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Abstract
Several rapid-feedback-based quality assurance mech-

anisms are used to manage the quality of continuously
evolving software. Even though graphical user interfaces
(GUIs) are one of the most important parts of software,
there are currently no mechanisms to quickly retest evolv-
ing GUI software. We leverage our previous work on GUI
testing to define a new automatic GUI re-testing process
called “crash testing” that is integrated with GUI evolu-
tion. We describe two levels of crash testing: (1) imme-
diate feedback-based in which a developer indicates that
a GUI bug was fixed in response to a previously reported
crash; only select crash test cases are rerun and the devel-
oper is notified of the results in a matter of seconds, and (2)
between code changes in which new crash test cases are
generated on-the-fly and executed on the GUI. Since the
code may be changed by another developer before all the
crash tests have been executed, hence requiring restarting
of the process, we use a simple rotation-based scheme to
ensure that all crash tests are executed over a series of code
changes. We show, via empirical studies, that our crash
tests are effective at revealing serious problems in the GUI.

1 Introduction
Today’s competitive software market trends are increas-

ingly pushing for globalization of development, mainte-
nance, and evolution [32, 28]. Software companies use the
world’s different time-zones to their advantage by distribut-
ing their development teams around the world, thereby en-
abling continuous around-the-clock software evolution that
“follows the sun” [16]. Open-source software, typically de-
veloped and maintained by a number of programmers dis-
tributed world-wide, is also subject to similar continuous
evolution trends. This practice of around-the-clock evolu-
tion has led to unprecedented code churn rates. For exam-
ple, the open-source ACE+TAO software [1] developers av-
erage 200+ CVS commits per week [22].

While successful at increasing code churn rates, con-
tinuous software evolution suffers from several problems.
First, there is little direct inter-developer communication
[31]. Almost all communication is done via CVS com-
mit log messages, bug reports, change-requests, comments
[29, 9], etc. Second, developers often work on different

parts of the application code [31]. They may not immedi-
ately realize that their changes have inadvertently broken
other parts of the software code [21]. If left unsolved, these
problems lead to compromised software quality.

There are several feedback-based mechanisms to help
manage the quality of continuously evolving software.
These different mechanisms improve the quality of soft-
ware via continuous, rapid quality assurance (QA) during
evolution. They differ in the level of detail of feedback that
they provide to the developer, their thoroughness, their fre-
quency of execution, and their speed of execution. For ex-
ample, some mechanisms (e.g., integrated with CVS) pro-
vide immediate feedback at change-commit time by run-
ning select test cases, which form the commit validation
suite. Developers can immediately see the consequences
of their changes. For example, developers of NetBeans per-
form several quick validation steps when checking into the
NetBeans CVS repository.1 In fact, some systems such as
Aegis2 will not allow a developer to commit changes un-
less all commit-validation tests have passed. This mecha-
nism ensures that changes will not stop the software from
“working” when they are integrated into the software base-
line. Other, slower mechanisms include “daily building and
smoke testing” that execute more thorough test cases on a
regular (e.g., nightly) basis. Developers don’t get instant
feedback; rather they are e-mailed the results of the nightly
builds and smoke tests. Another, still higher level of contin-
uous quality assurance support is provided by mechanisms
such as Skoll [22] that continuously run test cases, for days
and even weeks on several builds (stable and beta) of the
evolving software. For example, the ACE+TAO software is
tested continuously by Skoll; results are summarized in a
web-based virtual scoreboard.3 All these mechanisms are
useful, in that they help to detect defects early during soft-
ware evolution, much before the software is given to QA
teams.

Graphical-user interfaces (GUIs) are one of the most im-
portant parts of software. We have shown in earlier work
that, due to the number of degrees of freedom that GUIs
provide to users, and hence their large input spaces, GUIs

1http://www.netbeans.org/community/guidelines/commit.html
2http://aegis.sourceforge.net/
3http://www.dre.vanderbilt.edu/scoreboard/
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are difficult to test [25, 21]. A tester needs to test the GUI
on an enormous number of event sequences. Moreover, as
GUI-based software evolves, i.e., changes are made to the
GUI and the underlying software, it is easy to break [26].

