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Abstract

Test designers widely believe that the overall effectiveness and cost of software test-
ing depends largely on the type and number of test cases executed on the software.
This paper shows that the test oracle, a mechanism that determines whether a soft-
ware executed correctly for a test case, also significantly impacts the fault-detection
effectiveness and cost of a test case. Graphical user interfaces (GUIs), which have
become ubiquitous for interacting with today’s software, have created new challenges
for test oracle development. Test designers manually “assert” the expected values of
specific properties of certain GUI widgets in each test case; during test execution, these
assertions are used as test oracles to determine whether the GUI executed correctly.
Since a test case for a GUI is a sequence of events, a test designer must decide (1)
what to assert, and (2) how frequently to check an assertion, e.g., after each event
in the test case or after the entire test case has completed execution. Variations of
these two factors significantly impact the fault-detection ability and cost of a GUI
test case. A technique to declaratively specify different types of automated GUI test
oracles is described. Six instances of test oracles are developed and compared in an
experiment on four software systems. The results show that test oracles do affect the
fault-detection ability of test cases in different and interesting ways: (1) test cases
significantly lose their fault-detection ability when using “weak” test oracles, (2) in
many cases, invoking a “thorough” oracle at the end of test case execution yields the
best cost-benefit ratio, (3) certain test cases detect faults only if the oracle is invoked
during a small “window of opportunity” during test execution, and (4) using thorough
and frequently-executing test oracles can make up for not having long test cases.

Keywords: Test oracles, oracle procedure, oracle information, GUI testing, empirical
studies.

1 Introduction

Testing is widely recognized as a key quality assurance (QA) activity in the software develop-
ment process. During testing, a set of test cases is generated and executed on an application

∗An earlier report of this work appeared in the Proceedings of the IEEE International Conference on
Automated Software Engineering 2003 [31].
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under test (AUT). Test adequacy criteria are used to evaluate the adequacy of test cases and
generate more test cases if needed [57]. During testing, test oracles are used to determine
whether the AUT executed as expected [2, 54]. The test oracle may either be automated
or manual; in both cases, the actual output is compared to a presumably correct expected
output.

Although research in testing has received considerable attention in the last decade, testing
of graphical user interfaces (GUIs), which have become nearly ubiquitous as a means of
interaction with today’s software systems, has remained a neglected research area. GUIs
today constitute as much as 45-60% of the total software code [38]. The result of this
neglect is that current GUI testing techniques used in practice are ad hoc [33] and largely
manual ([39] and Chapter 27 of [17]).

In practice, four approaches are used to create test oracles for GUI software, all of which
are resource intensive. First, and the most popular, is to use a “manual oracle” [25], i.e., a
tester manually interacts with the GUI, performing events (actions performed by the user)
such as click-on-CUT,1 click-on-PASTE, and type-in-text-field, and visually checks the GUI
for errors. Second is to use capture/replay tools [19] such as WinRunner2 [30]. A tester uses
these tools in two phases: a capture and then a replay phase. During the capture phase, a
tester manually interacts with the GUI being tested, performing events. The tool records
the interactions; the tester also visually “asserts” that a part of the GUI’s response/state
be stored with the test case as “expected output.” The recorded test cases are replayed
automatically on (a modified version of) the GUI using the replay part of the tool. The
“assertions” are used to check whether the GUI executed correctly. Third is to use explicit
“assert” statements in programmed GUI test cases; a tester programs the test cases (and
expected output) by using tools [13,55] such as extensions of JUnit including JFCUnit, Abbot,
Pounder, and Jemmy Module.3 As these test cases execute, the assertions are used to check
the correctness of the GUI. Finally, testers hard-code the expected output into test harnesses
that call methods of the underlying business logic as if initiated by the GUI. This approach
requires changes to the software architecture (e.g., keep the GUI software “light” and code
all “important” decisions in the business logic [26]); moreover, it does not perform testing of
the end-user software. Test designers may also use a combination of the above approaches.
For example, test designers may use capture/replay tools to capture a session (which is
stored as a script) with the GUI and later manually edit the script, inserting method calls,
assertions, etc. to enhance the test cases. All the above techniques require a significant
amount of manual effort. If assertions are not inserted/checked at proper locations (i.e.,
relative to events) in the test case, GUI errors may remain undetected during testing.

Since the existing techniques for creating test oracles for GUIs are resource intensive, and
software quality assurance has a limited budget (both in terms of time and money), GUI
testers are faced with a number of decisions on how to best expend their precious resources,
while maximizing their chances of finding defects. The nature of GUI test cases (i.e., se-
quences of events) raises new questions for testers. Answers to these questions may have an
impact on the effectiveness of the overall testing process. Some of the questions relevant to

1In the future, for brevity, we will call these events only by their corresponding widget names, e.g., CUT.
2http://mercuryinteractive.com
3http://junit.org/news/extension/gui/index.htm
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test oracles include: (1) how much information needs to be specified in the expected output,
i.e., how many properties/values of widgets need to be checked during testing and (2) since
a test case is a sequence of events, is it cost-effective to check intermediate outputs of the
GUI after each event, or is it sufficient to check the final GUI output after the last event?

This paper presents a general approach to automate GUI test oracles. Six instances of
GUI test oracles are created to answer the above questions empirically. Note that the scope
of this paper is restricted to oracles that test the GUI only, not the entire application. For
example, consider a GUI with a text-field and a submit button, where pressing the submit
button retrieves records (related to the contents of the text-field) from a database. The
test oracles developed in this paper have no way of checking the correctness of the database
operation, except for a few hand-coded instances. The class of GUIs of interest to this
research is formally defined in Section 3.1. The automated test oracle creation algorithms
mimic test designers by automatically inserting the equivalent of “assert” statements in test
cases, which are used to check whether the GUI executed correctly during testing. These
test oracle creation algorithms have been incorporated into a GUI testing infrastructure,
thereby enabling large empirical studies involving test oracles. An earlier report of this work
showed that the type of GUI test oracle has a significant impact on test effectiveness and
cost [31]. This paper extends the use of the general GUI test oracle automation approach to
create six instances of automated GUI test oracles, which are used in a detailed experiment
to determine whether the additional cost of developing/recording more details in expected
output, and higher frequency of using the approach yields better fault-detection effectiveness.
The results show that test oracles do affect the fault-detection ability of test cases in different
and interesting ways: (1) test cases significantly lose their fault-detection ability when using
“weak” test oracles, (2) in many cases, invoking a “thorough” oracle at the end of test case
execution yields the best cost-benefit ratio, (3) certain test cases detect faults only if the
oracle is invoked during a small “window of opportunity” during test execution, and (4)
using thorough and frequently-executing test oracles can make up for not having long test
cases.

This work advances the state-of-the-art in GUI testing by making the following specific
contributions:

1. A general method to “declaratively” specify different types of automated GUI oracles.
2. A first experiment comparing GUI test oracles. GUI testers can make better decisions

about the types of test oracles that they create.
3. Guidelines for test designers on how to develop test oracles, their relative strengths

and weaknesses.
4. A relationship between test case length and test oracles. Testers can decide what type

of oracle to use if they have long or short test cases.
5. A new “number of faults detected per comparison” measure that provides a starting

point for GUI oracle comparison.
6. Discussion of domain-specific characteristics of GUIs that influence test oracle effec-

tiveness and cost.

Structure of the paper: In the next section, we discuss related work. In Section 3, we
first define GUI states and test cases; we then use these definitions to declaratively specify
two parts of a GUI test oracle, namely oracle information (Section 3.3) and oracle procedure
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(Section 3.4). We also show that our general approach to specify oracle information and
procedure may be used to develop six different instances of test oracles. In Section 4, we
present details of our experiment comparing the six oracles. Finally, we conclude with a
discussion of future research opportunities in Section 5.

2 Related Work

Although there is no prior work that directly addresses the research presented in this paper,
several researchers and practitioners have discussed concepts that are relevant to its specific
parts; we build upon their research. In particular, several researchers have discussed the
difficulty of creating test oracles for programs that have a large volume of output [10,12,54];
this is the case with GUI software, where each GUI screen is a part of the program’s output.
This section describes related work in the following broad categories: multiple test oracles,
methods to specify oracles, tool support, reference testing, and GUI oracles.

Multiple oracles: Some researchers have recognized the need to have multiple types
of test oracles. Notable is the work by Richardson in TAOS (Testing with Analysis and
Oracle Support) [43] who proposes several levels of test oracle support. One level of test
oracle support is given by the Range-checker which checks for ranges of values of variables
during test-case execution. A higher level of support is given by the GIL and RTIL languages
in which the test designer specifies temporal properties of the software. Siepmann et al. in
their TOBAC system [49] assume that the expected output is specified by the test designer
and provide seven ways of automatically comparing the expected output to the software’s
actual output. Empirical evaluation of these types of oracles is needed.

