
Reliable Effects Screening: A Distributed
Continuous Quality Assurance Process for

Monitoring Performance Degradation in
Evolving Software Systems

Cemal Yilmaz, Member, IEEE Computer Society, Adam Porter, Senior Member, IEEE,

Arvind S. Krishna, Atif M. Memon, Member, IEEE Computer Society, Douglas C. Schmidt,

Aniruddha S. Gokhale, and Balachandran Natarajan

Abstract—Developers of highly configurable performance-intensive software systems often use in-house performance-oriented

“regression testing” to ensure that their modifications do not adversely affect their software’s performance across its large configuration

space. Unfortunately, time and resource constraints can limit in-house testing to a relatively small number of possible configurations,

followed by unreliable extrapolation from these results to the entire configuration space. As a result, many performance bottlenecks

escape detection until systems are fielded. In our earlier work, we improved the situation outlined above by developing an initial quality

assurance process called “main effects screening.” This process 1) executes formally designed experiments to identify an appropriate

subset of configurations on which to base the performance-oriented regression testing, 2) executes benchmarks on this subset

whenever the software changes, and 3) provides tool support for executing these actions on in-the-field and in-house computing

resources. Our initial process had several limitations, however, since it was manually configured (which was tedious and error-prone)

and relied on strong and untested assumptions for its accuracy (which made its use unacceptably risky in practice). This paper

presents a new quality assurance process called “reliable effects screening” that provides three significant improvements to our earlier

work. First, it allows developers to economically verify key assumptions during process execution. Second, it integrates several model-

driven engineering tools to make process configuration and execution much easier and less error prone. Third, we evaluate this

process via several feasibility studies of three large, widely used performance-intensive software frameworks. Our results indicate that

reliable effects screening can detect performance degradation in large-scale systems more reliably and with significantly less

resources than conventional techniques.

Index Terms—Distributed continuous quality assurance, performance-oriented regression testing, design-of-experiments theory.

Ç

1 INTRODUCTION

THE quality of service (QoS) of many performance-
intensive systems, such as scientific computing systems

and distributed real-time and embedded (DRE) systems,
depends heavily on various environmental factors. Example
dependencies include the specific hardware and operating
system on which systems run, installed versions of
middleware and system library implementations, available
language processing tools, specific software features that

are enabled/disabled for a given customer, and dynamic
workload characteristics. Many of these dependencies are
not known until deployment and some change frequently
during a system’s lifetime.

To accommodate these dependencies, users often need to

tune infrastructure and software applications by (re)adjust-

ing many (i.e., dozens to hundreds) of compile-time and

runtime configuration options that record and control

variable software parameters. These options are exposed

at multiple system layers, including compiler flags and

operating system, middleware, and application feature sets

and runtime optimization settings. For example, there are

� 50 configuration options for SQL Server 7.0, � 200

initialization parameters for Oracle 9, and � 90 core

configuration options for Apache HTTP Server Version 1.3.

Although designing performance-intensive systems to

include such configuration options promotes code reuse,

enhances portability, and helps end users improve their

QoS, it also yields an enormous family of “instantiated”

systems, each of which might behave differently and, thus,

may need quality assurance (QA). The size of these system

families creates serious and often under-appreciated chal-

lenges for software developers, who must ensure that their

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007 1

. C. Yilmaz is with the IMB T.J. Watson Research Center, 19 Skyline Dr.,
Hawthorne, NY 10532. E-mail: cyilmaz@us.ibm.com.

. A. Porter and A.M. Memon are with the Department of Computer Science,
University of Maryland, College Park, MD 20742.
E-mail: {aporter, atif}@cs.umd.edu.

. A.S. Krishna, D.C. Schmidt, A.S. Gokhale, and B. Natarajan are with the
Department of Electrical Engineering and Computer Science, Vanderbilt
University, Nashville, TN 37325.
E-mail: arvindkr@qualcomm.com, schmidt@dre.vanderbilt.edu, a.gokha-
le@vanderbilt.edu.

. B. Natarajan is with Symantec, ?MAILING ADDRESS?.
E-mail: bala_natrajan@symantec.com.