In previous work, we have addressed the GUI test-
ing problem at several levels. First, we have developed
specifications-based testing techniques that use a formal
model of the GUI’s events, encoded as preconditions and ef-
fects to generate test cases [25] and test oracles [24]. While
the specifications-building process is resource intensive, the
generated test cases are effective, and the error reporting
is detailed, accurate, and useful. Second, we have devel-
oped a faster daily-building and smoke-testing process for
GUIs [21]. No manually-created specifications are needed;
the correctness of the latest GUI version is checked against
the previous (baseline) version. We have found the daily
smoke testing process to be useful, in that it provides feed-
back to developers in a reasonable amount of time, i.e.,
daily. Although this process is much faster and more au-
tomated than our specifications-based approach, there are
several problems that need manual intervention. For exam-
ple, our smoke test cases report some false positives, i.e.,
some of the bugs that they report are not real bugs – they are
simply a consequence of changes made to the GUI during
evolution. Moreover, some of our test cases lead to software
crashes. These crashes sometimes kill our smoke testing
process, causing substantial delays.

We now define a tighter GUI testing cycle that is fully au-
tomatic. The key idea is to test the GUI each time it is mod-
ified, e.g., at each code commit. Our aim is not to exhaus-
tively test the GUI; rather, we want to quickly raise a “some-
thing is wrong here” alarm by checking that each GUI event
and interactions between them work correctly. We eliminate
the need for manual intervention by requiring neither spec-
ifications nor the identification of false positives. We have
defined a simple, yet effective, method to determine the suc-
cess of a test case. We say that the GUI fails on a test case if
it causes the software to throw an uncaught exception; oth-
erwise it passes. Consequently, we call this process “crash
testing.” We describe two levels of crash testing: (1) im-
mediate feedback-based in which a developer indicates that
a GUI bug was fixed in response to a previously reported
crash; only the select crash test cases that caused the earlier
crash are rerun and the developer is notified of the results in
a matter of seconds, and (2) between code changes in which
new crash test cases are generated on-the-fly and executed
on the GUI. Since the code may be changed by another de-
veloper before all the crash tests have been executed, hence
requiring restarting of the process, we use a simple rotation-
based scheme to ensure that all crash tests are executed over
a series of code changes.

To generate crash tests, we define a new representation
of the GUI called the event-interaction graph. This repre-

sentation models specialized user interactions with the GUI
and can be obtained automatically using our reverse engi-
neering techniques [23]. We annotate this graph by adding
boolean flags on edges allowing us to develop a rotation-
based scheme for generating crash tests. We present results
of empirical studies in which we generate crash tests and
study their characteristics. In particular, we study the trade-
offs between the number of crash tests and the number of
crashes reported. We artificially control the time interval
between GUI code changes and study how rotating crash
tests helps to quickly eliminate those software defects that
manifest themselves as software crashes.

The specific contributions of this work include:
1. Definition of new type of test cases for GUIs that can

be generated automatically and executed quickly.
2. Introduction of annotated event-interaction graphs and

their application.
3. Empirical studies demonstrating (1) the tradeoffs be-

tween the number of crash tests and number of crashes
reported and (2) how the simple rotation algorithm
helps to speed-up defect detection.

Structure of the paper: In the next section, we identify the
requirements of GUI crash testing and formally define GUI
crash tests. In Section 3, we present three empirical studies
demonstrating the usefulness of crash tests. In Section 4,
we discuss related work, and finally in Section 5 conclude
with a discussion of ongoing and future work.

2 GUI Crash Tests
Users interact with a GUI by performing events on some

widgets, such as clicking on a button, opening a menu, and
dragging an icon. During conventional GUI testing, test
cases, consisting of sequences of events are executed on the
GUI.4 Our goal now is to create test cases on-the-fly that
can quickly test major parts of the GUI fully automatically.
More specifically, we want to produce test cases that satisfy
the following requirements.
• The crash test cases should be generated quickly on-

the-fly and executed. We don’t intend to save the test
cases as a suite; rather, we want a throwaway set of test
cases that require no maintenance.

