
Studying the Characteristics of a “Good” GUI Test Suite

Qing Xie and Atif M Memon
Department of Computer Science

University of Maryland, College Park, MD 20742
{qing, atif}@cs.umd.edu

Abstract

The widespread deployment of graphical-user interfaces
(GUIs) has increased the overall complexity of testing. A
GUI test designer needs to perform the daunting task of ad-
equately testing the GUI, which typically has very large in-
put interaction spaces, while considering tradeoffs between
GUI test suite characteristics such as the number of test
cases (each modeled as a sequence of events), their lengths,
and the event composition of each test case. There are no
published empirical studies on GUI testing that a GUI test
designer may reference to make decisions about these char-
acteristics. Consequently, in practice, very few GUI testers
know how to design their test suites. This paper takes the
first step towards assisting in GUI test design by presenting
an empirical study that evaluates the effect of these char-
acteristics on testing cost and fault detection effectiveness.
The results show that two factors significantly effect the
fault-detection effectiveness of a test suite: (1) the diver-
sity of states in which an event executes and (2) the event
coverage of the suite. Test designers need to improve the
diversity of states in which each event executes by develop-
ing a large number of short test cases to detect the major-
ity of “shallow” faults, which are artifacts of modern GUI
design. Additional resources should be used to develop a
small number of long test cases to detect a small number of
“deep” faults.

1 Introduction
Designing a test suite is widely recognized as a funda-

mental activity for effective software testing. It includes
complex tasks such as the definition of test requirements
(objectives), determination of the type of test cases needed,
determination of the type of test oracles (mechanisms to
determine whether the software is executing correctly dur-
ing test execution [6]) needed for each test case, definition
of test adequacy criteria, and development of schedules for
test creation and execution. Ideally, a test designer formu-
lates a test design that is both within budget and maximizes
the chances of finding software defects. Formulating a suc-

cessful test design requires considerable experience on the
part of the tester. Different application parameters (e.g.,
whether it contains a graphical user interface (GUI), appli-
cation domain, implementation platform) and different test
team composition parameters (e.g., training level of per-
sonnel, familiarity with tools) must be taken into account
when designing the test suite. Testers rely on past experi-
ence, either their own or of others packaged into mathemat-
ical models. Common examples of packaged models that
may be used for certain aspects of test suite design include
cost estimation tools (e.g., CosteXpert [1], SLIM-Estimate
[3], PRICE TruePlanning [2]) and defect estimation models
(e.g., COnstructive QUALity MOdel (COQUALMO) [5]).

The widespread deployment of GUI-based applications
has made testing significantly more complex. The func-
tional correctness of an application’s GUI is necessary to
ensure the correctness of the overall application. To test
a GUI, testers create test cases consisting of sequences of
GUI input events. The tester needs to answer the questions:
(1) How many test cases should be generated? (2) What
should be the length of each test case? (3) What events
should be put into a test case? These questions are espe-
cially important for GUIs for a number of reasons. First
of all, the space of possible user interactions with a GUI
is enormous, in that each sequence of GUI events can re-
sult in a different state, and each GUI event may need to be
evaluated in all of these states [10]. The large number of
possible states results in a large number of input permuta-
tions [10] requiring extensive testing. The tester needs to
cover this extensive event-interaction space by considering
factors such as the number of test cases, their composition
in terms of events, and the length of each test case.

GUI test design can be improved in several ways. First,
by developing models and techniques that give the tester a
global view of the overall test process and allow the defini-
tion of global test requirements, e.g., CIS model by White
et. al. [16]. Second, by providing empirical evidence that
shows the relationship between types of GUI test cases and
GUI faults. We have already started to address the former
by developing an event-flow model of the GUI and its events

[17, 12]. We briefly describe parts of the event-flow model
in Section 3. In this paper, we focus on the latter. We
posit that a fundamental reason for poor GUI test design is
the lack of empirical studies that demonstrate the tradeoffs
between various attributes of test cases (e.g., length, event
composition) and test suites (e.g., size), and their impact on
fault detection effectiveness. A GUI tester needs access to
results of experiments that point to effective combinations
of these attributes. We provide the first such empirical study
in this paper.

More specifically, we design an empirical study in which
we choose subject applications with GUI front-ends and
generate test cases for them. We vary several key character-
istics of GUI test suites that are of interest to testers, namely
size of the suite, event composition, and the length of each
test case. For each combination of these characteristics, we
report the impact on fault detection effectiveness and cost.
Our goal is to compile a set of “lessons learned” that can be
used by testers to create effective GUI test cases. We note
that this study is the first in a series of much needed studies
to develop and evolve a set of lessons learned. While the
work presented in this paper should be considered work-in-
progress, we feel that it provides a strong starting point with
several useful results. We have also made the artifacts of our
study available as downloadable “benchmarks” on the In-
ternet,1 thereby enabling other researchers to use them and
extend our work. We mention some exciting new directions
in Section 7.

We report several lessons learned from the empirical
study. We show that two factors significantly effect the
fault-detection effectiveness of a test suite: (1) the diversity
of states in which an event executes and (2) the event cover-
age of the suite. We also show that testers need to develop
a large number of short test cases to detect the majority of
“shallow” GUI faults typically found in modern GUIs; ad-
ditional resources, if available, should be used to generate a
small number of long test cases to detect a relatively smaller
number of “deep” faults.