Manuscript received 14 Dec. 2005; revised 26 July 2006; accepted 13 Nov.
2006; published online 28 Dec. 2006.
Recommended for acceptance by B. Littlewood.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0331-1205.

0098-5589/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

decisions, additions, and modifications work across this
large (and often dynamically changing) space. For example,
consider that:

. Option settings that maximize performance for a
particular environment may be ill-suited for differ-
ent ones. Failures can and do manifest in some
configurations, but not in others. Similarly, indivi-
dual code changes can have different runtime effects
in different configurations.

. Individual developers, especially those in smaller
companies or in open-source projects, may not have
access to the full range of hardware platforms,
operating systems, middleware, class library ver-
sions, etc. over which the system must run. In these
situations, individual QA efforts will necessarily be
incomplete.

. Limited budgets, aggressive schedules, and rapidly
changing code bases mean that QA efforts frequently
focus on a relatively small number of system
configurations, often chosen in an ad hoc fashion.
Developers then unreliably extrapolate from this
data to the entire configuration space, which allows
quality problems to escape detection until systems
are fielded.

In summary, resource constraints and the large number
of possible system configurations make exhaustive evalua-
tion infeasible for performance-intensive systems. Devel-
opers therefore need 1) ways to identify a small core set of
configurations whose QA results can be reliably generalized
across all configurations and 2) support for executing
QA activities across a sufficiently rich and diverse set of
computing platforms. To address these needs, our research
[33], [31], [20], [32] has focused on system support and
algorithms for distributed continuous quality assurance
(DCQA) processes. DCQA helps improve software quality
iteratively, opportunistically, and efficiently by executing
QA tasks continuously across a grid of computing resources
provided by end-users and developer communities.

In prior work [20], we created a prototype DCQA
support environment called Skoll that helps developers
create, execute, and analyze their own DCQA processes, as
described in Section 2. To facilitate DCQA process devel-
opment and validation, we also developed model-driven
engineering tools for use with Skoll. We then used Skoll to
design and execute an initial DCQA process, called “main
effects screening” [33], whose goal was to estimate
performance efficiently across all system configurations
(hereafter called the “configuration space”).

Main effects screening borrows ideas from statistical
quality improvement techniques that have been applied
widely in engineering and manufacturing, such as Explora-
tory Data Analysis [27], Robust Parameter Design [30], and
Statistical Quality Control [23]. A central activity of these
techniques is to identify aspects of a system or process that
contribute substantially to outcome variation. We use
similar ideas to identify important configuration options
whose settings define the distribution of performance
across all configurations by causing the majority of
performance variation. Evaluating all combinations of these
important options (and randomizing the other options),

thus provides an inexpensive, but reliable estimate of
performance across the entire configuration space.

Although our initial work on main effects screening
presented in [33] showed promise, it also had several
limitations. For example, the definition and execution of
the process had many manual steps. To improve this, we
have extended and better integrated several model-driven
engineering (MDE) [25] tools, including the Options Config-
uration Modeling Language (OCML) [28], which models
configuration options and interoption constraints, and the
Benchmark Generation Modeling Language (BGML) [13], which
models the QA tasks that observe and measure QoS behavior
under different configurations and workloads. These MDE
tools precisely capture common and variable parts of DCQA
processes and the software systems to which they are
applied. They also help reduce development and QA effort
by generating configuration files and many other supporting
code artifacts [2] needed to manage and control process
execution across heterogeneous computing resources.

Another limitation with our initial main effects screening
process was its dependence on strong and untested
assumptions regarding the absence of interactions among
certain groups of options. If these assumptions do not hold
in practice, our results could be wildly incorrect. Moreover,
we had no way to assess the validity of the assumptions
without resorting to exhaustive testing, the avoidance of
which motivated our DCQA process in the first place.