• The test cases should broadly cover the GUI’s entire
functionality.

• It is expected that new changes will be made to the GUI
before the crash testing process is complete. Hence,
we will terminate and restart the crash testing process
each time a new change is checked-in. The crash test
cases should detect major problems in a short time in-
terval.

We develop the crash test cases automatically using
model-based techniques. The key reason for our success is a

4We have shown in earlier work that simply executing each event in
isolation is not enough for effective GUI testing [25].
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Figure 1. Example of an Event-Flow Graph.

new GUI representation that models specialized user inter-
actions with the GUI. We call this representation the event-
interaction graph, which is based on a structure called the
event-flow graph (EFG) [21].

Intuitively, an EFG models all possible event sequences
that may be executed on a GUI. An EFG contains nodes
(that represent events) and edges. An edge from node nx

to ny means that the event represented by ny may be per-
formed immediately after the event represented by node nx.
An example of an EFG for the Main and Replace win-
dows of the MS NotePad software is shown in Figure 1.
Events (corresponding to each widget) are shown as labeled
boxes. The labels show a meaningful unique identifier for
each event. Directed edges show the event-flow relationship
between events. For increased readability, we do not show
all the edges. Instead, we define sets of events and list them
in a Legend. For example TopLevel is a set containing the
events File, Edit, Format, View, and Help. Similarly

11 is a set containing all the events in TopLevel and Re-
placeSet. An edge from Copy to 11 represents a num-
ber of edges, from Copy to each event in 11 . According to
this EFG, the event Cancel can be executed immediately
after the event Find Next; event Match case can be
executed after itself; however, event Replace cannot be
executed immediately after event Cancel.

EFGs may be used to generate GUI test cases. A
straightforward way to generate test cases is to start from
a known initial state of the GUI (e.g., the state in which
the software starts) and use a graph traversal algorithm,
enumerating the nodes during the traversal, on the EFG.
If the event requires text input, e.g., for a text-box, then
its value is read from a database, initialized by the soft-
ware tester. A sequence of events e1; e2; . . . ; en is gener-
ated as output that serves as a GUI test case. For exam-

ple, the EFG of Figure 1 may be used to generate a num-
ber of test cases, e.g., < File; FindNext; File > and
< New; Format; Font >.

This straightforward approach works well in certain sit-
uations; we have used it to generate test suites for large em-
pirical studies [27, 21]. However, the number of event se-
quences grows very rapidly with length. It becomes infea-
sible to generate and execute all possible event sequences
beyond length > 2. In previous work, we have always ex-
ecuted a reasonable subset. We have learned that many of
the longer sequences are useful for fault-detection [26]. The
challenge is to automatically generate these effective se-
quences. In this research, we do this by further reducing the
event interaction space using lessons that we have learned
from our empirical studies. We now model a reduced event-
interaction space by developing event-interaction graphs.

We have observed that in a typical GUI, 20-25% of the
GUI events manipulate the structure of the GUI; exam-
ples include events that open/close windows/menus. For
example, in Microsoft Word, of the total 4210 events, 80
events open menus, 346 events open windows, and 196
events close windows; the remaining 3588 events interact
with the underlying code. The code for events that open
menus and windows is straightforward, usually generated
automatically by visual GUI-building tools. Our experience
with GUI testing has shown that this code is very unlikely
to interact with code of other events; hence very few errors
are revealed by executing interactions between these events.
Our goal is to test interactions between the remaining (non-
structural) events. We automatically identify these events,
model the interactions between them, and reduce the space
of interactions that need to be tested.

We identify windowing events that open windows (e.g.,
the event Open used to open the window File Open) and
termination events that close windows; common examples
include Ok and Cancel. The GUI contains other types of
events that do not open or close windows but make other
GUI events available. For example, menu-open events are
used to open menus. The most common example of menu-
open events are generated by widgets that open pull-down
menus. For example, File and Edit found in many ap-
plications’ pull-down menus are menu-open events.

