Proceedings of the International Workshop on TESTing

19

Techniques & Experimentation Benchmarks for Event-Driven Software.
Washington, DC, USA: IEEE Computer Society, 2010.

[41] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based
Web Applications through Dynamic Analysis of User Interface State
Changes,” ACM Transactions on the Web (TWEB), vol. 6, no. 1, pp.
3:1–3:30, 2012.

[42] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou, “AJAX Crawl:
Making AJAX Applications Searchable,” in Proceedings of the 2009
IEEE International Conference on Data Engineering, ser. ICDE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 78–89.

[43] D. Amalfitano, A. Fasolino, and P. Tramontana, “Reverse Engineering
Finite State Machines from Rich Internet Applications,” in Reverse
Engineering, 2008. WCRE ’08. 15th Working Conference on, 2008, pp.
69–73.

[44] M. Joorabchi and A. Mesbah, “Reverse Engineering iOS Mobile
Applications,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, 2012, pp. 177–186.

[45] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of Android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258–261.

[46] S. Arlt, A. Podelski, C. Bertolini, M. Schaf, I. Banerjee, and A. Memon,
“Lightweight Static Analysis for GUI Testing,” in Software Reliability
Engineering (ISSRE), 2012 IEEE 23rd International Symposium on, 2012,
pp. 301–310.

[47] C.-Y. Huang, J.-R. Chang, and Y.-H. Chang, “Design and analysis of
GUI test-case prioritization using weight-based methods,” J. Syst. Softw.,
vol. 83, no. 4, pp. 646–659, Apr. 2010.

[48] Y. Huang and L. Lu, “Apply ant colony to event-flow model for graphical
user interface test case generation,” IET Software, vol. 6, no. 1, pp. 50–60,
2012.

[49] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
GUI-model generation of mobile applications,” in Proceedings of the
16th international conference on Fundamental Approaches to Software
Engineering, ser. FASE’13. Berlin, Heidelberg: Springer-Verlag, 2013,
pp. 250–265.

[50] T. Azim and I. Neamtiu, “Targeted and Depth-first Exploration for
Systematic Testing of Android Apps,” in ACM Conference on Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA),
2013, to appear.

[51] A. C. R. Paiva, J. C. P. Faria, and P. M. C. Mendes, “Reverse engineered
formal models for GUI testing,” Formal methods for industrial critical
systems, vol. 4916, no. 1, pp. 218–233, 2008.

[52] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, “AutoBlackTest:
a tool for automatic black-box testing,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 1013–1015.

[53] Florian Gross, Gordon Fraser, and Andreas Zeller, “EXSYST: Search-
based GUI Testing (Demo Paper),” February 2012.

[54] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed
Random Test Generation,” in Proceedings of the 29th international
conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 75–84.

[55] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static and
dynamic automated test generation,” in Proceedings of the 2011
International Symposium on Software Testing and Analysis, ser. ISSTA
’11. New York, NY, USA: ACM, 2011, pp. 353–363.

[56] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and A. Zeller,
“Automatically Generating Test Cases for Specification Mining,” Software
Engineering, IEEE Transactions on, vol. 38, no. 2, pp. 243–257, 2012.

[57] Z. Wang, S. Elbaum, and D. Rosenblum, “Automated Generation of
Context-Aware Tests,” in Software Engineering, 2007. ICSE 2007. 29th
International Conference on, 2007, pp. 406–415.

[58] A. Swearngin, M. B. Cohen, B. E. John, and R. K. E. Bellamy, “Easing
the Generation of Predictive Human Performance Models from Legacy
Systems,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’12. ACM, 2012, pp. 2489–2498.

[59] F. Belli, M. Beyazit, and N. Güler, “Event-Based GUI Testing and
Reliability Assessment Techniques – An Experimental Insight and Pre-
liminary Results,” in Proceedings of the 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops,
ser. ICSTW ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 212–221.

[60] A. Michail and T. Xie, “Helping users avoid bugs in GUI applications,”
in Proceedings of the 27th international conference on Software
engineering, ser. ICSE ’05. New York, NY, USA: ACM, 2005, pp.
107–116.

[61] A. M. Memon and M. B. Cohen, “Automated testing of gui applications:
models, tools, and controlling flakiness,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 1479–1480.

[62] D. Amalfitano, A. Fasolino, and P. Tramontana, “Experimenting a
reverse engineering technique for modelling the behaviour of rich
internet applications,” in Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, 2009, pp. 571–574.

[63] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A GUI Crawling-
Based Technique for Android Mobile Application Testing,” in Proceed-
ings of the 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops, ser. ICSTW ’11. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 252–261.

[64] A. C. R. Paiva, J. a. C. P. Faria, N. Tillmann, and R. A. M. Vidal,
“A model-to-implementation mapping tool for automated model-based
GUI testing,” in Proceedings of the 7th international conference on
Formal Methods and Software Engineering, ser. ICFEM’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 450–464.

[65] F. Zaraket, W. Masri, M. Adam, D. Hammoud, R. Hamzeh, R. Farhat,
E. Khamissi, and J. Noujaim, “GUICOP: Specification-Based GUI
Testing,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on, 2012, pp. 747–751.

[66] F. Gross, G. Fraser, and A. Zeller, “Search-based system testing: high
coverage, no false alarms,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 67–77.

[67] S. Staiger, “Reverse Engineering of Graphical User Interfaces Using Static
Analyses,” in Reverse Engineering, 2007. WCRE 2007. 14th Working
Conference on, oct. 2007, pp. 189 –198.

[68] S. Ganov, C. Killmar, S. Khurshid, and D. E. Perry, “Event listener
analysis and symbolic execution for testing GUI applications,” in
Proceedings of the 11th International Conference on Formal Engineering
Methods: Formal Methods and Software Engineering, ser. ICFEM ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 69–87.

[69] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 59:1–59:11.

[70] P. Mehlitz, O. Tkachuk, and M. Ujma, “JPF-AWT: Model checking
GUI applications,” in Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on, 2011, pp. 584–587.

[71] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing using computer
vision,” in Conference on Human factors in computing systems, 2010,
pp. 1535–1544.

[72] M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, and Z. Wang,
“Context-Aware Adaptive Applications: Fault Patterns and Their Au-
tomated Identification,” IEEE Trans. Softw. Eng., vol. 36, no. 5, pp.
644–661, Sep. 2010.

[73] A. Swearngin, M. B. Cohen, B. E. John, and R. K. E. Bellamy,
“Human performance regression testing,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 152–161.

[74] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 561–570.

[75] S. Zhang and M. D. Ernst, “Automated diagnosis of software
configuration errors,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 312–321.

[76] O. Sánchez Ramón, J. Sánchez Cuadrado, and J. Garcı́a Molina,
“Model-driven reverse engineering of legacy graphical user interfaces,”
in Proceedings of the IEEE/ACM international conference on Automated
software engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010,
pp. 147–150.

[77] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical
User Interface (GUI) Testing: Systematic Mapping and Repository,”
Information and Software Technology, 2013.

20