To remedy these problems, this paper describes further
enhancements to our earlier work that significantly broaden
its applicability with little additional operating cost. Our
new DCQA process, called “reliable effects screening” is
implemented using Skoll and its MDE tools, and relies on
design-of-experiments (DOE) techniques called “screening
designs” [30] and “D-optimal designs” [22]. Our reliable
effects screening process first identifies a small subset of the
most important performance-related configuration options
by creating formally designed experiments and executing
them across the Skoll grid. Whenever software changes
occur thereafter, reliable effects screening then uses a far
smaller amount of computing resources to estimate system
performance across the entire configuration space by
exhaustively exploring all combinations of the important
options, while randomizing the rest. This subsequent
analysis can even be run completely in-house, assuming
appropriate computing platforms are available, since the
reduced configuration space is much smaller than the
original and thus more tractable using only in-house
resources.

In addition to describing our new reliable effects screen-
ing DCQA process, this paper also evaluates this process
empirically on ACE, TAO, and CIAO (dre.vanderbilt.edu),
which are three widely used, production-quality, perfor-
mance-intensive software frameworks. This evaluation
indicates that 1) our reliable effects screening process can
correctly and reliably identify the subset of options that are
most important to system performance, 2) monitoring only
these selected options helps to detect performance degrada-
tion quickly with an acceptable level of effort, and
3) alternative strategies with equivalent effort yield less
reliable results. These results support our contention that

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

reliable effects screening can inexpensively and quickly
alert performance-intensive system developers to changes
that degrade QoS, as well as provide them with much
greater insight into their software’s performance character-
istics. The remainder of this paper is organized as follows:
Section 2 summarizes the Skoll DCQA environment,
Section 3 describes how we extended Skoll to implement
the new reliable effect screening DCQA process to conduct
performance-oriented regression testing efficiently, Section 4
presents the design and results of a feasibility study using
ACE, TAO, and CIAO, Section 5 further discusses our
empirical results and evaluates threats to the validity of our
experiments, Section 6 presents guidelines on how to use
reliable effects screening, Section 7 compares our research
on reliable effect screening with related work, and Section 8
presents concluding remarks and outlines future directions
of our DCQA process and tool research.

2 AN OVERVIEW OF THE SKOLL DCQA
ENVIRONMENT

To improve the quality of performance-intensive systems
across large configuration spaces, our work focuses on
distributed continuous quality assurance (DCQA) processes
[20] that evaluate various software qualities, such as
portability, performance characteristics, and functional
correctness “around-the-world and around-the-clock.”1

To support this methodology, we developed Skoll, which
is a model-driven engineering (MDE)-based DCQA environ-
ment (www.cs.umd.edu/projects/skoll). Skoll divides QA
processes into multiple tasks, each of which is implemented
as a generic process parametrized by one of several
alternative configurations expressed via MDE tools. Exam-
ple tasks might include running regression tests in one of
many system configurations, evaluating system response
time under one of several different input workloads, or
measuring code execution coverage using one of several
instrumentation schemes.

As shown in Fig. 1, these tasks are then intelligently
and continuously distributed to—and executed by—clients
across a grid of computing resources contributed by end-
user and developer communities. The results of individual
tasks are returned to servers at central collection sites,
where they are merged and analyzed to steer subsequent
iterations and ultimately to complete the overall
QA process.

This section summarizes Skoll’s key components and
services, which include MDE tools for modeling system
configurations and their constraints, a domain-specific model-
ing language (DSML) to describe these models, algorithms
for scheduling and remotely executing tasks via planning
technology that analyzes task results and adapts the DCQA
process in real time, a DSML to package the subtasks, and
techniques to interpret and visualize the results.

QA task space. Performance-intensive systems, such as
the ACE+TAO+CIAO QoS-enabled middleware, provide a
range (i.e., � 500) of configuration options that can be used

to tune its behavior.2 To be effective, DCQA processes must
keep track of these options, in addition to other environ-
mental information, such as OS platform, build tools used,
and desired version numbers. This information is used to
parameterize generic QA tasks and aids in planning the
global QA process, e.g., by adapting the process dynami-
cally and helping interpret the results.

In Skoll, tasks are generic processes parameterized by
QA task options. These options capture information that is
1) varied under QA process control or 2) needed by the
software to build and execute properly. These options are
generally application-specific, including workload para-
meters, operating system, library implementations, compi-
ler flags, or runtime optimization controls. Each option
must take its value from a discrete number of settings. For
example, in other work, our QA task model included a
configuration option called OperatingSystem so Skoll
could select appropriate binaries and build code for specific
tasks [32].