The above events are structural, i.e., they manipulate
the structure (open/close menus/windows) of the GUI. The
remaining non-structural events do not cause structural
changes to the GUI; rather they are used to perform some
action; common examples include the Copy event used for
copying objects to the clipboard.

Note that events that interact with the underlying soft-
ware include non-structural and termination events. We call
these events system-interaction events. Intuitively, our GUI
crash test cases are composed only of these events (and
any other events necessary to “reach” the system-interaction

3



events). Also, we focus on all two-way interactions between
these events.

We now define some terms that we will use to develop
event-interaction graphs. An event-flow path represents a
sequence of events that can be executed on the GUI. For-
mally, an event-flow-path is defined as follows:

Definition: There is an event-flow-path from node nx

to node ny iff there exists a (possibly empty) sequence
of nodes nj ; nj+1; nj+2; . . . ; nj+k all in the event-flow
graph E such that {(nx, nj), (nj+k , ny)} ⊆ edges(E) and
{(nj+i, nj+i+1)for 0 ≤ i ≤ (k − 1)} ⊆ edges(E). 2

The function edges takes an EFG as an in-
put and returns a set of ordered-pairs, each repre-
senting an edge in the EFG. We use the notation
< n1; n2; . . . ; nk > for an event-flow path. Several
examples of event-flow paths from the EFG of Figure 1 are:
< File; Edit; Undo >, < File; MatchCase; Cancel >,
< MatchCase; Editbox 1; Replace >, and
< MatchCase; FindNext; Replace >. We are in-
terested in those event-flow-paths that start and end
with system-interaction events, without any intermediate
system-interaction events.

Definition: An event-flow-path < n1; n2; . . . ; nk > is
interaction-free iff none of n2, . . . , nk−1 represent system-
interaction events. 2

Of the examples of event-flow paths presented
above, < File; Edit; Undo > is interaction-free
(since Edit is not a system-interaction event) whereas
< MatchCase; Editbox 1; Replace > is not (since
Editbox 1 is a system-interaction event).

We now define the interacts-with relationship be-
tween system-interaction events. Intuitively, two system-
interaction events may interact if a GUI user may execute
them in an event sequence without executing any other in-
termediate system-interaction event.

Definition: A system-interaction event ex interacts-
with system-interaction event ey iff there is at least one
interaction-free event-flow-path from the node nx (that rep-
resents ex) to the node ny (that represents ey). 2

For the EFG of Figure 1, the above relation
holds for the following pairs of system-interaction
events: {(New, Date/T ime), (FindNext 1,
WordWrap), (Editbox 0, Editbox 1), and
(Delete,Cancel)}. The interaction-free event-flow-
paths for these pairs are < New; Edit; Date/T ime >,
< FindNext 1; Format; WordWrap >, <
Editbox 0; Edibox 1 >, and < Delete; Cancel >
respectively. Note that an event may interact-with itself.
For example, the event MatchCase interacts with itself.
Also note that “ex interacts-with ey” does not necessarily
imply that “ey interacts-with ex.” For example, in our EFG,
even though Replace interacts-with Cancel, the event
Cancel does not interact-with Replace.
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Figure 2. EIG for the EFG of Figure 1.

We use the interacts-with relationship to create the event-
interaction graph (EIG). This graph contains nodes, one for
each system-interaction event in the GUI. An edge from
node nx (that represents ex) to node ny (that represents ey)
means that ex interacts-with ey.

The event-interaction graph for the EFG of Figure 1 is
shown in Figure 2. Note that the space of event-sequences
has reduced considerably since only the system-interaction
event interactions are marked in this graph.