The contributions of this work include: (1) A compre-
hensive empirical study comparing several GUI testing fac-
tors, (2) the first attempt to assist in test design for GUIs, (3)
the relationship between test suite size and fault-detection
effectiveness, (4) the impact of test case length on fault-
detection effectiveness, (5) the role of state diversity in GUI
testing, and (6) a collection of shared artifacts that other re-
searchers may leverage to replicate the study and conduct
new ones.
Structure of the paper: The next section discusses related
work; Section 3 introduces basic terminology needed to un-
derstand the experiments. Section 4 briefly describes the
experimentation infrastructure. The experiments and their
results are presented in Section 5. Finally, Section 7 con-

1http://www.cs.umd.edu/users/atif/benchmarks.htm

cludes with a discussion of on-going work and future re-
search opportunities.

2 Related Work
In practice careful test design is neglected for GUI test-

ing. Due to the complexity of GUI testing, most testers
don’t develop test designs; rather, the de facto strategy is
to “stop testing when they run out of time.” In fact, cur-
rent techniques for GUI test-case generation and test oracle
creation promote incomplete and ad hoc test designing in
that they force testers to test GUIs on a per test case basis.
GUI testing tools rely on the tester’s memory to remember
what events have been executed by the previously generated
test cases; a tester who uses these tools loses global view
of the testing process. The most popular tools used to test
GUIs are capture/replay tools such as WinRunner2 that re-
quire the GUI tester to make decisions on the fly. The tester
uses these tools in two phases: a capture and then a replay
phase. During the capture phase, a tester manually inter-
acts with the GUI being tested and performs events. The
tool records the interactions. The tester also manually “as-
serts” that certain attributes of specific widgets be stored.
The recorded test cases can be replayed automatically on
(a modified version of) the software using the replay part
of the tool. The assertions can be used to check the GUI’s
execution for correctness. As can be imagined, these tools
require a significant amount of manual effort. Testers who
employ these tools typically come up with a small num-
ber of test cases [10]. Moreover, since they make decisions
(e.g., events to execute, length of test case) on a per test
case basis when they interact with the application, they lose
global perspective of the overall testing process. They also
do not get immediate feedback on the full impact of their
decisions on fault detection effectiveness and test coverage.

Commercially available test composition/management
tools [2, 3] (none available for GUI testing) typically have
more or less identical features. They allow users to com-
pose and manage tests. Tests can be mapped to functional
requirements. They may be assigned a type (e.g., regres-
sion, functional). These tools also provide test management
support. For example, if a tester does not want to execute
all test cases, the tools allow testers to pick test cases for ex-
ecution. They track the pass and fail rate of each test. The
testers can view bug, progress, and failure-rate reports.

Defect estimation/prediction models [7] may be used for
some aspects of testing. Ostrand and Weyuker [13] use soft-
ware content and development process measures to predict
faulty files in multiple releases of two software systems at
AT&T. The COQUALMO project uses COCOMO II data
to estimate the total number of defects in a software system
[5]. However, none of the existing defect estimation models
provide explicit support for GUI defects.

2http://mercuryinteractive.com

3 Basic Terms
Since we will study the interactions between the most

fundamental factors considered by GUI testers, i.e., test
suite size, event composition of a test case, and test case
length, in this section we briefly describe these factors. Note
that due to lack of space, we provide details needed to un-
derstand the empirical studies presented in this paper; the
interested reader is referred to previously published results
for additional details [12, 9].

Since GUIs may be used as front-ends to all types of soft-
ware, in principle, the space of all possible types of GUIs
is enormous. Creating a representation of all possible GUIs
and studying them is a Herculean (if not impossible) task.
Any empirical study must focus on a reasonable subclass;
it is important, however, to choose a subclass that is broad
enough to be of interest. Hence, we focus on the broad class
of GUIs defined next.

Definition: A Graphical User Interface (GUI) is a hi-
erarchical, graphical front-end to a software system that ac-
cepts as input user-generated and system-generated events,
from a fixed set of events and produces deterministic graph-
ical output. A GUI contains graphical widgets; each widget
has a fixed set of properties. At any time during the execu-
tion of the GUI, these properties have discrete values, the
set of which constitutes the state of the GUI. 2

Note that this definition would need to be extended for
other GUI classes such as web-user interfaces that have syn-
chronization/timing constraints among objects, movie play-
ers that show a continuous stream of video rather than a
sequence of discrete frames, and non-deterministic GUIs in
which it is not possible to model the state of the software in
its entirety and hence the effect of an event cannot be pre-
dicted. In the remainder of this paper, we will present mod-
els, techniques, and studies that are relevant to the above
class of GUIs.

We now define a GUI test case and associated terms.
Definition: A GUI test case T is a pair < S0, e1; e2;

. . .; en >, consisting of a state S0, called the initial state
for T, and an allowable event sequence e1; e2; . . . ; en. The
length of the test case is n, i.e., the number of events in the
test case. 2

The state Si of a GUI, at any point during its execution,
may be modeled as a set of widgets (e.g., buttons, panels,
text fields) that constitute the GUI, a set of properties (e.g.,
background color, size, font) of these widgets, and a set of
values (e.g., red, bold, 16pt) associated with the properties.
The initial state S0 of test case T is the GUI state in which
the first event e1 of T is executed.