Methods to specify oracles: As noted by several other researchers, software systems
rarely have an automated oracle [9, 40, 43, 44]. In most cases, the expected behavior of the
software is assumed to be provided by the test designer. This behavior may be specified in
several ways: (1) as predicates represented in a tabular form to express functional specifica-
tions of the software [40], (2) as temporal constraints that specify conditions that must not
be violated during software execution [8, 9, 43, 44], (3) as logical expressions to be satisfied
by the software [11], and (4) as formal specifications [1, 4, 6, 10, 14, 15, 41], e.g., algebraic
specifications to represent abstract data types (ADTs) [4, 10, 15]. This expected behavior
is then used by a verifier that either performs a table lookup [40], creates a state-machine
model [9,20], or evaluates a boolean expression [11] to determine the correctness of the actual
output.

Tools for test oracles: Information specified manually by test designers can be used by
several tools to create test oracles. For example, runtime assertion checkers [7,24,46,47] and
runtime monitoring tools such as MaC [23], JPaX [18] and Eagle [3] have been used as oracles.
Burdy et al. describe the test oracle process [6] in which the Java Modeling Language (JML)
is combined with the unit testing tool JUnit [21] for Java. Several tools (e.g., the jmlunit

tool, developed at Iowa State University) may be used to generate JUnit test classes that rely
on the JML runtime assertion checker. The test classes send messages to objects of the Java
classes under test. The generated test classes serve as a test oracle whose behavior is derived
from the specified behavior of the class being tested. This approach requires specifications
to be fairly complete descriptions of the desired behavior, as the quality of the generated test
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oracles depends on the quality of the specifications. Similarly, the DAS-BOOT approach [52]
uses class specifications, represented as UML state-chart diagrams, to automatically produce
test drivers (with embedded test oracles) to satisfy the testers’ criterion and execute the test
drivers using a test script. Discrepancies between the software’s behavior and the state-chart
specification are reported as failures by the test oracle.

Blackburn et al. describe the T-VEC system [5] for model-based verification and interface-
driven analysis. They combine textual requirement modeling to support automated test
generation. The T-VEC system generates test vectors and test drivers, with requirement-
to-test traceability information, allowing failures to be traced back to the requirement. The
test driver creates a test oracle database in which the test data is derived from the model.
Likewise, Robinson proposes the semantic test process [45] that generates tests and test
oracles using models of the application.

Reference testing: A popular alternative to manually specifying the expected output
is to perform reference testing [51, 53]. Actual outputs are recorded when the software is
executed for the first time. The recorded outputs are later used as expected output for
regression testing. This is a popular technique used for regression testing of GUI-based
software. Capture/replay tools such as CAPBAK [50] capture bitmap images of GUI ob-
jects. These bitmaps are then used as test oracles to compare against actual output during
regression testing. The problem with such tools is that even a small change in the GUI’s
layout will make the bitmap/test oracle obsolete [34]. Instead of using bitmaps, modern
capture/replay tools, discussed earlier, provide sophisticated mechanisms to assert specific
widgets and some values of their properties.

GUI oracles: Finally, an earlier report of this research described automated GUI test
oracles for the Planning Assisted Tester for grapHical user interface Systems (PATHS) sys-
tem [29,32]. PATHS uses AI planning techniques to automate testing for GUIs. The oracle
described in PATHS uses a formal model (in the form of pre/postconditions of each event)
of a GUI to automatically derive the oracle information for a given test case.

This research builds upon the above approaches by developing techniques to declaratively
specify and empirically compare multiple types of automated test oracles for GUI-based
applications. The general architecture of these oracles is described next.

3 GUI Test Oracles

This section presents a high-level architecture of our automated GUI test oracle. But first, an
intuitive overview of its parts is demonstrated via an example. Borrowing terminology from
Richardson et al. [44], a test oracle is defined to contain two parts: oracle information that
is used as the expected output and an oracle procedure that compares the oracle information
with the actual output. Different types of oracles may be obtained by changing the oracle
information and using different oracle procedures. For example, for testing a spreadsheet
shown in Figure 1, the following two types of oracle information may be used: (1) the
expected values of all the cells, and (2) the expected value of a single cell. The choice of
oracle information depends on the goals of the specific testing process used. Similarly, as
Figure 1 shows, the oracle procedure for a spreadsheet may (a) check for equality between
expected and actual cell value, or (b) determine whether a cell value falls within a specified
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Expected

2.5
3.2
1.1

9.5
2.9
3.5

2.5
3.2
1.1

9.5
2.9
3.4

Actual

1. Oracle information
All cells

2. Oracle information 
Single cell

a. Oracle Procedure
FORALL cells (i,j) in oracle_information

if (Expectedi,j == Actuali,j)
return TRUE

else return FALSE;

2a. Test Oracle
if (ExpectedA,3 == ActualA,3)

return TRUE
else Return FALSE;

2b. Test Oracle
if (2.0 <= ActualA,3 <= 3.0)

return TRUE
else Return FALSE;

1a. Test Oracle
FORALL cells (i,j) = {(A,3), (B,3), 

(A,4), (B,4), (A,5), (B,5)}
if (Expectedi,j == Actuali,j)

return TRUE
else Return FALSE;

1b. Test Oracle
FORALL cells (i,j) = {(A,3), (B,3), (A,4), (B,4), (A,5),

(B,5)}
if ((Expectedi,j – 0.5) <= Actuali,j <= (Expectedi,j+ 0.5))

return TRUE
else Return FALSE;

*
b. Oracle Procedure
FORALL cells (i,j) in oracle_information

if ((Expectedi,j – 0.5) <= Actuali,j <= (Expectedi,j+ 0.5))
return TRUE

else return FALSE;

Figure 1: Four different types of oracles for a spreadsheet program.

expected range. Combining the two oracle information types and two procedure types yields
four oracles: (1a) check for equality between all expected and actual cells, (1b) check whether
all cell values fall within a specified expected range, (2a) check for equality between a single
expected and actual cell values, and (2b) check whether a specific cell’s value falls within a
specified expected range. Note that the cost of maintaining and computing different types of
oracle information will differ as will the cost of implementing and executing different oracle
procedures.

In subsequent sections, three types of GUI oracle information in increasing level of detail
and cost are declaratively specified: widget, active window, and all windows. The oracles
are specified using six levels of complexity and cost: “check for equality of widget, active
window, all windows after each event” and “check for equality of widget, active window,
all windows after the last event” of the test case. Details and examples are provided in
Sections 3.3 and 3.4.

We now describe the architecture of GUI test oracles. The automated test oracle creation
algorithms mimic a human test designer by automatically computing “assert” statements
that are used to verify the correctness of the GUI during test case execution. These assert
statements contain two parts: (1) the expected values of certain properties of specific GUI
widgets, and (2) the comparison process (which we have hard-coded to “equality”) and its
frequency of execution. Hereafter, the former is referred to as “oracle information” and the
latter as “oracle procedure.”

As shown in Figure 2, the oracle information generator automatically derives the oracle
information (expected state) using either a formal specification of the GUI as described
in our earlier work [32] or by using a “golden” (assumed correct baseline) version of the
software [51, 53] (as described in Section 4). Likewise, the actual state is obtained from an
execution monitor. The execution monitor may use any of the techniques described in [32],
such as screen scraping and/or querying to obtain the actual state of the executing GUI. An
oracle procedure then automatically compares the two states and determines if the GUI is
executing as expected. As described later in Section 3.1, the state of a GUI is represented
as a set of all triples (wi, pj, vk), where wi is a GUI widget, pj is its property, and vk is its
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Test Case

Oracle 
Information
Generator

Oracle
Procedure

Oracle Information

Execution
Monitor

OracleOracleOracleOracle

Actual
State

Run-time
information from

executing GUI

Verdict

Figure 2: An overview of the GUI oracle.

value.
The above partitioning of functionality allows the definition of a simple algorithm for test

execution. Given a test case, the algorithm executes all its events, computes the expected
state, obtains the GUI’s actual state, compares the two states, and determines if the actual
is as expected. This algorithm is shown in Figure 3. The algorithm ExecTestCase takes
four parameters: (1) a test case T (Line 1) of the form < S0, e1; e2; . . .; en >, where
S0 is the state of the GUI before the test case is executed and e1; e2; . . .; en is an event
sequence; (2) a set of integers OPF (Line 2) that determines how frequently the oracle
procedure is invoked (details in Section 3.4); (3) COI (Line 3), a boolean constraint used to
obtain relevant triples for the oracle information (examples of some constraints are shown
in Section 3.3); and (4) CAS (Line 4), a similar boolean constraint but used by the oracle
procedure to obtain relevant triples for the actual state.

The algorithm traverses the test case’s events one by one (Line 5) and executes them
on the GUI (Line 6). The oracle information OIi is obtained for the event ei (Line 7); i,
the index of the current event, ties the event ei to the corresponding oracle information OIi.
The constraint COI is used to select a subset of the complete expected state. This constraint
is discussed in Section 3.3. Similarly, the actual state ASi of the GUI, also constrained by
CAS, is obtained (Line 8). The oracle procedure is then invoked (Line 9) that determines
whether the software’s execution was correct for the event.

Having outlined how a GUI test oracle is used during test case execution, we now describe
details of GUI state, and oracle information and procedure.