We may traverse the event-interaction graph in a number
of ways to generate sequences of system-interaction
events. For example, we may generate all length 1
event sequences by simply enumerating all the nodes
in the graph. For the event-interaction graph of Fig-
ure 2, we obtain the set of length 1 sequences {New,
Save, Undo, Cut, Copy, Paste, Delete, FindNext 0,
SelectAll, T ime/Date, WordWrap, StatusBar,
MatchCase, Editbox 0, Editbox 1, FindNext 1,
Replace, ReplaceAll, Cancel}. We may generate all
length 2 event sequences by enumerating each node with
its adjacent node, i.e., each edge in the EIG. For the
event-interaction graph of Figure 2, we obtain sequences
such as < New; Undo >, < FindNext 1; Replace >,
and < ReplaceAll; Exit >.

The remaining question is how to execute the gener-
ated system-interaction event sequences. At execution time,
other events needed to “reach” the system-interaction events
are automatically generated. We use a simple graph traver-
sal algorithm on the EFG to obtain the events. For example,
the system-interaction sequence < New; Undo > will ex-
pand to < File; New; Edit; Undo > during test-case exe-
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cution.
The test cases defined in the previous section are com-

plete, in that they can be executed automatically on the GUI.
Crashes during test execution may be used to identify seri-
ous problems in the software.

Once we have obtained the event-interaction graph for
a GUI, we can annotate it in several ways. In this paper,
we associate a boolean flag with each edge in the graph.
During crash testing, once we have generated a test case
that “covers” an edge, we set the associated boolean flag.
This prevents us from generating this test again, until all the
edges have been covered.

If the crash testing process is interrupted, e.g., when a
new version of the software has been checked-in, the flags
for each edge are retained across event-interaction graph
versions. This allows us to implement algorithms that ro-
tate test cases across software versions.

3 Empirical Studies
We have implemented the algorithms described in the

previous section as modules of a new system called GU-
ICrasher. GUICrasher is able to automatically analyze the
GUI, create event-interaction graphs, generate crash test
cases, and execute them. The GUI ripper is the automated
module that creates the event-interaction graphs [23]. “GUI
Ripping” is a dynamic process in which the software’s GUI
is automatically “traversed” by opening all its windows and
extracting all their widgets (GUI objects), properties, and
values. The test-case generator uses the event-interaction
graphs to create the crash tests. The test executor is capa-
ble of executing the test cases automatically on the GUI. It
performs all the events in each test case. Events are trig-
gered on the GUI using the native OS API. For example,
the windows API SendMessage is used for windows appli-
cations and Java API doClick for Java applications. Note
that we have provided only the details needed to understand
the empirical studies and interpret the results. Additional
details and algorithms are available in [21, 25].

We now present three empirical studies to demonstrate
the usefulness of our crash tests. In particular, we will an-
swer the following questions:

1. How many times does a typical software crash on our
test cases?

2. How long does it take to run our crash tests?
3. Since the crash testing process is expected to be ter-

minated as soon as the GUI is modified again, which
could give a very small window of time to run the test
cases, how many test cases must be run to completion
for effective testing?

4. When rotating test cases during frequent GUI modifi-
cation, how effective is the annotated event-interaction
graph approach?

3.1 Study 1: Effectiveness of Crash Tests
The goal of our first empirical study is to determine the

feasibility of the crash testing process and the effectiveness
of the tests. In particular, we use the following process:

1. Choose software subjects with GUI front-ends.
2. Generate event-interaction graphs.
3. Generate crash test cases on-the-fly, executing each au-

tomatically on the subject applications.
We measure the time taken to execute the test cases and

the number of software crashes reported.
Step 1: Software Subjects: The software subjects for our
studies are part of an open-source office suite developed
at the Department of Computer Science of the Univer-
sity of Maryland by undergraduate students of the senior
Software Engineering course. It is called TerpOffice5 and
consists of six applications out of which we use four –
TerpSpreadSheet (a spreadsheet application), TerpPaint (an
image editing/manipulation program), TerpPresent (a pre-
sentation tool), and TerpCalc (a scientific calculator with
graphing capability). They have been implemented using
Java. Table 1 summarizes the characteristics of these ap-
plications. Note that these applications are fairly large with
complex GUIs. With the exception of TerpCalc, all the ap-
plications are roughly the size of MS WordPad. The number
of widgets listed in the table are the ones on which system-
interaction events can be executed. We did not include the
Help menu, since the help application is launched in a sep-
arate web browser.