The state of a GUI is not static; sequences of events
e1; e2; . . . ; en performed on the GUI change its state to S1,
S2, . . ., Sn successively. During testing, a tester gener-
ates sequences of events as test cases, executes them on
the GUI and checks the GUI for correctness. To generate

a test case, a tester may use a capture/replay tool (described
in Section 2), starts in a state S0 of the GUI, and executes
an allowable sequence e1; e2; . . . ; en of events. The tester
visually indicates parts of the GUI’s state that should be
stored during capture so that they can be used as a reference
during replay. For example, in MS Word, the tester may
want to check that the “File Open” window is the currently
active window after the menu-item “Open” (in the “File”
pull-down menu) has been selected; the tester uses the cap-
ture/replay tool to “assert” that the value of the “is-active”
property of the “File Open” window is TRUE. During (re-
play) test case execution, the replayer would raise an error
flag if the assertion is violated.

Testers may use a number of heuristics (also applicable
to state-based testing) to improve their chances of finding
software faults. For example, they may generate a test suite
that contains only length 1 test cases that test each event
once. Such a test suite has full event coverage, i.e., it con-
tains test cases that execute all the events in the GUI at least
once. However, intuitively, one expects that test suites with
longer test cases (but will take more time to generate and
execute) will put the GUI in different states causing differ-
ent execution behavior, perhaps leading to additional fault
detection. GUI testers constantly have to make such trade-
off decisions between resource usage and test effectiveness.

4 GUITAR
This research leverages several years of work on GUI test

automation, thereby enabling the creation of large numbers
of test suites that may be empirically studied. A GUI test
automation framework called GUITAR3 is used to conduct
the experiments. The key features of GUITAR (relevant to
this work) include a model of the GUI’s event-interaction
space, automated tools for test-case generation, test ora-
cle creation, test execution, and code coverage evaluation.
GUITAR also generates all the scaffolding code (e.g., test
scripts) required to setup and “tear down” test cases, collect
GUI state information, invoke the test oracle, and produce
test reports. This code can be distributed on several differ-
ent computers to execute test cases in parallel automatically.
The key parts of GUITAR are discussed next.

The space of all possible interactions with the GUI are
modeled in GUITAR as an event-flow graph (EFG) [11].
An EFG contains nodes (that represent events) and edges.
An edge from node nx to ny means that the event repre-
sented by ny may be performed immediately after the event
represented by node nx. This relationship represented by
the edges is called follows. A function follows(x)
takes an event x as input and returns a set of events that
can be executed immediately after x. Note that as the nodes
in an EFG are events (not states), and edges are the fol-
lows relationship (not state transitions), the EFG is not a

3http://guitar.cs.umd.edu

state-machine model.
EFGs exhibit certain properties. First, they can be ob-

tained automatically from an executing GUI using reverse
engineering techniques followed by manual verification by
the tester (details are presented in [8]). Second, EFGs may
be used to generate GUI test cases. A straightforward way
to generate test cases is to start from a known initial state of
the GUI (e.g., the state in which the software starts) and use
a graph traversal algorithm, enumerating the nodes during
the traversal, on the EFG. If the event requires text input,
e.g., for a text-box, then its value is read from a database,
initialized by the software tester. A sequence of events
e1; e2; . . . ; en is generated as output that serves as a GUI
test case.

Several graph-traversal techniques may be used to gen-
erate different types of test cases. For example, enumer-
ating all the nodes in the EFG (and hence in the GUI) re-
sults in a collection of length 1 test cases. Executing all
these test cases will result in full event coverage. Enumer-
ating all edges < ex, ey > of an EFG will yield all length
2 test cases. Note that some of these test cases may not
be executable since the first event in the test case may be
embedded in a menu or window not yet open. For exam-
ple, the event Check for Updates in MS Word 2003 is
not available when the software is first launched; it requires
the execution of the event Help, which opens a pull-down
menu that makes Check for Updates available. Such
prefix events are generated by GUITAR on-the-fly during
test case execution, i.e., if the first event in a test case is
not available, GUITAR’s algorithms generate the necessary
prefix.

5 Experiments
This section presents the design and results of experi-

ments to study the tradeoffs between GUI test suite char-
acteristics, namely test suite size, event composition, and
length of test cases. In particular, the studies are designed
to examine the hypotheses: (H1) large test suites are more
effective at detecting faults compared to smaller test suites,
(H2) test suites that contain long GUI test cases are more
effective at detecting faults compared to test suites that con-
tain only short GUI test cases.

The experiments are designed to statistically prove or
disprove, via hypothesis testing, the set (H0) of null hy-
potheses: {(H01) increasing the size of a test suite does not
correspondingly increase the fault-detection effectiveness
and generation/execution cost of the suite, (H02) increas-
ing the length of a test suite’s constituent test cases does
not correspondingly increase the fault detection effective-
ness and generation/execution cost of the suite}. In these
experiments, the alternative hypothesis will be the negation
of the corresponding null hypothesis. In most of the ex-
periments presented in this paper, α = 0.05, i.e., the ex-
periments’ findings have a five percent (0.05) chance of not

being true.
To conduct these experiments, a number of subject appli-

cations (TerpWord, TerpSpreadSheet, TerpPaint, and Terp-
Calc from the TerpOffice suite [12]) will be selected. A
large number of test suites with various, carefully controlled
characteristics will be created and executed on the subject
applications. Keeping in mind the above hypotheses, the
primary measured variable will be the fault-detection effec-
tiveness of a test suite; the secondary measured variable will
be the cost of generating and executing the test suite.