3.1 GUI Model

Some basic terms that are needed to understand the design of the test oracles are defined
first. The techniques and tools used for this research require that a GUI be modeled in terms
of the widgets (basic building blocks) the GUI contains, their properties, and the values of
the properties. We also require GUI events to be deterministic so as to be able to predict
their outcome. Hence, to provide focus, the discussion in this paper is limited to a particular
subclass of GUIs, defined next.
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ALGORITHM :: ExecTestCase(
T: Test case; /* T = < S0, e1; e2; . . .; en > */ 1
OPF ⊆ {1, 2, 3, . . . , n}; /* oracle procedure freq. */ 2
COI: Boolean Constraint; /* on oracle information */ 3
CAS: Boolean Constraint; /* on actual state */){ 4

FOREACH ei in T DO { /* for all events */ 5
Execute(ei); /* perform the event on the GUI */ 6

/* obtain the expected state for event ei */
OIi ← GetOracleInfo(i, COI); 7

/* extract the GUI’s actual state */
ASi ← GetActualState(i, CAS); 8

/* invoke the oracle procedure */
IF !(Op(ASi, OIi, CAS, OPF, i)) THEN { 9

Return(FAIL)}} /* test case fails */ 10
Return(PASS)} /* if no failure, report success */ 11

Figure 3: Test execution algorithm.

Definition: A Graphical User Interface is a hierarchical, graphical front-end to a
software system that accepts as input user-generated and system-generated events, from a
fixed set of events, and produces deterministic graphical output. A GUI contains graphical
widgets; each widget has a fixed set of properties. At any time during the execution of the
GUI, these properties have discrete values, the set of which constitutes the state of the GUI.
2

Note that this definition would need to be extended for other GUI classes such as web-
user interfaces that have synchronization/timing constraints among objects, movie players
that show a continuous stream of video rather than a sequence of discrete frames, and non-
deterministic GUIs in which it is not possible (or not practical/feasible) to model the state
of the software in its entirety and hence the effect of an event cannot be predicted. Since the
software’s back-end is not modeled in this research, GUIs that are tightly coupled with the
back-end code, e.g., ones whose content is created dynamically using a database, are also
excluded.

A GUI is modeled as a set of widgets W = {w1, w2, ..., wl} (e.g., buttons, panels, text
fields) that constitute the GUI, a set of properties P = {p1, p2..., pm} (e.g., background
color, size, font) of these widgets, and a set of values V = {v1, v2..., vn} (e.g., red, bold,
16pt) associated with the properties. Note that the discrete values may depend on certain
system parameters (e.g., the font-size may be a function of the font-size being used by the
windowing system). However, at any point during the GUI’s execution, these values are
instantiated. We also assume that the system parameters that may effect certain values
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remain unchanged. Hence, the GUI can be fully described in terms of the specific widgets
that it currently contains and the values of their properties.

A GUI Window

State = { (CANCEL, COLOR, “Grey”),    (CANCEL, HEIGHT, 40),   (CANCEL, WIDTH, “100”), 
(CANCEL, TEXT, “Cancel”), …}

Color = “Grey”

Height = 40

Width = 100

Text = “Cancel”

Some properties of

A WIDGET
(a) (b)

(c)

Figure 4: (a) Find GUI, (b) some properties of the CANCEL button, and (c) the partial state
of the Find window.

For example, consider the Find GUI window shown in Figure 4(a). This GUI contains
several widgets; one is explicitly labeled, namely CANCEL; a small subset of its properties is
shown in Figure 4(b). Note that all widget types have a designated set of properties and all
properties can take values from a designated set.

The set of widgets and their properties can be used to create a model of the state of the
GUI.

Definition: The state of a GUI at a particular time t is the non-empty set S of triples
{(wi, pj, vk)}, where wi ∈ W , pj ∈ P , and vk ∈ V . 2

A description of the complete state would contain information about the types of all the
widgets currently extant in the GUI, as well as all of the properties and their values for each
of those widgets. The state of the Find GUI, partially shown in Figure 4(c), contains all the
properties of all the widgets in Find.

In this research, the definition of the state of a GUI is extensively used to develop the
oracle information and procedure. As will be seen later, oracle information is associated
with each test case. Hence, a GUI test case is formally defined next.

3.2 GUI Test Cases

With each GUI is associated a distinguished set of states called its valid initial state set:
Definition: A set of states SI is called the valid initial state set for a particular GUI

iff the GUI may be in any state Si ∈ SI when it is first invoked. 2

The state of a GUI is not static; events performed on the GUI widgets change its state.
States that result from applying sequences of events to valid initial states are called the
reachable states of the GUI. The events are modeled as functions from one state to another.

Definition: The events E = {e1, e2, . . . , en} associated with a GUI widget are
functions from one state to another state of the GUI. 2

Events may be strung together into sequences. Of importance to testers are sequences
that are permitted by the structure of the GUI [35]. These event sequences are called legal
and are defined as follows:
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Definition: A legal event sequence of a GUI is e1; e2; e3; ...; en where ei+1 can be per-
formed immediately after ei. 2

The definitions of events, widgets, properties, and values can be used to formally define
a GUI test case:

Definition: A GUI test case T is a pair < S0, e1; e2; . . .; en >, consisting of a state
S0 ∈ SI , called the initial state for T, and a legal event sequence e1; e2; . . . ; en. 2

Having defined the basic GUI concepts (the interested reader is referred to [28,29,33,36]
for details and examples), we now describe test oracle information.

3.3 Test Oracle Information

The oracle information is a description of the GUI’s expected state for a test case.
Definition: For a given test case T = < S0, e1; e2; . . .; en >, the test oracle informa-

tion is a sequence < S1, S2, . . . , Sn >, such that Si is the (possibly partial) expected state
of the GUI immediately after event ei has been executed on it. 2

Recall from Section 3.1 that the GUI’s state is a set of triples of the form (wi, pj, vk),
where wi is a widget, pj is a property of wi, and vk is a value for pj. Hence the oracle
information for a test case is a sequence of these sets. Note that oracle information has been
deliberately defined in very general terms, thus allowing the creation of different instances of
oracles. The least descriptive oracle information set may contain a single triple, describing
one value of a property of a single widget. The most descriptive oracle information would
contain values of all properties of all the widgets, i.e., the GUI’s complete expected state. In
fact, all the non-null subsets of the complete state may be viewed as a spectrum of all possible
oracle information types, with the single triple set being the smallest and the complete state
being the largest. A declarative mechanism (in the form of a boolean constraint called COI

on Line 6 in Figure 3) is used to specify a point in this spectrum. Three instances of oracle
information are presented next; for every triple that is included in the state description, the
constraint COI must evaluate to TRUE.

1. widget (LOI1): the set of all triples for the single widget w associated with the
event ei being executed. The constraint is written as (#1 == w), where #1 represents
the first element of the triple. If applied to a triple with “w” as its first element,
the constraint would evaluate to TRUE; in all other cases, it would evaluate to FALSE.
Figure 5 shows an example of the oracle information. The test case contains the Cancel
event in the Find window. The complete expected state Si of the GUI after Cancel

has been executed is also shown. For the widget level test oracle information, only the
(boxed) triples relevant to Cancel are stored.

2. active window (LOI2): the set of all triples for all widgets that are a part of the
currently active window W . The constraint is written as (inWindow(#1, W )), where
inWindow(a, b) is a predicate that is TRUE if widget a is a part of window b.

3. all windows (LOI3): the set of all triples for all widgets of all windows. Note that
the constraint for this set is simply TRUE since it is the complete state of the GUI.
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e1 e2 … Cancel en-1 enTest Case  = 

S0 S1 S2 … Si-1 Si …

…

Sn-1 Sn

(wF,1, p1, v1)
(wF,2, p2, v1)

…
(wF,…, pr, v1)

(CANCEL, COLOR, GREY)
(CANCEL, HEIGHT, 40)
(CANCEL, WIDTH, 100)

(CANCEL, TEXT, CANCEL)

(wF,…, p1, v1)
(wF,…, p2, v1)

…
(wF,m, ps, v1)

Window Find

(wX,1, p1, v1)
(wX,2, p2, v1)

…
(wX,… , pt, v1)

(wX,… , p1, v1)
(wX,… , p2, v1)

…
(wX,… , pu, v1)

(wX,… , p1, v1)
(wX,… , p2, v1)

…
(wX,n, pv, v1)

Window X

(wY,1, p1, v1)
(wY,2, p2, v1)

…
(wY,… , px, v1)

(wY,… , p1, v1)
(wY,… , p2, v1)

…
(wY,… , py, v1)

(wY,… , p1, v1)
(wY,… , p2, v1)

…
(wY,o, pz, v1)

Window Y

TRIPLES 
FOR 

CANCEL

COMPLETE STATE OF GUI AFTER CANCEL

Oracle 
Information  = 

Figure 5: Oracle information for the Cancel event.

For brevity, the terms LOI1 to LOI3 will be used for the above three levels of oracle
information. Note that although only three instances of test oracle information have been
specified, the specification mechanism is general and may be used to specify many other
instances. In Figure 3, the subroutine GetOracleInfo(i, COI) is used to compute the
oracle information. There are several different ways to realize GetOracleInfo, three of
which are outlined next:

1. As discussed in Section 2, using capture/replay tools is a popular method to ob-
tain the oracle information for GUIs [22]. Recall that capture/replay tools are semi-
automated tools used to record and store a tester’s manual interaction with the GUI;
the goal is to replay the interactions and observe the GUI’s output. Testers manually
select some widgets and some of their properties that they are interested in storing
during a capture session. This partial state is used as oracle information during replay.
Any mismatches are reported as possible defects.