Subject Application Windows Widgets LOC Classes Methods Branches
TerpSpreadSheet 9 145 12791 125 579 1521

TerpPaint 10 200 18376 219 644 1277
TerpCalc 1 82 9916 141 446 1306

TerpPresent 12 294 44591 230 1644 3099
TOTAL 32 721 85674 715 3313 7203

Table 1. TerpOffice Applications
Step 2: Generate System-Interaction Graphs: For each ap-
plication, we used GUICrasher to generate event-interaction
graphs. The sizes of the event-interaction graphs are shown
in Table 2. As noted earlier, our crash tests will consist
of all length 1 (number of events in the EIG) and length 2
(number of edges in the EIG) system-interaction event se-
quences. Hence, in this study, we expect to generate and
execute more than 39K crash tests.

Subject Application Nodes Edges
TerpSpreadSheet 145 3246

TerpPaint 200 8699
TerpCalc 82 6561

TerpPresent 294 19918
TOTAL 721 38424

Table 2. Sizes of Event-Interactions Graphs
Step 3: Test-Case Generation and Execution: GUICrasher
generated all the crash test cases and replayed them on the

5www.cs.umd.edu/users/atif/TerpOffice
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subject applications one-by-one. The execution consisted
of performing each event, such as a clicking-on-buttons,
opening-menus, selecting-items, checking-boxes, etc. If
a text-box needed input, then the values were read from
a database. We initialized the database to contain sev-
eral types of inputs: negative and positive integers, text
strings, special characters, very long strings, and floating-
point numbers.

The time needed (in minutes) to run all the test cases is
shown in Figure 3. We see that it took approximately 3-6
hours to execute all the crash test cases for TerpCalc, Terp-
SpreadSheet and TerpPaint, and 12 hours for TerpPresent.
We will see later, in Studies 2 and 3, that not all the test
cases need to be executed to reveal problems in the soft-
ware.
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Results: Crashes Reported: We now see the effectiveness of
the crash tests. Figure 4 shows the total number of test cases
that led to a software crash. The large number of crashes
reported was very encouraging, especially since this version
of TerpOffice was considered to be stable and has a test suite
of 5000+ GUI test cases; it also has at least one JUnit test
case per Java method.
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Figure 4. Number of Software Crashes

We manually examined all the system exception mes-
sages and computed the number of bugs (we informally use
the term “bug” to mean a “fault in the code”) in the code that
had led to the crashes. Figure 5 summarizes our results. We
see that although TerpCalc had crashed on a large number
(140+) of test cases, the crashes were due to only 3 bugs in
the code. Also, TerpPaint had crashed on only 23 test cases
but the number of underlying bugs was 13, a surprisingly
large ratio. The ratios between crashes and bugs are in fact
due to the location of the bugs; if frequently executed code
contains the crash-causing bug, then a large number of test
cases will result in a crash.
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Figure 5. Number of Crash-Causing Bugs
We now describe some of the bugs that manifested them-

selves as software crashes. We identified three classes: (1)
Invalid text input. We found that many crashes were the
result of the software not checking the validity and size of
text input. For example, some text boxes in TerpPaint ex-
pect an integer input; providing a string resulted in a crash.
In some instances, a “very long” text input also resulted in
a crash. (2) Widget enabled when it should be disabled.
One challenge in GUI design is to identify allowable se-
quences of interactions with widgets and to disallow certain
sequences. Designers often disable certain widgets in cer-
tain contexts. In our TerpOffice applications, we found sev-
eral instances of widgets enabled when they should really
have been disabled. When our crash tests executed the in-
correctly enabled widget in an event sequence, the software
crashed. (3) Object declared but not initialized. Some of
our crashes were Java NullPointerExceptions. It turned out
that as the software was evolving, one developer, not see-
ing the use of an object, commented out a part of the code,
which was responsible for object initialization. Another de-
veloper continued to use the object in another part of the
code. The software crashed when the uninitialized object
was accessed.