These experiments will also demonstrate that the test
suite’s event composition (i.e., the set of events executed
by the suites constituent test cases) has a direct impact on
the faults that it detects.
5.1 Test Pool

The experiments presented in this paper require the de-
velopment and execution of a large number of test cases.
For example, Experiment 1 requires the execution of 9000
test suites, each with an average size of 2780 test cases for
one subject application. GUI test cases are expensive to
execute – each test case can take up to 30 seconds to exe-
cute (on average, each requires 10 seconds). Hence, for the
results to be statistically significant, the experiments must
generate and execute a prohibitively large number of test
suites. Other researchers, who have also encountered sim-
ilar issues of practicality, have circumvented this problem
by creating a test pool consisting of a large number of test
cases that can be executed in a reasonable amount of time
[4]. Each test case in the pool is executed only once and
it’s execution attributes e.g., time to execute and faults de-
tected are recorded. Multiple test suites are created by care-
fully selecting test cases from this pool. Their execution is
“simulated” by combining the attributes of constituent test
cases using appropriate functions (e.g., summation for cost
of execution). This research will also employ the test pool
approach to create a large number of test suites.

Due to its central role in these experiments, it is impor-
tant to create the test pool carefully. The test pool should
allow the creation of test suites with three controllable at-
tributes, namely size, length of the constituent test cases,
and the event composition of the suite. For example, for
Experiment 2, the test pool should allow the creation of test
suites containing test cases that vary in length; at the same
time, the size and event composition of the suites should
remain constant.

A related approach was employed by Rothermel et al.
[14] to create sequences of commands to test command-
based software. In that approach, each command was ex-
ecuted in isolation and test cases were “assembled” by con-
catenating commands together in different permutations.
Since GUI events (commands) enable/disable each other,
most permutations result in infeasible sequences. Hence,
the approach used here will employ event-flow graphs to

construct test cases that are feasible.
The following process was employed to create the test

pool:

1. Create twenty4 empty buckets; each bucketi can hold
test cases of length i, for 1 ≤ i ≤ 20.

2. Add all GUI events into bucket1. Each event forms
a length 1 test case. Note that for execution, some of
these test cases may require a prefix, discussed in Sec-
tion 4, which is automatically generated by GUITAR’s
test executor on-the-fly.

3. For each event x in bucket1, create five5 copies of x
and append each copy to a randomly chosen (with-
out replacement) element from follows(x). The
“without replacement” choice ensures that the test
cases are unique. For all events, except for the Exit
event, |follows(x)| > 5; the Exit event is ignored in
these experiments. The result is a set of unique length
2 test cases, which forms bucket2.

4. To fill bucketi (3 ≤ i ≤ 20): for each event x in
bucket1, create 5 copies of x and concatenate each
copy with a randomly chosen (without replacement)
element from follows(x). Increase the length of
this test case to i by repeating the concatenation pro-
cess, selecting a random event each time.

5. The test pool is the Union of bucket2 through
bucket20. Note that bucket1 is ignored due to its
smaller (one-fifth) size.

All the buckets are of equal size; they have 5 × N
test cases, where N is the number of events (minus 1 for
Exit) in the GUI. The test pool for each application con-
tained 11875, 15010, 18240, and 7980 test cases for Ter-
pWord, TerpSpreadSheet, TerpPaint, and TerpCalc respec-
tively. Each bucket is guaranteed to contain at least 5 in-
stances of each GUI event (as the first event in the test case).
Each test case will be executed in the same initial state of
the GUI. Hence, these 5 events will behave identically. As
expected, the exact number of times each event was exe-
cuted was much larger than 5. The event frequency distri-
bution is shown in Figure 1 in the form of box-plots. Each
box’s height spans the central 50% of the data, and its up-
per and lower ends mark the upper and lower quartiles. The
bold dot within the box denotes the median. The dashed
vertical lines attached to the box extend to 10% and 90%
of the data. All other detached points are “outliers.” Note
that some events, those that open pull-down menus, are ex-

4Our experience with GUI testing tools has shown that test cases longer
than 20 events typically run into problems during execution, mostly due to
timing issues with windows rendering.

5The choice of five copies is not arbitrary. These experiments were
conducted with 2, 3 and 4 copies. There was no significant difference in
results between 4 and 5 copies. Hence for these applications, we report the
results of experiments that used 5 copies. In the future we will explore the
impact of |follows(x)| >> 5 for other applications.

ecuted much more frequently (e.g., as much as 3500 times
in TerpSpreadSheet) than others.

TerpCalc TerpPaint TerpSpreadsheet TerpWord
0

500

1000

1500

2000

2500

3000

3500

E
ve

nt
 E

xe
cu

tio
n

Fr
eq

ue
nc

y

Figure 1. Event Distribution for Each Applica-
tion.