2. In the experiment presented in this paper, we have automated the above approach by
developing a technique that we call execution extraction, a form of reference testing
discussed in Section 2. The key idea of using execution extraction is to designate
the current version of an application as “correct” and use it as a specification of the
software. During the execution extraction process, oracle information is collected via
reverse engineering [27] from the “golden” version of the application. Platform-specific
technologies such as Java API,4 Windows API,5 and MSAA6 are used to obtain this
information. The oracle information is then used to test future versions of the software
or ones that have been artificially seeded with faults.

3. We have used formal specifications in earlier work [32] to automatically derive oracle
information. These specifications are in the form of pre/postconditions for each GUI

4java.sun.com
5msdn.microsoft.com/library/default.asp?url=/library/en-us/winprog/winprog/windows api reference.asp
6msdn.microsoft.com/library/default.asp?url=/library/en-us/msaa/msaaccrf 87ja.asp
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event.

3.4 Oracle Procedure

The oracle procedure is the process used to compare the oracle information with the executing
GUI’s actual state. It returns TRUE if the actual and expected states match, FALSE otherwise.
Formally, an oracle procedure is defined as:

Definition: A test oracle procedure is a function ζ(OI, AS, COI, CAS, Φ)−→ {TRUE,
FALSE}, where OI is the oracle information, AS is the actual state of the executing GUI, COI

is a boolean constraint on OI, CAS is a boolean constraint on AS, and Φ is a comparison
operator. ζ returns TRUE if OI and AS “match” as defined by Φ; FALSE otherwise. 2

ALGORITHM :: OP(
ASi: Actual state; /* for event ei */ 1
OIi: Oracle information; /* for event ei */ 2
CAS: Boolean Constraint; /* on actual state */ 3
OPF ⊆ {1, 2, 3, . . . , n} /* oracle procedure freq. */ 4
i: event number; /* current event index 1 ≤ i ≤ n */ ) { 5

IF (i ∈ OPF) THEN /* compare? */ 6
Return(Filter(OIi, CAS) == ASi) 7
ELSE Return(TRUE)} 8

Figure 6: Oracle procedure algorithm.

The oracle procedure may be invoked as frequently as once after every event of the test
case or less frequently, e.g., after the last event. The algorithm for the oracle procedure is
shown in Figure 6. Note that our specific implementation OP of ζ takes extra parameters i

and OPF that account for this frequency; i is the event number in the test case and OPF is
a set of numbers that specify when the comparison is done. Also note that Φ is hard-coded to
“set equality”, hence omitted from OP’s parameters (Line 7 of Figure 6). COI is also omitted
since OI has already been filtered before OP is invoked from Line 9 of Figure 3. OP takes five
parameters described earlier. The comparison process is straightforward – if the GUI needs
to be checked at the current index i of the test case (Line 6), then the oracle information
is filtered7 using the constraint CAS to allow for set equality comparison. The constraint
CAS (not COI) ensures that the result of the filtering is compatible with ASi. The oracle
procedure returns TRUE if the actual state and oracle information sets are equal.

Note that it is important to provide the constraint CAS and the set OPF to completely
specify the oracle procedure. The definition of OP is now used to specify six different instances
of test oracles.

• L1: After each event of the test case, compare the set of all triples for the single widget
w associated with that event. The constraint CAS is written as (#1 == w) and OPF

7Note that this filtering is unnecessary if OP is invoked by our test case executor, since it already filters
the oracle information. We include the filtering step here for completeness.
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= {1, 2, 3, . . . , n}. Note that CAS is first used to select relevant triples for the actual
state (Line 8 of Figure 3) and then later to filter the oracle information (Line 7 of
Figure 6). We show L1 in Figure 7; it compares the state triples relevant to the widget
W

x
.

Oracle Information
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9HUGLFW
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Figure 7: L1 compares widget-relevant triples after each event in the test case.

• L2: After each event of the test case, compare the set of all triples for all widgets
that are a part of the currently active window W . The constraint CAS is written as
(inWindow(#1, W )) and OPF = {1, 2, 3, . . . , n}.

• L3: After each event of the test case, compare the set of all triples for all widgets of
all windows. The constraint CAS is written as TRUE and OPF = {1, 2, 3, . . . , n}.

• L4, L5, L6: After the last event of the test case, compare the set associated with the
current widget, active window, and all windows, respectively. OPF = {n} for all these
oracles.

Even though only six instances of oracles have been developed, the definition of OP is
very general and may be used to develop a variety of test oracles.

4 Experiment

Having presented the design of GUI test oracles and our ability to specify multiple oracles,
we now present details of an experiment using actual software and test cases to compare the
different oracles.

4.1 Research Questions

We introduce two notations: C(T, L) – the cost of executing a test case T with oracle L;
F (T, L) – the number of faults that test case T detects when using test oracle L.

The way we have defined test oracles L1 to L6 leads to some immediate observations.
First, we note that L1 to L3 have been defined with increasing complexity (as have L4 to

13



L6), which will have a direct impact on their relative cost (i.e., time to generate/execute);
L3 will be most expensive and L1 the least expensive (hence, for all test cases T , C(T, L3) ≥
C(T, L2) ≥ C(T, L1)). Similarly, C(T, L6) ≥ C(T, L5) ≥ C(T, L4). We can also safely
say that C(T, L4) ≤ C(T, L1), C(T, L5) ≤ C(T, L2), and C(T, L6) ≤ C(T, L3). Second,
T with oracle L3 is expected to reveal more faults than T with oracle L1 or L2, simply
because L3 “looks at” a larger set of GUI widgets during T ’s execution (i.e., F (T, L3) ≥
F (T, L2) ≥ F (T, L1)); it can certainly do no worse. Similarly, T with L6 is expected to
reveal more faults than with either L4 or L5 (i.e., F (T, L6) ≥ F (T, L5) ≥ F (T, L4)). It is,
however, not clear how L1 compares to L4 in terms of T ’s fault-detection effectiveness, i.e., is
F (T, L4) < F (T, L1) or is F (T, L4) = F (T, L1)? (similar questions can be asked about the
pairs (L2, L5) and (L3, L6)). Also, even though the above relationships have been presented
as “obvious,” the magnitude of these relationships needs further study to determine practical
significance. For example, even though, in theory, the relationship C(T, L5) ≤ C(T, L2)
holds, how much more does L2 cost? Is the additional cost worth the extra faults that may
be found (if any) when using L2? Answers to these questions will demonstrate the practical
significance of using different test oracles.

In particular, the following questions need to be answered to show the relative strengths
of the test oracles and to explore the cost of using different types of oracles.

• Q1: What effect does the oracle information have on the fault-detection effectiveness
of a test case? Is the additional effectiveness worth the cost?
• Q2: What effect does the invocation frequency of a test oracle have on the fault-

detection effectiveness of a test case? Is the additional effectiveness worth the cost?
• Q3: What combination of oracle information and procedure provide the best cost-

benefit ratio?

While answering the above questions, we will also informally study situations in which
generating/using a complex (more expensive) oracle are justified. For example, if a tester
has only short test cases (and/or a small number of test cases), will the test results improve
if complex oracles are used? We will refer to this question as Q4.

4.2 Modeling Cost and Fault Detection Effectiveness

One factor of cost is the time needed to execute a test case with a given oracle; this time
is directly proportional to the number of comparisons of (widget, property, value) triples
during test case execution. Another factor of cost is the effort needed to create the test
oracle, which as explained earlier is a manual process. This factor is also directly related to
the number of triples specified by a tester. For example, a tester using a capture/replay tool
needs to specify each triple that must be stored and compared. Hence, we use the number
of widget comparisons done (during execution of test case T ) by test oracle L as a measure
of cost. We use the notation C(T, L) for this measure. For example, C(T, L4) = 1 for all test
cases, since L4 involves comparing the triples for a single widget.

Since we are interested in studying the impact of using different test oracles on each test
case, we model fault-detection effectiveness on a per test case basis. We define F(T, L) of a
test case T as the number of faults it detects with test oracle L. Obviously, a higher value
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of F is desirable but at a reasonable cost. A more appropriate measure called the “number
of faults detected per comparison” (ξ) is computed as:

ξ(T, O) =

{
F(T,L)
C(T,L)

if C(T, L) > 0,

undefined if C(T, L) = 0.

The second case of the definition is included only for completeness; as long as T is a
non-empty sequence, C(T, L) will be positive. The ξ value gives us a good measure of the
relative cost and benefit of test oracles. A test oracle that performs very few comparisons yet
reveals a large number of faults will have a high ξ value, which is desirable due to the larger
number of faults that it detects. However, ξ has several weaknesses. First, a test oracle that
performs very few (say x) (e.g., x = 1 for L4) comparisons and reveals too few faults (say y)
will have a higher ξ value than one that performs more comparisons (e.g., 10x) but detects
more faults (e.g., 5y). However, the latter oracle may be more desirable. In practice, the
cost of missing a fault may be extremely high. Indeed, in particular domains, a tester may
be willing to spend considerable resources to detect even a single fault. In such domains a
test oracle with a high average F value is clearly desirable. Second, all faults are given equal
weight in this model. The ξ formula can be easily modified if the “severity” of faults is to
be considered; in this experiment we consider all faults to be of equal severity. Although
ξ suffers from some of these problems, it provides us with an adequate starting point for
oracle comparison. Recognizing the weaknesses of the cost/benefit model, we present details
of the actual number of faults detected; readers can interpret the results for their particular
domains/situations. We also refer the interested reader to related literature that provides an
excellent discussion on such cost-benefit models and their advantages/disadvantages [16,48].