QA task modeling. The QA task model underlies the
DCQA process. Our experience [20], [13], [31] with the
initial Skoll prototype taught us that building these models
manually was tedious and error-prone. We therefore
developed and integrated into Skoll the Options Configura-
tion Modeling Language (OCML) [28]. OCML is an MDE tool
that provides a DSML for modeling software configura-
tions. For example, OCML defines a numeric option type for
middleware options that can have numeric values, e.g.,
cache, buffer, or thread pool sizes. OCML is built atop the
Generic Modeling Environment (GME) [16], which provides a
metaprogrammable framework for creating DSMLs and
generative tools via metamodels and model interpreters. For
the feasibility study in Section 4, we used the OCML MDE
tool to define the configuration model visually and generate
the low-level formats used by other Skoll components.

Exploring the QA task space. Since the QA task spaces
of many systems can be enormous, Skoll contains an
Intelligent Steering Agent (ISA) [20] that uses AI planning
techniques [21] to distribute QA tasks on available Skoll

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 3

1. Naturally, DCQA processes can also be executed effectively in more
constrained and smaller-scale environments, such as companywide
intranets.

2. All the ACE+TAO+CIAO’s configuration options are de-
scribed at www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/TAO/docs/
Options.html.

Fig. 1. The Skoll distributed continuous quality assurance architecture.

clients. When clients become available, they send a message
to the Skoll server. Skoll’s ISA then decides which task to
assign it by considering many factors, including 1) the QA
task model, which characterizes the subtasks that can be
assigned legally, 2) the results of previous tasks, which capture
what tasks have already been done and whether the results
were successful, 3) global process goals, such as testing
popular configurations more than rarely used ones or
testing recently changed features more heavily than un-
changed features, and (4) client characteristics and preferences,
e.g., the selected configuration must be compatible with the
OS running on the client machine or users can specify
preferences that configurations must run with user-level—
rather than superuser-level—protection modes.

After a valid configuration is chosen, the ISA packages
the corresponding QA task into a job configuration, which
consists of the code artifacts, configuration parameters,
build instructions, and QA-specific code (e.g., developer-
supplied regression/performance tests) associated with a
software project. Each job configuration is then sent to a
Skoll client, which executes the job configuration and
returns the results to the ISA. By default, the ISA simply
stores these results.

In some experiments, however, we want to learn from
incoming results. For example, when some configurations
prove faulty, it makes no sense to retest them. Instead, we
should refocus resources on other unexplored parts of the
QA task space. When such dynamic behavior is desired,
DCQA process designers develop customized adaptation
strategies that Skoll uses to monitor the global process state,
analyze it, and modify future task assignments in ways that
improve process performance. One example of an adapta-
tion strategy is the nearest neighbor search strategy, which
allows a process to target failing QA task subspaces by
preferentially testing the “neighbors” of a failing config-
uration, (i.e., other similar configurations that differ in one
configuration option value) to see if they also fail [20].

Packaging QA tasks. With the initial Skoll prototype,
developers who wanted to evaluate QoS issues had to
provide handwritten benchmark programs. For example,
ACE+TAO+CIAO developers creating such benchmarks to
measure latency and throughput for a particular workload
had to write 1) the header files and source code that
implement the measurements, 2) the configuration and
script files that tune the underlying Object Request Broker
(ORB) and automate running tests and output generation,
and 3) project build files (e.g., makefiles) required to
generate executable binaries from source code. Our initial
feasibility study [20] revealed that this process was tedious
and error-prone.

To address these problems, we developed the Bench-
mark Generation Modeling Language (BGML) [14], which is
an MDE tool that automates key QoS evaluation concerns
of QoS-enabled middleware and applications, such as
1) modeling how distributed system components interact
with each other and 2) representing metrics that can be
applied to specific configuration options and platforms.
Middleware/application developers can use BGML to
graphically model interaction scenarios of interest. BGML
automates the task of writing repetitive source code to

perform benchmark experiments and generates syntacti-

cally and semantically valid source and benchmarking code.
Fig. 2 depicts how QA engineers can visually configure

an experiment that measures end-to-end latency. As shown

in Fig. 2, the latency metric was associated with an
operation (WorkOrderResponse()) using BGML.