5.2 Fault Seeding

As discussed in Section 3, a GUI fault is a mismatch,
detected by a test oracle, between the “ideal” (or expected)
and actual GUI states. Hence, to detect faults, a descrip-
tion of ideal GUI execution state is needed. This descrip-
tion is used by test oracles to detect faults in the subject
applications. There are several ways to create this descrip-
tion. First, is to manually create a formal GUI specification
and use it to automatically create test oracles [9]. Second
is to use a capture/replay tool (discussed in Section 2) to
manually develop assertions corresponding to test oracles
and use the assertions as oracles to test other versions of
the subject applications. Third is to develop the test oracle
from a “golden” version of the subject application and use
the oracle to test other versions of the application. The first
two approaches are extremely labor intensive since they re-
quire the development of a formal specification and the use
of manual capture/replay tools; the third approach can be
performed automatically and has been used in this research.
For this research, the faults were similar to those used in
[12].
5.3 Test Execution

An automated tool (a part of GUITAR) was used to ex-
ecute all the test cases in the test pool on the subject ap-
plications. The tool automatically executed each event in
each test case and captured the GUI state (widgets, proper-
ties, and values) automatically by using the Java Swing API.
The state information was then converted to a sequence of
assertEquals(X, Y) statements, where X is the ex-
tracted value of a widget’s property. Y is a placeholder
that is intantiated with the corresponding value extracted

from the fault-seeded application. The method assertE-
quals() returns TRUE if its two parameters are equal,
otherwise FALSE. Due to the limitations of the Java Swing
API, the tool extracted 12 properties for each widget. The
test cases were also executed on each fault-seeded version.
The results of the assertEquals() were recorded. If,
after an event e in a test case t executed on fault seeded
version Fi, even one assertEquals() method returned
FALSE, then t is said to have “detected the fault Fi.” Event
e is said to have been “successful at detecting fault Fi.”

The test cases were executed on four computers, running
Windows 2000. Each computer had 512MB of RAM and a
1.8GHz Pentium processor. Had all test cases been executed
on each fault-seeded subject application, the total number of
test runs would have exceeded 10 Million (53105 × 200).
With each test case requiring 10 seconds to execute, the
runs would have taken almost a year on the 4 machines. To
conserve resources, first each test case was executed on the
original software subjects and its statement coverage was
recorded. Only if the test case executed the statement in
which a fault was seeded, it was run on the corresponding
fault-seeded version. Note that if the test case did not ex-
ecute this line, the fault could not possibly manifest as an
error. This time-saving strategy helped to reduce the execu-
tion time to two months, without loss of accuracy.
5.4 Computing Measured Variables

Two variables were measured in these experiments for
each test suite, i.e., cost in terms of execution time and fault-
detection effectivess. Execution time of the test suite was
simply the cost of executing each test case in the suite. The
fault-detection effectiveness was measured as the number of
unique faults detected by the test cases in the suite.
5.5 Threats to Validity

As is the case with all controlled experiments, these ex-
periments are subject to threats to validity. These threats
need to be considered in order to assess their impact on
the results. First is the selection of subject applications and
their characteristics. The results may vary for applications
that have a complex back-end, are not developed using the
object-oriented paradigm, or have non-deterministic behav-
ior. Second, the test pool approach was used due to practi-
cal limitations. It is expected that the repetition of the same
test case across mutiple test suites will have an impact on
some of the results. For example, if large test suites (con-
taining more than 10K test cases) are created for TerpWord,
which has a test pool of size aproximately 12K test cases,
then each generated test suite will be more or less identical.
The effect of this threat is minimized by considering reason-
ably small test suites (the largest TerpWord suite has 1700
test cases). Third, the algorithm used to create the test pool
ensures that each event (the first event in the test case) is ex-
ecuted in a known initial state; the choice of this state may
have an effect on the results. Fourth, the Java API allow the

extraction of only 12 properties of each widget; faults are
reported for mismatches between these 12 properties. Fifth,
we capped the length at 20 events. The results may vary for
longer test cases. We also used one technique to generate
test cases – using event-flow graphs. Other techniques, e.g.,
using capture/replay tools and programming the test cases
manually may produce different types of test cases, which
may show different execution behavior.

Several threats are related to fault seeding. Threats from
issues such as human decision-making are minimized by us-
ing an objective technique for uniformly distributing faults
based on functional units. The four graduate students were
explicitly asked to use the fault classification.
5.6 Experiment 1: Effect of Test Suite

Size

Since several factors (test suite size, event composition,
test-case length) may have an impact on the fault-detection
effectiveness of a test suite, one factor will be varied in each
experiment, keeping other factors constant. In this experi-
ment, the event composition and length of test cases will be
kept constant; only the test suite size will be varied.

To find the minimum test suite size that may be used for
this experiment, the following process is executed:

1. For each application, randomly generate 100 test
suites. Each test suite should cover all GUI events (i.e.,
randomly select test cases without replacement from
the test pool until all the GUI events have been cov-
ered). Measure the size of each suite; add these 100
values (sizes) to an initial observation set OS0.

2. Randomly generate 100 more test suites. Add
them to the most recent observation set OSi. De-
termine if OSi is equivalent to the old observa-
tion set OSi−1; if so, then skip to the next step;
else repeat this step. Equivalence is determined by
the formula: (Median(OSi) == Median(OSi−1)
&& Q1(OSi) == Q1(OSi−1) && Q3(OSi) ==
Q3(OSi−1)), where Median, Q1, and Q3 are the me-
dian, first quartile, and third quartile of a data set re-
spectively. This step terminates only if the formula re-
turns TRUE.

3. The above step executed 11, 14, 11, and 11 times re-
spectively for TerpCalc, TerpPaint, TerpSpreadSheet,
and TerpWord before terminating.

The median of the last observation set is the smallest test
suite size (n) that is considered in this experiment. The
median for TerpCalc, TerpSpreadsheet, TerpPaint and Ter-
pWord is 220, and 377, 556, and 170 respectively. The test
suite size will be varied from n to 10 × n test cases, in in-
crements of n.