To answer Q1, we will compare the F and ξ values for oracles L1–L3 and L4–L6. To
answer Q2, we will compare the F and ξ values for the oracle pairs (L1,L4), (L2,L5), and
(L3,L6). For Q3, we will compare the average ξ values of all oracles. Finally, for Q4, we will
study the impact of test case length and their number on the ξ values for each oracle.

4.3 Experimental Procedure

We select different software subject applications with GUI front-ends and, for each applica-
tion, perform the following steps:
Step 1: generate test cases,
Step 2: generate different levels of oracle information (using execution extraction),
Step 3: execute the test cases on the application using different oracle procedures. Measure

the following variables:

Number of Faults Detected: A “fault is detected” if the expected and actual states
mismatch.

Number of Comparisons: This is the number of widget comparisons between the
expected and actual states for each oracle.

Step 4: from the execution results, eliminate test runs that were affected by factors beyond
our control, e.g., those that crash the subject application irrespective of the test oracle
used.

We discuss details of these steps in subsequent sections.
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Subject Application LOC Classes Windows Widgets Properties
TerpPaint 9,287 42 8 173 2076

TerpPresent 4,769 4 5 95 1140
TerpSpreadSheet 9,964 25 6 124 1488

TerpWord 1,747 9 8 86 1032
TOTAL 25,767 80 27 478 5736

Table 1: Our Subject Applications.

4.3.1 Subject Applications

We had to satisfy several requirements when choosing our subject applications. First, we
wanted to have access to the source code, CVS development history, and bug reports (for
oracle creation, described later). Second, we wanted applications that were “GUI-intensive,”
i.e., ones without complex back-end code. The GUIs of such applications are typically
static, i.e., not generated dynamically from back-end data. Finally, we wanted non-trivial
applications, consisting of several windows and widgets.

The subject applications for our experiment are part of an open-source office suite devel-
oped at the Department of Computer Science of the University of Maryland by undergradu-
ate students of the senior Software Engineering course. It is called TerpOffice8 and includes
the applications TerpWord, TerpPresent, TerpPaint and TerpSpreadSheet. TerpWord is a
word-processor with drawing capability; TerpPresent is used to prepare slides and present
them online; TerpPaint is an imaging tool; TerpSpreadSheet is a compact spreadsheet pro-
gram. They have been implemented using Java. Table 1 summarizes the characteristics
(lines of code, number of classes, windows, widgets, and the properties of widgets) of these
applications. The widget counts shown include only those widgets on which events can be
performed. Most of the code written for the implementation of each application is for the
GUI. None of the applications have complex underlying “business logic.”

4.3.2 Step 1: Generate Test Cases

We used an automated tool (GUITAR9) to generate 600 test cases for each application. We
chose the number 600 since we could execute them in a reasonable amount of time; we later
describe that we created 100 fault-seeded versions of each application; with 600 test cases,
100 versions, and 4 applications, we would need 240K test runs; since an average test run
takes 30 seconds, our experiment would run for months. The number 600 allowed us to keep
the experiment within the realm of practicality.

GUITAR employs previously developed graph structures (event-flow graphs and inte-
gration trees [35]) to generate test cases. A detailed discussion of the algorithms used by
GUITAR is beyond the scope of this paper (see [29] for additional details and analysis).
The key idea is that once the graph structures have been created, a simple graph traversal
algorithm is used to generate sequences of events, each of which is a test case.

Since we wanted to study the role of test case length in GUI testing (Q4), we used an

8Available at http://www.cs.umd.edu/users/atif/TerpOffice
9guitar.cs.umd.edu
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algorithm that allowed us to control the length of the test case by specifying a limit on the
graph traversal. Hence, we created buckets of test cases by length. One of the problems with
automated GUI testing is the creation and execution of long test cases. Our experience with
GUI testing tools has shown that test cases longer than 20 events typically run into problems
during execution, mostly due to timing issues with windows rendering. As events in a test
case are executed, the test case replayer keeps track of GUI state information for each event.
For long sequences, the overhead of keeping track of this information significantly affects
the performance of the JVM, which is also responsible for executing the subject application.
After 20 events, window rendering becomes so slow that events are executed even before
the corresponding widget is available, resulting in uncaught exceptions. Because of this
limitation of our tool, we capped the GUI length at 20, i.e., we had 20 buckets, one for each
length. Since we did not want to favor any one bucket, we generated an equal number of
test cases, i.e., 30, per bucket. In all we had 600 test cases per application.

4.3.3 Step 2: Generate Oracle Information

The next step was to obtain the oracle information for each test case. Since approaches (1)
and (3) discussed in Section 3.3 are extremely resource intensive, we chose to use approach
(2). We used an automated tool (also a part of GUITAR) that implements execution extrac-
tion. This tool automatically executes a given test case on a software system and captures its
state (widgets, properties, and values) by using the Java Swing API. Due to the limitations
of this API, we were able to extract only 12 properties for each widget. By running this tool
on the four subject applications for all 600 test cases, we obtained the oracle information.
Note that the tool extracted all three levels of oracle information.

Reported Fault in Bug Database Corrected Code Fault #1 Fault #2

for( row = 0 ; row < 1024 ; ++row )
    for( col = 0 ; col < 26 ; ++col )
        display_cell( col, row );

for( row = 0 ; row < 1024 ; ++row )
    for( col = 0 ; col < 26 ; ++col )

        display_cell( row, col );

for( row = 0 ; row < 26 ; ++row )
    for( col = 0 ; col < 26 ; ++col )

        display_cell( row, col );

for( row = 0 ; row < 1024 ; ++row )
    for( col = 0 ; row < 26 ; ++col )

        display_cell( row, col );

(a) (b) (c) (d)

Table 2: Seeding GUI Faults.

There are several ways to obtain different versions of an application. One popular way is
to use CVS history and bug reports; the latest version at the head of the CVS is treated as
the “correct” version; the previous versions may contain (now known) faults that may have
been fixed over time. Indeed the latest version may have been the result of numerous bug
fixes. During the development of TerpOffice, a bug tracking tool was used by the develop-
ers to report and track faults in TerpOffice version 1.0 while they were working to extend
its functionality and developing version 2.0. We studied the CVS logs and bug reports for
our subject applications. We were careful to identify only GUI faults, i.e., those that were
manifested on the visible GUI at some point of time during the software’s execution. Unfor-
tunately, we were unable to find a sufficient number of faults relevant to the GUI. However,
recognizing that the small number of reported faults that we did find are an excellent rep-
resentative of faults that are introduced by developers during implementation, we used a
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variation of this approach. We used the real faults as “templates” and created instances of
similar faults and seeded them in the latest version of each application. Table 2(a) shows an
example of a fault reported in our bug database and Table 2(b) shows the (later) corrected
segment of the same code. Table 2(c) and 2(d) show examples of faults seeded into this
code.

One common issue with fault-seeding is that some will never be manifested on the GUI.
Hence, we chose a large enough number to seed so that we could still get useful results,
even if some of them were not manifested. We seeded 100 faults in each application. Four
graduate students seeded the faults independently. These students had taken a graduate
course in software testing and were familiar with popular testing techniques.

Only one fault was introduced in each version. This model is useful to avoid fault-
interaction, which can be a thorny problem in these types of experiments and also simplifies
the computation of the variable “Number of Faults Detected”; now we can simply count the
faulty versions that led to a mismatch between actual state and oracle information. Note,
however, that this approach may overestimate fault detection; in cases where multiple faults
would actually mask each other’s effects, causing no GUI errors to be manifested. Other
researchers have also studied issues of such masking [48]; their studies have shown that
there are low incidents of masking, causing no significant impact on results. We use these
results to side-step the issue of fault masking, except for faults that cause sofware crashes;
we eliminate these faults as discussed in Section 4.3.5.

4.3.4 Step 3: Oracle Procedure and Test Executor

We executed all 600 test cases on all 100 versions of each subject application (hence we had
60,000 runs per application). When each application was being executed, we extracted its
run-time state based on the six oracles and compared it with the stored oracle information
and reported mismatches. We used “set equality” to compare the actual state with the oracle
information. Note that we ignored widget positions during this process since the windowing
system launches the software at a different screen location each time it is invoked.

We noted several points about our test executor. We associated Java methods that
would invoke the default event associated with each GUI widget. Whenever a widget was
encountered in a test case, we executed the corresponding method. The most common
method was doClick() associated with widgets such as buttons. If the widget was a text-
field, we read values from a database and automatically filled in the text-field. We initialized
the database manually with commonly-used values depending on the text-field type.