3.2 Study 2: Number of Crash Tests
From our previous study, we saw that running all crash

tests can take up to 12 hours. Since we may not have such
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a long time between GUI code changes, we conducted an-
other study to determine the impact of number of test cases
on the number of crash-causing bugs detected. Since we
already had the results of the crash test cases from the pre-
vious study, we did not have to regenerate and re-execute
new test cases for this study. We could simply simulate the
effect of different number of test cases by treating our ex-
isting smoke test suite as a test pool and selecting different
number of test cases from them. More specifically, for each
subject application, we used the test pool to create 1200 test
suites: 200 of each size 100, 500, 1000, 2000, 3000, and
4000. Each suite was obtained independently using random
selection without replacement.

Since we have 200 test suites of each size, we show our
results in the form of box-plots. The box-plots provide a
concise display of each distribution. The black square in-
side each box marks the median value. The edges of the box
mark the first and third quartiles. The whiskers extend from
the quartiles and cover the entire distribution. The median
in the box-plots of Figure 6 shows that the number of bugs
revealed increases with test suite size; however, as the over-
laps between box-plots show, the number of bugs does not
grow significantly with test suite size. We also conduced a
one-way ANOVA with factor “test suite size” and response
“number of bugs revealed.” We found no statistically signif-
icant impact of suite size on the number of bugs revealed.
Hence, even a small number (a few hundreds) of crash tests
are sufficient to find serious software problems.

3.3 Study 3: Rotating Test Cases
Next we wanted to see the effectiveness of our rotating

algorithm based on the annotated event-interaction graphs.
Recall that the algorithm ensures that all crash tests are ex-
ecuted across multiple code changes. In this study, we per-
form the following steps:

1. Start with the original (faulty) subject applications.
We already know the number of crash-causing bugs in
each application.

2. Set a time interval N between software changes.
3. Generate and execute as many crash test cases as pos-

sible in this interval. Update the boolean flags on the
event-interaction graph edges.

4. Examine the crashes reported and eliminate the re-
vealed bugs.

5. Repeat Steps 3 and 4 until there are no more bugs.

We used a random selection without replacement as a
control strategy for this study, i.e., instead of using the
boolean-edge information, we randomly selected a crash
test case, making sure that each test case was selected only
once in one interval. Also, we used four values of N , i.e.,
15, 30, 60, and 90 minutes. We repeated this study 200
times and report results of medians.
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Figure 6. Number of Bugs vs. Number of Test
Cases
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We summarize the results of this study in Figure 7. Each
graph has two lines,6 one for our control “Random” and
the other for our “Memory”-based on the boolean flags in
the event-interaction graphs. The x-axis shows the intervals
between code changes, the first one being the start interval
0. The y-axis shows the number of bugs remaining in the
subject applications. Note that we do not show the results
for TerpSpreadSheet, since it has only one bug, making its
results uninteresting.

As the graphs show, the memory-based rotation tech-
nique does better than the random technique, i.e., we re-
move all bugs much sooner. In the case of TerpPaint, the
random technique does not even eliminate all bugs.

4 Related Work
To the best of our knowledge, there is no reported work

on rapid QA of evolving GUI software. There are sev-
eral areas that share characteristics relevant to our work:
feedback-based QA mechanisms for conventional software,
GUI testing tools, robustness testing and fault injection.
We discuss some of these topics here. Note that we have
discussed GUI testing tools in our other reported work on
smoke testing [21]; we will not reproduce it here for lack of
space.

Feedback-based QA mechanisms are increasingly be-
ing used to control the quality of evolving software. We
classify these mechanisms according to their frequency and
speed of execution, thoroughness, and the level of detail of
feedback that they provide to a developer: (1) Immediate,
(2) Intermediate, and (3) Thorough. The immediate mecha-
nisms are usually integrated with version control systems to
provide immediate feedback at change-commit time. The
developer manually provides a commit validation suite that
is executed each time a new software version is checked-
in. The commit-validation test suite typically consists a few
test cases. Systems such as Aegis implement a two-stage
commit that first does a “partial commit” of the changes,
executes test cases, and does a “final commit” only after all
the test cases have passed.