Since the test suites for this experiment need to have the
same event composition and lengths of test cases, the fol-
lowing process is used to create them:

1. Create a test suite of size n by randomly choosing
(without replacement) n elements from the test pool.
If all the events in the GUI are not covered by this test
suite, then discard the suite and re-execute this step.
Create 19 partitions of this suite by test-case length. If
for any length i, partitioni > (bucketi/10), then dis-
card the suite (since it cannot be used to create the size-
10n suite in Step 3 below) and re-execute this step.

2. For each test case t in the size-n suite do: let the
length of t be x; randomly select from the test pool,
without replacement, 2 test cases of length x. Insert
them into the size 2×n suite. Random choice without
replacement throughout this step’s execution ensures
that there are no duplicate test cases in the suite. If all
the events in the GUI are not covered by the 2× n test
suite, then discard the suite and re-execute this step.

3. Repeat the above step for size 3×n through size 10×n,
choosing 3 through 10 test cases respectively from the
test pool for each element of the size-n test suite.

The event composition of all the suites is be exactly the
same. Also, they all have similar-length test cases. Deter-
mine the fault-detection effectiveness of all 10 suites.

This process of test suite creation is repeated in incre-
ments of 100 test suites per unit of size until the data con-
verges, i.e., additional runs do not yield useful information.
If the data has not converged yet, the latest 100 data points
are added to the observation set; hence the observation set
grows in increments of 100. Convergence is determined
using the three-value (median, first quartile, third quartile)
comparison process described earlier. The only difference
is that all 10 same-sized sets are compared to each other.

The number of increments for TerpWord, TerpSpread-
Sheet, TerpCalc, and TerpPaint was 10, 8, 7, and 9 respec-
tively, representing 1000, 800, 700, and 900 test suites in
the final observation set. Figure 2 summarizes the results
for TerpCalc (it is impossible to visually show the data for
each set of 10 related suites separately; the results for other
applications are more or less similar; they are not presented
here due to lack of space). The figure shows a trend that
the number of faults detected grows as test suite size grows,
i.e., larger suites are more effective at detecting faults. The
convergance towards a plateau above a size roughly corre-
sponding to 1000 may be an artifact of the number of faults
seeded and/or the size of the GUI; a detailed analysis will
be conducted in future work.

The analysis of variance test (ANOVA) with α =
0.05 was performed to show that the differences of fault-
detection for test suite size are statistically significant. The
“factor” in the ANOVA was the test suite size and the “re-
sponse” was the fault-detection effectiveness. The ANOVA
test would indicate, with a certain degree of confidence, that
the observed differences were statistically significant. The
observed p-value was 3.3 × 10−154, much less than 0.05,

30

50

70

90

110

130

220 440 660 880 1100 1320 1540 1760 1980 2200

Test Suite Size

N
um

be
r

of
 F

au
lts

Figure 2. Fault Detection Effectiveness vs.
Test Suite Size for TerpCalc

leading to the conclusion that the suite size has a statisti-
cally significant impact on the fault-detection effectiveness.
Hence the null hypothesis H01 is rejected.

This experiment shows that the size of a test suite im-
proves its fault-detection ability even though the lengths
of its constituent test cases and event composition do not
change. The only difference in larger test suites is that
events are executed multiple number of times in combina-
tion with different preceding events (different GUI states),
i.e., increased diversity of GUI states. A larger test suite,
however, requires more time to generate as well as execute;
the time is proportional to the size of the suite.
5.7 Experiment 2: Effect of Test Case

Length

This experiment will study the effect of test case length
on fault-detection effectiveness of a test suite, keeping event
composition and size constant. The following process was
used to obtain the test suites.

1. To create a test suite containing test cases of length
i: randomly choose (without replacement) test cases
from bucketi until all events have been covered. Exe-
cute this step for 2 ≤ i ≤ 20.

2. Let N be the size of the largest of the 19 test suites.
Add test cases into the remaining test suites from their
corresponding buckets until they have N test cases. En-
sure that no test cases are repeated.

Evaluate the fault-detection effectiveness of the 19 test
suites. Repeat the above process using the three-value com-
parison technique outlined in Experiment 1. The data dis-
tributions converged after 10, 11, 12, and 12 iterations for
TerpWord, TerpSpreadSheet, TerpCalc, and TerpPaint re-
spectively, representing 1000, 1100, 1200, and 1200 data

points in the final observation set.

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Length

N
um

be
r

of
 F

au
lts

Figure 3. Fault Detection Effectiveness vs.
Test Case Length for TerpCalc

The results for TerpCalc are summarized in Figure 3
(results were similar for other applications). The x-axis
shows the test case length (2-20) and the y-axis shows
the fault-detection effectiveness. The results show that the
fault-detection effectiveness does not increase with test-
case length. There is not the slightest evidence against the
null hypothesis H02; hence it cannot be rejected.

Although the results show that the length of test cases has
no significant impact on the number of faults detected, ad-
ditional analysis showed that there were certain faults that
could only be detected by long test cases; short test cases
did not detect these faults. The analysis results for Ter-
pCalc are summarized in Figure 4. The figure shows a
column graph; the x-axis shows the test case length; for
each column i, the height of the column shows the size
of the set Complement(Faults(i), Unioni−1

j=1
Faults(j)),

where Faults(x) is the set of faults detected by all length-
x test cases in the test pool, Union and Complement are
set operators. For example, the graph shows that length 10
test cases detected 12 new faults that could not be detected
by any of length 1 through length 9 test cases. The num-
ber of new faults decreases for very long test cases. For
example, length 16, 17, and 18 test cases did not detect
any faults that had not been detected by shorter (< 16) test
cases. Length 19 and 20 test cases detected only 3 and 2
new faults respectively. The converse of this result was not
true, i.e., Complement(Faults(i), Unionj>iFaults(j))
was almost always the empty set.