Each test case required between 10 and 60 seconds to execute. The time varied by
application and the number of GUI events in the test case. The total execution time was
slightly less than one month for each application. The execution included launching the
application under test, replaying GUI events from a test case on it and analyzing the resulting
GUI states. The analysis consisted of recording the actual GUI states of the faulty version
and determining the result of the test case execution based on the oracle.

Our resulting data can be viewed as a (hypothetical) table (hereafter referred to as the
“data table”) for each application. Each row of this table represents the result of execut-
ing each test case on each fault-seeded version. Hence the table has 600 × 100 = 60, 000
rows. It has 6 columns, one for each test oracle. Each entry of the table is a boolean
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value (Match/Mismatch) indicating whether at least one mismatch occurred (the fault was
detected) during test case execution when using the corresponding oracle.

4.3.5 Step 4: Cleaning up the Data Table

During test execution, two factors that were independent of test oracle caused us to filter
out some of the rows in the data table. These factors include the impact of seeded faults on
software execution and interactions between test cases and faults. The former is due to the
way a fault is manifested during execution. The latter is due to test-case design, whether
the test case caused the execution of the program statement in which the fault was seeded,
and whether the seeded fault was manifested on the GUI. We list and discuss each of these
issues next:

1. Effect of fault on software execution: several test cases (during execution) crashed
specific fault-seeded versions, irrespective of the test oracle. These test cases executed
properly on other versions. We eliminated such crashes from our data. There were
954, 1595, 2302, and 4829 crashes for TerpPresent, TerpWord, TerpPaint, and Terp-
SpreadSheet respectively. Each of these (test case, fault-seeded version) pairs caused
the filtering of one row in the table.

2. Fault design: several faults were never detected by even a single test case. We call these
faults “unobserved.” There were 58, 5, 43, and 1 unobserved faults for TerpPresent,
TerpWord, TerpPaint, and TerpSpreadSheet respectively. We discarded these faults
from our data. For each such fault, we filtered out a maximum of 600 table rows, one
for each test case.

3. Test case design: one test case in TerpPaint did not detect even a single fault for any
oracle. We eliminated this test case, causing the filtering of 57 rows, one for each of
the remaining fault-seeded versions of TerpPaint.

4. Finally, a large number of test cases did not detect certain faults for any test oracle.
We eliminated these rows from the table.

#
Rows

Filtered #
Rows

Filtered #
Rows

Filtered #
Rows

Filtered
1 Crashes 954 1595 2302 4829
2 Unobserved faults 58 34800 5 3000 43 25800 1 600
3 Test cases not detecting any faults 0 0 0 0 1 57 0 0
4 Test cases not detecting specific faults 20566 54013 31779 52323

Total Rows

Filtering Steps

Remaining Rows

Subject Applications

3680 1392 62 2248

TerpPresent TerpPaint TerpSpreadSheet
60000 60000

TerpWord
60000 60000

Table 3: The Data Table Cleanup Steps.

These “filtering steps” are also shown in Table 3. Note that we executed them in the
order presented. Also note that after the last filtering step, some fault-seeded versions may
have been filtered out entirely, since test cases either crashed them or did not detect the
faults.

The remaining data, which we use for our analysis, are the rows of the data table that
contain at least one Mismatch entry. These rows represent test runs that yielded a successful
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fault detected for at least one test oracle. That is, the test case successfully executed the
program statement in which the fault was seeded and the fault manifested as a GUI error.
This data is relevant to the results since it helps us to compare test oracles. We note that
other entries may be useful for other analyses, e.g., to study characteristics of test cases,
which are beyond the scope of this work.

The number of test cases that appeared in at least one row of the resulting data table
were 600 for TerpPresent, 424 for TerpWord, 18 for TerpPaint, and 358 for TerpSpreadSheet.
Similarly, the number of faults that appeared in at least one row in the table were 25
for TerpPresent, 82 for TerpWord, 18 for TerpPaint, and 83 for TerpSpreadSheet. These
numbers will be used in the analyses presented.

4.4 Threats to Validity

Threats to external validity [56] are conditions that limit the ability to generalize the results
of our experiment to industrial practice. Our subject applications, types of faults that we
seed, and the way we create the oracle information are the biggest threats to external validity.
First, we have used four applications, developed by students, as our subject applications.
Although they have different types of GUIs, this does not reflect the wide spectrum of
possible GUIs that are available today. Second, all our subject programs were developed in
Java. Although our abstraction of the GUI maintains uniformity between Java and non-Java
applications, the results may vary for non-Java applications. Third, our GUIs are static, in
that we do not have widgets that are created on-the-fly from back-end data. We expect that
our results do not generalize to more “dynamic” GUIs. Fourth, the faults that were seeded
in this experiment represent a small subset of faults that are prevalent in student-developed
software. Our test oracles may behave differently for other classes of faults. Fifth, for text-
fields, we initialized values manually and stored them in a database. Although we made every
attempt to identify categories of text fields (e.g., numbers, file-names, alphanumeric strings)
and their choices, the GUIs may have executed differently for other values. Finally, we
have used execution extraction to create oracle information. While this provided an efficient
mechanism to create different types of oracles, in practice testers use manual techniques
to specify oracles. Moreover, they use different types of assertions, e.g., checking ranges,
not just state comparisons as test oracles. Our work needs to be extended to handle such
assertions.

Threats to internal validity are conditions that can affect the dependent variables of the
experiment without the researcher’s knowledge. The biggest threats to internal validity are
related to the way we create test cases. In order to keep our running time reasonable, we
created 600 test cases; due to the limitations of our tools, we capped the length at 20 events.
The results may vary for longer test cases. We also used one technique to generate test cases –
using event-flow graphs. Other techniques, e.g., using capture/replay tools and programming
the test cases manually may produce different types of test cases, which may show different
execution behavior. Another threat to internal validity is related to our measurement of
fault detection effectiveness; each fault was seeded and activated individually. Note that, as
discussed earlier, multiple faults present simultaneously can lead to more complex scenarios
that include fault masking.

Threats to construct validity arise when measurement instruments do not adequately
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capture the concepts they are supposed to measure. For example, in this experiment our
measure of cost combines human effort and execution cost. A more accurate measure would
use domain-specific knowledge to assign appropriate “weights” to these cost components.

Other threats related to our cost-benefit model were discussed earlier. The results of our
experiment, should be interpreted keeping in mind the above threats to validity.

4.5 Results

4.5.1 Fault-Detection Effectiveness

Recall that F(T, L) was defined as the number of faults detected by test case T when using

oracle L. This value is computed from the data table as F(T, L) =
∑

f∈F

DT (T, f, L), where

the function DT returns 1 if the the entry for column L in the row corresponding to test T

and fault f is Mismatch; 0 otherwise. F is the set of all faults in the data table.
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Figure 8: Distribution of F values by test oracle
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The F values for each test case are summarized as box-plots in Figure 8. A box-plot
is a concise representation of multiple data distributions; each distribution is shown as one
box. The top and bottom edges of each box mark the third and first quartiles respectively.
The plus sign inside the box marks the mean value and the horizontal line inside the box
(it sometimes overlaps with the first/third quartile) marks the median value. The whiskers
extend from the quartiles and cover 90% of the distribution. The remaining data-points
(10%) are considered outliers and are shown as dots beyond the whiskers.

There are four box-plots in Figure 8, one for each subject application. For example,
Figure 8(a) shows the results for TerpPresent. This plot contains six boxes, corresponding
to the six test oracles. The x-axis lists the oracles and the y-axis shows the F values. From
visual examination of the graph, we see that L2 (mean F value = 5) does better than L1
(mean F = 1). However, L3 (mean F = 6) is very close to L2. Comparing L4, L5, and L6, we
note that the difference between L4 and L5 is not as stark as the difference between L1 and
L2; moreover, L6 does better than L5 (which was not the case for L2 vs. L3). Comparison
of L1 to L4 (mean F = 0.5) shows that L1 does better than L4. Similarly L2 does better
than L5 (mean F = 3.5). However, L3 and L6 are very close. The results for the other
applications are more or less similar; the only visual difference is that L3 does better than
L6 for these applications.

In summary, visual examination of the box-plots suggest that the “effectiveness order”
of test oracles (as measured by their mean F values) is {L3, L6, L2, L5, L1, L4}, i.e., L3 is
the best and L4 is the worst. This result suggests that the oracle information and execution
frequency does have an impact on fault-detection effectiveness. Checking the entire state as
opposed to only the active window is effective if the oracle is invoked after the last event in
the test case. If, on the other hand, the oracle is invoked after each event, then checking only
the active window does well. With the exception of TerpPresent, checking the current widget
seems ineffective. The characteristics of GUIs that lead to these results will be discussed in
detail in Section 4.6.

As demonstrated above, box-plots are useful to get an overview of data distributions.
However, valuable information is lost in creating the abstraction. For example, it is not
clear how many test cases detected specific numbers of faults. This is important to partially
address Q4. Even though L3 and L6 more or less showed similar results in the box-plots, do
more test cases detect more faults with L3 than L6? If this is the case, a tester who has a
small number of test cases may get better results with L3 and L6.