BGML’s TaskSet element was also used to create back-
ground tasks that invoked the WorkOrderResponse()

operation continuously for a fixed number of iterations.
Analysis of results. Since DCQA processes can be

complex, Skoll users often need help to visualize, inter-

pret, and leverage process results. Skoll therefore supports
a variety of pluggable analysis tools, such as Classification

Tree Analysis (CTA) [4]. In previous work [20], [31], we
used CTA to diagnose options and settings that were the

likely causes of specific test failures. For the work

presented in this paper, we developed statistical tools to
analyze data generated by the formally designed experi-

ments described next.

3 PERFORMANCE-ORIENTED REGRESSION TESTING

As software systems evolve, developers often run regression

tests to detect unintended functional side effects. Developers

of performance-intensive systems must also detect unin-
tended side effects on end-to-end QoS. A common way to

detect these effects is to run benchmarks when the system

changes. As described in Section 1, however, these efforts can
be confounded for systems with many possible configura-

tions because time and resource constraints (and often high

change frequencies) severely limit the number of config-
urations that can be examined using only in-house

resources.
For example, our earlier experiences applying Skoll to

ACE+TAO [20] showed that ACE+TAO developers have a
limited view of their software’s QoS since they routinely

benchmark only a small number of common configurations.

QoS degradations not readily seen in these configurations,
therefore, can and do escape detection until systems based

on ACE+TAO are fielded by end-users [20], [13]. The key

problem here is that the ACE+TAO developers are
benchmarking a small and unrepresentative sample of

system configurations, so their extrapolations from this data

are bound to be unreliable.
To address this problem, we have developed and

evaluated the reliable effects screening process, which uses

“design of experiments” theory [11] to determine an

appropriate subset of system configurations to benchmark
when the system changes. This section describes how we

implemented the reliable effects screening process and

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 2. Associating QoS with an operation in BGML.

applied it to ACE+TAO+CIAO and discusses several
process choices developers must make when applying it.

3.1 The Reliable Effects Screening Process

Reliable effects screening (RES) is a process we developed
to detect performance degradation rapidly across a large
configuration space as a system changes. This process
identifies a small subset of “important” configuration
options that substantially affect variation in performance.
Benchmarking a “screening suite” containing all combina-
tions of these important option settings (with other options
assigned randomly) should therefore provide a reliable
estimate of performance across the entire configuration
space at a fraction of the cost and effort of exhaustive
benchmarking.

At a high level, the process involves the following steps:

1. Compute a formal experimental design based on the
system’s QA task model.

2. Execute that experimental design across volunteered
computing resources in the Skoll computing grid by
running and measuring benchmarks on specific
configurations dictated by the experimental design
devised in Step 1.

3. Collect, analyze, and display the data so that developers
can identify the most important options, i.e., the
options that affect performance most significantly.

4. Conduct supplementary analysis again on volunteered
computing resources to check the basic assumptions
underlying Step 1 and to confirm the results of
Step 3.

5. Estimate overall performance (in-house, if possible)
whenever the software changes by evaluating all
combinations of the important options (while ran-
domizing all other options).

6. Frequently recalibrate the important options by
restarting the process since these effects can change
over time, depending on how rapidly the subject
system changes.

3.2 Screening Designs Background

The first step of reliable effects screening is to identify
options accounting for the most performance variation
across the system’s QA task space. We do this by executing
and analyzing formally designed experiments, called screen-
ing designs, which are described in Kolarik [11], Wu and
Hamada [30], or the NIST Engineering Statistics Handbook
(www.itl.nist.gov/div898/handbook/index.htm). Screen-
ing designs are highly economical plans for identifying
important low-order effects, i.e., first-order, second-order,
or third-order effects (where an nth-order effect is an effect
caused by the simultaneous interaction of n factors).