This experiment showed that when test suite size is kept
constant, the length of the test cases has an impact on the
type (not number) of faults detected. This result reinforces
the earlier observation that an event, when executed in mul-

19

15

18

8

2

4
3

12

3

0
1

0
1

0 0 0

3
2

0

2

4

6

8

10

12

14

16

18

20

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Case Length

N
ew

 F
au

lts
 D

et
ec

te
d

Figure 4. New Faults Detected with Length In-
crease

tiple contexts, detects different faults. A tester has two ways
of improving diversity in the way an event is executed – (1)
by creating longer test cases and (2) generating more test
cases as observed from Experiment 1.

Long test cases, however, are more expensive to gener-
ate and execute. The generation time is proportional to the
length of the test case. However, executing long test cases is
expensive. Due to limitations of the event-flow graph mod-
els, GUITAR’s test-case generator sometimes generates test
cases that are in fact infeasible. In practice, long test cases
that execute infeasible sequences crash the test executor or
the application under test, causing substantial delays.6

5.8 Experiment 3: Effect of Event Com-
position

In the above experiments, the event composition of the
test suites was kept constant, i.e., all the events were used.
This experiment keeps the test suite size and test-case length
constant and varies the event composition. The following
process was used to create the test suites.

1. Randomly generate a test suite t that covers all events.
2. For each event x in the GUI, obtain a test suite called

non-x, which is identical to t in that it has test cases of
similar lengths and is of the same size. However, non-
x does not contain any test case that uses event x. The
following process is used to obtain non-x: copy those
test cases from t to non-x that do not contain x. For
each of the remaining test cases, choose from the test
pool a test case of the same length but one that does not
contain x and that maximizes the chances of covering
other events that are not in non-x. If all same-length
test cases are exhausted, then discard t and repeat Step
1. Also, if the final test suite does not cover all events
(except x) then discard t and repeat Step 1.

6Note that for these experiments, infeasible sequences were substituted
manually with feasible ones.

3. Determine the fault-detection effectiveness of the gen-
erated test suites. Repeat the above process using the
three-value comparison technique outlined in Experi-
ment 1.

As observed earlier, some events (ones that open pull-
down menus, e.g., File) are used very frequently (as much
as 3500 times) in the test pool. Removing such events
caused problems with the above steps; for example, when
File was removed, it was impossible to create a suite that
covered all other events in the GUI. Fortunately, none of
these pull-down menu opening events contributed to the
fault-detection of the test cases; it was hence not necessary
to remove them.

There was a strong correlation between faults detected
by some of the of test suites and the functional unit in which
faults were seeded. A classification of events done using the
same functional units as the ones used for code, revealed
that in all cases, non-i test suites (for i ∈ F functional unit
class), the suite did not detect any faults seeded in functional
unit F . Hence, the absence of an event (that interacted with
a functional unit F) in a test suite directly effects the detec-
tion of a fault that was seeded in F ’s code.

6 Discussion
The above three experiments demonstrated that several

factors have an impact on the fault-detection effectiveness
of a test suite in different and interesting ways. Post-
experiment analysis, based on the code coverage (branch
and statement) of the test cases, revealed a better under-
standing of how modern GUIs are designed and how they
should be tested.

The coverage results showed that each user event ex-
ecuted a specific part of the GUI code (called the event
handler). In most cases, no other event executed this
code. This observation explains the results of Experiment
3. Since the subject applications used in this research were
implemented using an object-oriented programming lan-
guage (Java), event handlers were usually implemented as
Java methods. Handlers for functionally related events (file
open, file save) share some methods and are almost always
implemented as part of a Java class.

Event handlers typically have one of three structures.
First, very few event handlers have no conditional state-
ments; in fact, they contain only one basic block. Faults in
this code are likely to be detected each time the correspond-
ing event is executed, irrespective of the state in which it is
executed. However, these types of incidents are very rare
since very few event handlers have this structure.

As defined in Section 5.3, an event e is successful at de-
tecting a fault F if assertEquals() returned FALSE
immediately after e executed. The “success ratio of e” is
defined as ((the number of times e successfully detected

F)/(number of occurrences of e in the test pool)). It is un-
defined if e did not successfully detect F even once.

The success ratio for all the events of the subject applica-
tions is shown in Figure 5. The box-plots show that the suc-
cess ratio is very small. The median (indicated by a small
square inside each box) is close to zero. This result shows
that even though a test suite may execute an event multiple
times, the event is successful at detecting a fault very few
times (in specific states).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

TerpCalc TerpPaint TerpSpreadSheet TerpWord

Subject Applications

S
uc

ce
ss

 R
at

io

Figure 5. Frequency of Event Execution

The low success ratio is explained by the two other com-
mon structures of event handlers. The most common types
of event handlers contain at least one simple conditional
statement, which checks the value of a single variable. This
statement is used to enable/disable the event. The vari-
able is set/reset using other events (e.g., Copy/Cut enable
Paste). Hence, most GUI faults are detected if events are
executed in short test cases with a large number of preced-
ing events. This observation is also supported by Figure 4;
length 3 through length 10 test cases detected additional
faults since they executed events in new states.