We now show the number of test cases that detected specific numbers of faults for different
test oracles. Figure 9 shows six histograms for TerpPresent, one for each test oracle. The
x-axis represents the F values; the y-axis shows the number of test cases that had the
particular F values. There are several important points to note about these plots. First,
they have an F = 0 column (the first dark column; in some cases this column is very tall; in
these cases, it has been chopped – the number adjacent to the top of the column represents
its height); this column is important since it accounts for test cases that detected faults with
at least one test oracle but not with the current oracle. Second, the sum of all the columns
is equal to the number of test cases in the “filtered” data table.

To allow easy visual comparison, we have used the same x-axis and y-axis scales for all
six plots. For TerpPresent, we see that a larger number of test cases have a larger F value
for L3 and L6. In fact, the zero column for L3 and L6 contains no test cases, i.e., all test
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cases detected at least one fault when using L3 and L6. The zero column is tallest for L4,
followed by L1. Hence a large number of test cases did not detect even a single fault when
using L1 and L4. In case of TerpWord (Figure 10), approximately 60 test cases did not
detect even a single fault for L6. Moreover, the column corresponding to F = 1 for oracle
L3 is shorter than that of L2; however, a larger number of test cases have higher F values.
For TerpPaint (Figure 11), the oracle L4 detected no faults, represented by a single zero
column of height 18. For TerpSpreadSheet (Figure 12), L3 did significantly better than L2,
indicated by a taller F = 1 column; L2 has a very tall F = 0 column.

The probability that a test case will detect a larger number of faults with L3 is high.
We also note that oracle L6 does reasonably well. Oracle L4 has the largest number of test
cases with zero faults detected. In summary, a tester with a small number of test cases can
improve overall fault detection effectiveness by using oracle L3. This result partly answers
Q4.

4.5.2 Statistical Analysis

The results discussed thus far have been based on visual examination of the data. While
visual examination provides an intuitive overview of the data, valuable information is lost.
For example, each test case has six data-points (the six F values) that are correlated. This
correlation is difficult to show and compare visually, especially for large data-sets.

We now want to determine whether the differences in F values observed for each test case
per test oracle are statistically significant. In particular, we want to study the differences
between the oracles within the sets {L1, L2, L3}, {L4, L5, L6}, {L1, L4}, {L2, L5}, and
{L3, L6}. Several statistical tests may be used for this study. Choosing the right test is
based on the number and the nature of the dependent (in this case the F values) and the
independent variables (i.e., the test oracle). For this experiment, the distribution of the data
(Normal vs. non-Normal), the number of groups (2 or 3), size of groups, and whether the
groups are matched or not will be considered.

These factors and their impact on choice of statistical tests are briefly discussed next.
Many statistical tests are based upon the assumption that the data is normally distributed.
These tests are called parametric tests; common examples include the t-test and analysis of
variance (ANOVA) [37]. Since all the computations in parametric tests are based on the data
normality assumption, the significance level (p-value) cannot be considered reliable when the
data distribution is not normal. Tests that do not make assumptions about distribution are
referred to as non-parametric tests; these tests rank the dependent variable from low to high
and then analyze the ranks. Examples of non-parametric tests include Wilcoxon, Mann-
Whitney, and Friedman [37].

Another factor that plays a role in choice of statistical tests is sample size. If the sample
size is small, choosing a parametric test with non-normally distributed data, or choosing a
non-parametric test with normally distributed data, will yield an inaccurate p-value. On
the other hand, if the sample size is large (e.g., more than 2000), the distribution can be
considered normal based upon the central limit theorem [37]. Consequently, in practice, with
large sample size, the choice of parametric vs. non-parametric does not matter, although
the p-value tends to be large for non-parametric tests; however, the discrepancy is small.

There are several ways to formally determine normality of data. A popular way is to use
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a quantile-quantile (QQ) plot. A quantile is the fraction (or percentage) of points below a
given value. For example, 70% of the data fall below the “0.7 quantile” point. A QQ-plot
shows the quantiles of a data set (in our case the F values using different oracles) against
the quantiles of a second data set (normal distribution). A mark (x,y) on the plot means
that f2(x) and f1(y) share the same quantile, where f1 and f2 are the functions for the first
and second data set. If the two sets come from a population with the same distribution,
the plot will be along a (x = y) straight line. The greater the departure from this reference
line, the greater the evidence for the conclusion that the two data sets have come from
populations with different distributions [42]. Figure 13 through Figure 16 show the quantile-
quantile plots for each application. The x-axis is the normal distribution; the y-axis is the F
distribution. Since the standard deviation for the F values is 0 for TerpPaint with oracle L4,
there is no QQ-plot for this instance. None of the QQ-plots show a straight line, implying
non-normality.

Since our sample sizes are small (e.g., 18 for TerpPaint), we need to determine normality
of the data before we choose the statistical tests. For illustration, the solid line superimposed
on the histograms (Figures 9 through 12) shows the normal distribution approximation; this
illustration suggests that the data is not normal. Finally, our data is matched, i.e., each
data point (e.g., F value for oracle L1 with test case T ) in one distribution (for oracle L1)
has a corresponding matched point in all other distributions (the matched points are the
F values for oracles L2–L6 with test case T ). Considering all these factors, we chose the
Friedman test for the three matched groups statistical comparison ({L1, L2, L3}, {L4, L5,
L6}) and Wilcoxon signed ranks test for two matched groups comparison ({L1, L4}, {L2,
L5}, {L3, L6}). We will not run a test to compare {L1, L4} for TerpPaint.

Sample Size Friedman Test Statistic Value P-Value
L1/L2/L3 1095.2514 <.0001
L4/L5/L6 1174.8991 <.0001
L1/L2/L3 710.9736 <.0001
L4/L5/L6 577.6345 <.0001
L1/L2/L3 31.0000 <.0001
L4/L5/L6 18.0000 0.0001
L1/L2/L3 542.5014 <.0001
L4/L5/L6 598.8733 <.0001

TerpSpreadSheet

1272

54

1074

TerpPresent 1800

TerpWord

TerpPaint

Table 4: Friedman Test Results.

Friedman Test: This test compares the mean F values for the test oracle sets {L1, L2,
L3}, and {L4, L5, L6} based on their rank scores. The null hypothesis here is that the
mean values do not differ. Table 4 summarizes the results of this test. The statistic value
shown here is the standard Cochran-Mantel-Haenszel (CMH) statistic used by most popular
statistical software packages. The p-values are obtained by a table lookup using the sample
size and CMH value. As the result shows, all p-values are less than 0.05. Hence, the null
hypothesis is rejected. The alternative hypothesis, i.e., the mean F values do differ in a
statistically significant way, is accepted. An additional Wilcoxon matched pairs test on the
oracle pairs {L1, L2}, {L2, L3}, {L1, L3}, {L4, L5}, {L5, L6}, and {L4, L6} showed that
the differences between these oracle pairs are also statistically significant.
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Figure 13: Quantile-Quantile plot for TerpPresent
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Figure 14: Quantile-Quantile plot for TerpWord
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Figure 15: Quantile-Quantile plot for TerpPaint
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Figure 16: Quantile-Quantile plot for TerpSpreadSheet
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Sample Size Wilcoxon Test Statistic Value P-Value
L1/L4 20808 <.0001
L2/L5 33764 <.0001
L3/L6 115.5 <.0001
L1/L4 1785 <.0001
L2/L5 17490 <.0001
L3/L6 6440 <.0001
L1/L4 * *
L2/L5 27.5 0.0020
L3/L6 14 0.0156
L1/L4 1387.5 <.0001
L2/L5 10764 <.0001
L3/L6 1870.5 <.0001

TerpSpreadSheet

TerpPresent

TerpWord

TerpPaint

600

424

18

358

Table 5: Wilcoxon Test Results.

L1 L2 L3 L4 L5 L6
TerpPresent 11.5 567.69 947.6 1 48.51 82.56
TerpWord 12.93 404.79 671.56 1 30.29 59.56
TerpPaint 14.17 1106.56 1667.17 1 63.33 125.83

TerpSpreadSheet 13.61 600.29 1268.06 1 43.24 104.7

Table 6: Average Number of Widget Comparisons Per Test Case.

Wilcoxon Signed Ranks Test: The null hypothesis here is that there is no statistically
significant difference between the means among the oracles in the sets {L1, L4}, {L2, L5},
and {L3, L6}. The results of the tests are summarized in Table 5. All p-values are less
than 0.05, resulting in the rejection of the null hypothesis and acceptance of the alternative
hypothesis.

The above two analyses helped us to answer the first parts of Q1 and Q2. Based on the
results of the Friedman test, and the earlier visual comparison, we conclude that the oracle
information has a significant impact on fault detection effectiveness of a test case; checking
more widgets is beneficial. Based on the results of the Wilcoxon signed ranks test, and the
earlier visual observations, we conclude that the frequency of invoking the test oracle does
have a significant impact on the fault detection effectiveness of a test case; invoking the test
oracle frequently is beneficial.

4.5.3 Faults Detected Per Comparison

We now address the issue of the cost of the oracles. First we look at the number of compar-
isons that each oracle performs per test case. The average number of comparisons per test
case for oracle L is represented as ∆(L), and is shown in Table 6. As expected, ∆(L4) = 1.
The value of ∆(L1) is larger than ∆(L4) due to one comparison per event in the test case.
The values of ∆(L2) and ∆(L3) depend on the number of widgets in the active window
and in all the open windows respectively. Similarly, ∆(L5) and ∆(L6) depend on the num-
ber of widgets in the active window and in all the open windows when the test case ends,
respectively.