The intermediate mechanisms include daily building and
smoke testing that executes more thorough test cases on a
more regular basis. Developers don’t get instant feedback;
rather they are e-mailed the results of the nightly builds and
smoke tests. Usually a software crash or a mismatch will
be considered as a bug. During nightly builds, a develop-
ment version of the software is checked out from the source
code repository tree, compiled, linked and “smoke tested”,
with the purpose to (re)validate the basic functionality of the
system [19]. A number of large-scale commercial and open-
source projects apply daily building and smoke testing, in-
cluding Microsoft Windows NT operating system [20], and
many GNU projects, such as Ghostscript, Mozilla, open-

6If only one line is visible, they are overlapping

webmail, WINE, etc. There are several tools that may be
used to setup and perform smoke testing of software appli-
cations. Most of these tools provide more or less identical
functionality for conventional software. Popular examples
include CruiseControl [2], IncrediBuild [3], Daily Build [5]
and Visual Build [4]. Our own system called DART [27, 21]
addresses the needs of smoke testing of GUI software.

The thorough mechanisms such as Skoll [22] continu-
ously run hundreds and thousands of test cases for weeks
at a time on several builds of the evolving software. Sev-
eral Skoll servers manage the distribution of test cases on
dozens of Skoll clients that run the test cases. Results and
feedback is collected by the servers and analyzed. Deci-
sions about subsequent test executions are then made.

Several researchers have conducted research to increase
the robustness of software [15, 11, 12], although not in the
context of continuous testing. The overall goal of robust-
ness testing is to ensure that the program handles all (valid
and invalid) inputs. Most of the research in this area focuses
on the generation of robustness-checking test cases. Fault
injection techniques may also be used to test the robustness
of a program [7]. The injectors introduce the faults into the
application by modifying the code at compile time [14, 30]
and runtime [18, 13] or by introducing faults in its execution
environment [10, 17]. The goal is to force various types of
failures such as memory corruption [8, 6].

5 Conclusions
One of the major challenges of developing rapidly evolv-

ing software is maintaining its quality. While there are sev-
eral feedback-driven mechanisms to control the quality of
conventional evolving software, there are no such mecha-
nisms for GUI-based applications. This paper makes sev-
eral contributions to the field of rapidly evolving GUI soft-
ware. First, it identifies the requirements for rapid GUI test-
ing. Second, it presents a new type of GUI testing, called
“crash testing” to help rapidly test the GUI as it evolves.
Third, it presents two levels of crash testing: (1) immediate
feedback-based in which a developer indicates that a GUI
bug was fixed in response to a previously reported crash;
only the select crash test cases are rerun and the developer
is notified of the results in a matter of seconds, and (2) be-
tween code changes in which new crash test cases are gener-
ated on-the-fly and executed on the GUI. Fourth, since the
code may be changed by another developer before all the
crash tests have been executed, hence requiring restarting
of the process, it presents a simple rotation-based scheme to
ensure that all crash tests are executed over a series of code
changes. Finally, it presents empirical studies that demon-
strate the effectiveness of the crash tests.

Our research on crash testing continues; this paper is just
the first report in a line of research that looks promising with
many exciting opportunities for extensions. First, we are
exploring the use of fault-injection techniques to improve
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Figure 7. Effectiveness of the Rotating Algorithm. Note that the “Memory” line touches the x-axis
faster than the “Random” line, indicating that crash-causing bugs are eliminated faster when using
the annotated event-interaction graph approach.
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the crash tests. Second, we are studying the effectiveness
of longer crash tests and their impact on the number of bugs
revealed. Third, we are extending this work to other reactive
software systems, namely web applications. Finally, we are
developing a web service which will enable users to sub-
mit their GUI-based applications for testing; GUICrasher
will “crash test” the application and report results of crashes
found. We will integrate this web service into the develop-
ment of TerpOffice in future Software Engineering courses.
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