The above two types of structures, i.e., (1) no conditional
statements and (2) one simple conditional statement lead
to “shallow” faults that can be detected by executing GUI
events in different combinations.

The third type of structure of event handlers is the most
complex, although rare. It typically consists of a complex
conditional statement or several nested conditional state-
ments. Detecting faults in this type of code requires long
sequences of events that can set/reset variables to obtain
maximum branch coverage. Faults in this type of code are
called “deep” faults. Event handlers rarely have this struc-
ture; hence GUIs have very few deep faults. Two such faults
were detected by length 20 test cases in TerpCalc.

The analysis showed that there was a significant relation-
ship between GUI errors and the way modern GUI code is
developed using object-oriented languages. The three ex-

periments and code coverage analysis showed that a test
suite that uses a wide diversity of states in which an event
executes has good fault-detection effectiveness. There are
two ways to improve state diversity – increasing test case
length and creating larger test suite size. A tester should
allocate maximum resources to finding the many “shallow”
bugs by generating a large number of short test cases in mul-
tiple combination of events. Additional resources may be
used to find the relatively fewer “deep” bugs by generating
long test cases.

7 Conclusions
This paper presented the first empirical study of the ef-

fect of test case length, test suite size and event composi-
tion on fault detection and cost. The goal of the study was
to develop an initial set of lessons learned that GUI testers
may use to develop better test cases. The study showed that
a tester should allocate maximum resources to finding the
many “shallow” bugs by generating a large number of short
test cases. Any additional resources may be used to find the
relatively fewer “deep” bugs by generating long test cases.

There are several interesting future directions for this
research. An immediate extension will apply multivariate
analysis where all three parameters vary, which may help
to understand the interaction effects of these three parame-
ters on fault detection. The study will be extended to other
GUI test suite characteristics such as test oracle design. Pre-
vious research has demonstrated that the type of test or-
acle used for GUI testing has a significant impact on the
fault-detection of GUI test cases. The interplay between
test oracles, test case length, suite size, and event compo-
sition will be studied. The subject application set will be
evolved to include complex back-ends. This evolution will
also help to enhance the functional unit classification. This
research used a simplistic model of fault-detection effec-
tiveness. In the future, this model will be enhanced to give
more “weight” to deep faults. Finally, this research will be
extended to other classes of event-driven software applica-
tions, in particular web applications [15].

Acknowledgments
This work was partially supported by the US National

Science Foundation under NSF grant CCF-0447864 and the
Office of Naval Research grant N00014-05-1-0421.

References

[1] CostXpert. http://www.costxpert.com/.
[2] Price systems. http://www.pricesystems.com/.
[3] Slim-estimate. http://www.qsm.com/.
[4] L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to

empirically investigate test coverage criteria based on state-
chart. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 86–95. IEEE
Computer Society, 2004.

[5] S. Chulani. Bayesian analysis of software cost and quality
models. In Proceedings of the IEEE International Confer-
ence on Software Maintenance, pages 565–568, 2001.

[6] L. K. Dillon and Y. S. Ramakrishna. Generating oracles
from your favorite temporal logic specifications. In Proceed-
ings of the Fourth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, pages 106–117, Oct.16–
18 1996.

[7] N. E. Fenton and M. Neil. A critique of software defect pre-
diction models. IEEE Transactions on Software Engineer-
ing, 25(5):675–689, Sept./Oct. 1999.

[8] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing.
In WCRE, pages 260–269, 2003.

[9] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. In Proceedings of the ACM SIGSOFT
8th International Symposium on the Foundations of Software
Engineering (FSE-8), pages 30–39, NY, Nov. 8–10 2000.

[10] A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierar-
chical GUI test case generation using automated planning.
IEEE Transactions on Software Engineering, 27(2):144–
155, 2001.

[11] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage
criteria for GUI testing. In Proceedings of 9th ACM SIG-
SOFT International Symposium on the Foundations of Soft-
ware Engineering (FSE-9), pages 256–267, Sept. 2001.

[12] A. M. Memon and Q. Xie. Studying the fault-detection ef-
fectiveness of GUI test cases for rapidly evolving software.
IEEE Trans. Softw. Eng., 31(10):884–896, 2005.

[13] T. Ostrand and E. Weyuker. The distribution of faults in
a large industrial software system. In P. G. Frankl, editor,
Proceedings of the ACM SIGSOFT 2002 International Sym-
posium on Software Testing and Analysis (ISSTA-02), pages
55–64. ACM Press, July 22–24 2002.

[14] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri,
and X. Qiu. On test suite composition and cost-effective
regression testing. ACM Trans. Softw. Eng. Methodol.,
13(3):277–331, 2004.

[15] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock. Com-
posing a framework to automate testing of operational web-
based software. In ICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenance, pages
104–113. IEEE Computer Society, 2004.

[16] L. White, H. Almezen, and S. Sastry. Firewall regression
testing of GUI sequences and their interactions. In Proceed-
ings of the International Conference on Software Mainte-
nance, pages 398–409, 2003.

[17] Q. Xie and A. M. Memon. Designing and comparing au-
tomated test oracles for GUI-based software applications.
ACM Trans. on Softw. Eng. Methodol., to appear.