Recall that we have defined ξ as the faults-detected-per-comparison for each test case.
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Higher values of ξ are considered better. We now compute ξ and present the results as
box-plots.
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Figure 17: ξ values for all test cases.

The results for TerpPresent are summarized in Figure 17(a). Since L3 requires the
maximum number of comparisons (the entire state of the GUI after each event in the test
case), it is penalized the most by the ξ measure; L2 is close behind. Since the number of
comparisons is smaller for L5 and L6, their ξ values are better. In the case of TerpPresent,
checking the widget alone helped to detect a non-trivial number of faults; combined with
a very small number of comparisons required, the ξ value of L4 was better than all other
oracles, followed by L1.

The results for TerpWord (Figure 17(b)) are different primarily because L1 and L4 did
not detect many faults; simply checking the widget was inadequate. L2 and L3 again suffered
due to the large number of comparisons they require. L5 did much better due to its reduced
frequency of comparison. Although L6 compares the entire state whereas L5 compares only
the active window, L6 did much better due to its larger F value. This difference did not help
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L6 for TerpPaint (Figure 17(c)) since the entire state is much larger for this application. Since
L5 did not detect many faults for TerpSpreadSheet, its ξ value is very low (Figure 17(d)).

We are now ready to answer Q1, Q2, and Q3. In case of Q1, we saw that the oracle
information does have an impact on the fault-detection effectiveness of a test case. In case
of Q2, the invocation frequency of a test oracle has a very significant impact on the fault-
detection effectiveness of a test case. Considering the ξ measure, the additional effectiveness
is not worth the cost for L2 and L3 due to the extremely large number of comparisons
required for L2 and L3; using L5 and L6 is more practical. However, for L1 vs. L4, the
additional cost is very low and helps fault detection.

In case of Q3, the combination of oracle information and procedure that provides the best
cost-benefit ratio depends largely on the GUI. We will discuss details of GUI characteristics
in Section 4.6.

4.5.4 Relationship Between Test Oracles and Fault-Detection Position

We observed that whenever the test oracles L3, L2, and L1 detected a fault at event position
a, b, and c respectively, then in many cases (e.g., 33% for TerpWord, 62% for TerpPresent)
one of the relationships a < b or b < c held (we had expected a = b = c). In other words,
when oracles contained more information, they tended to detect faults earlier in the event
sequence.
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Figure 18: Position where the fault is detected vs. oracle for (a) TerpPresent, (b) TerpWord,
and (c) TerpSpreadSheet.

This was an interesting result since it provided a link between test oracles and the length
of a test case. Longer test cases are more expensive to generate and execute. Hence, if a test
designer has a suite containing short test cases, oracle L3 has better chances of detecting
more faults. The box-plots shown in Figure 18 illustrate the results. No results are shown for
TerpPaint since only two test cases detected a fault using L1. The box-plots show that the
position at which the fault is detected using L1 is later than that using L2 or L3. However,

31



for TerpWord and TerpSpreadSheet, the position at which the fault is detected using L2 is
almost the same as that using L3.

Hence generating/using a complex (more expensive) oracle is justified if a tester has short
test cases. This result partly answers Q4.

4.6 Discussion

Our results are consistent with the characteristics of today’s GUIs. First, GUIs contain
several types of widgets. Some of these widgets have a state (e.g., check-boxes, radio-buttons)
whereas others are stateless (e.g., buttons, pull-down menus). Events (such as clicking on a
check-box) performed on state-based widgets are used to change (usually toggle) their state.
A test oracle that checks the correctness of the state of the current widget (i.e., on which an
event was just executed) is able to detect specific types of faults – ones that may adversely
affect the current widget’s state only; other faults are missed. TerpPresent has many such
faults. L1 is an example of this type of oracle. Second, many events affect the state of
multiple widgets of the active window, not just the current widget. L2 is able to detect all
faults that are manifested anywhere on the active window. Finally, several events affect the
state of the entire GUI. For example, OK in “preferences setting” has a global impact on the
overall GUI. L3 is able to detect faults in such events.

The frequency of oracle invocation has a significant impact on fault detection effectiveness
since the constantly changing structure (e.g., currently open windows, active window) of the
executing GUI provides a small “window of opportunity” for fault detection. A test oracle
(such as L1 or L4) that examines only the current widget, if not invoked immediately after
a faulty widget state is encountered, will fail to detect the problem. Hence L4, which waits
until the last event, to examine the then-current widget detects fewer faults than L1. L4 is
successful only if the widget associated with the test case’s last event is problematic, as was
the case with TerpPresent. Similarly, L5 detects fewer faults than L2 because a faulty active
window is either closed or is no longer the active window by the time the last event in the
test case executes; L5 misses these faults. On the other hand, L2 is able to detect such faults
immediately as they are manifested on the active window. The small difference between L3
and L6 is due to the windows/widgets that are available at any time for examination. Errors
that persist anywhere (i.e., in any window or widget) across the entire test case execution
are easily detected by L6 since it examines the entire state of the GUI after the last event.
L6 misses only those errors that occurred in windows that were later closed or “disappeared”
due to other reasons. The small number of such disappearing errors in TerpWord, TerpPaint,
and TerpSpreadSheet show the reduced impact of comparing the entire state after each event.

The cost of test oracles is directly related to GUI layout issues that stem from usability
concerns. Factors that impact the cost of our test oracles include the number of windows in
the GUI that are open at any time (since L3 and L6 compare a larger number of widgets)
and the number of widgets per window (since L2 and L5 compare all the widgets in the
active window).

There are several lessons-learned for GUI developers and test designers. First, testers
who use capture/replay tools typically create assertions for very few widgets after each event
(e.g., the one on which the current event is being executed). Seeing that L1 and L4 were the
least effective at detecting faults, testers need to capture more information with their test
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cases, perhaps by using a reverse engineering tool such as ours; use of such automated tools
will also reduce the overall effort required to create these oracles. Second, since it is difficult
and expensive to create many long GUI test cases, testers who conserve their resources and
create few short test cases should use test oracles such as L3 and L6 that check a more
complete state of the GUI to improve fault-detection effectiveness. Third, testers should
realize that the dynamic nature of GUIs provides a small window of opportunity to detect
faults. They should place their assertions at strategic places in the test case (e.g., before
a window/menu is closed) to maximize fault-detection effectiveness. Finally, GUI designers
must realize that their decisions will not only have an impact on usability but also on its
“testability.”

5 Conclusions

In this paper, we showed that test oracles play an important role in determining the effec-
tiveness and cost of the testing process. We defined two important parts of a test oracle:
oracle information that represents expected output, and an oracle procedure that compares
the oracle information with the actual output. We described a technique to specify different
types of test oracles by varying the level of detail of oracle information and changing the
oracle procedure; we employed this technique to create six instances of test oracles for an
experiment. The results show that test oracles do affect the fault-detection ability of test
cases in different and interesting ways: (1) test cases significantly lose their fault-detection
ability when using “weak” test oracles, (2) in many cases, invoking a “thorough” oracle at
the end of test case execution yields the best cost-benefit ratio, (3) certain test cases detect
faults only if the oracle is invoked during a small “window of opportunity” during test ex-
ecution, and (4) using thorough and frequently-executing test oracles can make up for not
having long test cases.

The results in this paper open several new research opportunities, some of which we
outline next:
• We feel that the GUI domain was an ideal starting point for this type of study since

the way we define a GUI oracle, in terms of objects (widgets) and their properties that
change over time, allows us to “fine-tune” the oracle information and procedure. Our results
may be applicable to all event-based software that can be modeled in terms of objects,
properties, and their values (e.g., object-oriented software). Test oracles for such software
would determine whether the objects executed correctly. In the future, we will extend our
pool of subject applications to include non-Java and non-GUI programs.
• We used a technique to generate one class of test cases. This technique is based on a

traversal of a graph representation of the GUI, namely event-flow graphs [36]. In the future,
we will generate other classes of test cases using techniques such as AI planning [33] and
capture/replay tools, and observe the effect of using different test oracles with these test
cases.
• Since we have identified differences in fault-detection ability of different test oracles,

which is clearly linked to the number of GUI objects that the oracles “cover,” we will develop
adequacy criteria for test oracles in a way similar to those already available for test cases [57].
• We feel that the relationship that was revealed between test case length and fault-
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detection effectiveness is significant and requires further study. In the future, we intend to
conduct a detailed experiment involving a large number of test cases of varying length; we
will also model the relationship between the length of these test cases and the faults that
they reveal.
• The simplifying assumption to minimally model the back-end using fixed data allowed

us to focus on issues relevant to the GUI only. In the future, we will extend our back-end
models, seed faults in the back-end code, and study the effectiveness of GUI test oracles on
back-end faults.
• We currently modeled one type of assertion, i.e., check for equality between expected

and actual widget properties. In the future, we will extend our test oracles with additional
types of assertions, e.g., those that specify timing issues, range checking, etc.
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