To better understand screening designs, consider a full
factorial (i.e., exhaustive) experimental design involving
k independent binary factors. The design’s run size (number
of experimental observations) is, therefore, 2k. Although
such designs allow all first-order through kth-order effects to
be computed, they quickly become computationally expen-
sive to run. Screening designs, in contrast, reduce costs by
observing only a carefully selected subset of a full factorial
design. The trade-off is that they cannot compute most
higher-order effects because the selection of observations

aliases the effects of some lower-order interactions with
some higher-order ones, i.e., it conflates certain high-order
and low-order effects.

Which effects are conflated depends on the design’s
resolution. In resolution R designs, no effects involving
i factors are aliased with effects involving less than R� i
factors. For instance, a resolution III design is useful to
evaluate “clear” (no two aliased together) first-order effects,
where all higher effects are negligible. Here all first-order
effects will be clear, but they may be aliased with second-
order or higher-order effects. This conflation is justified
only if the high-order effects are indeed negligible. If these
assumptions are patently unreasonable, then a higher
resolution may be needed.

In practice, statistical packages are used to compute
specific screening designs. We used the SAS/QC [1]
package in this work, but many other packages, such as
MINITAB and SPSS, are also applicable. These packages
will produce a screening design, assuming one can be
found, given the following application-specific information:
1) a list of options and their settings, 2) a maximum run size,
and 3) the design’s resolution.

Since we already build our QA task model graphically
using Skoll’s MDE tools (see Section 2), we can just use a
translator to convert it into the list of options and settings
expected by our statistical package. The second and third
items are intertwined and must be chosen by developers. In
particular, higher resolution designs will yield more
accurate estimates (assuming some higher-level effects
exist), but require more observations. It is also often
advisable to run more than the minimum number of
observations needed for a given resolution to improve
precision or to deal with noisy processes. Developers must
balance these competing forces.

3.3 Computing a Screening Design

To demonstrate these choices, consider a hypothetical
software system with four independent binary configura-
tion options, A through D, each with binary settings þ
and �. A full factorial design for this system involves 16 (24)
observations. We assume that our developers can only
afford to gather eight observations. With so few observa-
tions, there is no design with clear first-order and second-
order effects. Developers must therefore either allow more
observations or limit themselves to capturing only the four
first-order effects, i.e., the effect of each option by itself. We
assume they choose to stay with a run size of eight and to
use a resolution IV design.

Given these choices, the developers generate one
acceptable design using a statistical package. The design
(which appears in Table 1) is identified uniquely as a 24�1

IV

design, which means that the total number of options is

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 5

TABLE 1
24�1
IV Design (Binary Option Settings Are Encoded as (�) or (þ))

four, that they will observe a 1=2 (2�1 ¼ 1=2) fraction of the
full factorial design, and that the design is a resolution IV
screening design.

The design tool also outputs the aliasing structure
D ¼ ABC. We can see this aliasing in Table 1, where the
setting of option D is the product of the settings of options
A, B, and C (think of þ as 1 and � as �1). This dependence
explains why the effect of option D cannot be untangled
from the interaction effect of options A, B, and C.

3.4 Executing and Analyzing Screening Designs

After defining the screening design, developers will execute
it across the computing resources comprising the Skoll grid.
In our later feasibility studies, each experimental observa-
tion involves measuring a developer-supplied benchmark
program while the system runs in a particular configura-
tion. Our QA engineers use BGML to generate workload
and benchmark code. Once the data is collected, we analyze
it to calculate the effects. Since our screening designs are
balanced and orthogonal by construction (i.e., no bias in the
observed data), the effect calculations are simple. For binary
options (with settings � or þ), the effect of option A,
MEðAÞ, is

MEðAÞ ¼ zðA�Þ � zðAþÞ; ð1Þ

where zðA�Þ and zðAþÞ are the mean values of the
observed data over all runs where option A is (�) and
where option A is (þ), respectively. If required, second-
order effects can be calculated in a similar way. The
interaction effect of options A and B, INT ðA;BÞ is:

INT ðA;BÞ ¼ 1=2fMEðBjAþÞ �MEðBjA�Þg ð2Þ
¼ 1=2fMEðAjBþÞ �MEðAjB�Þg: ð3Þ

Here, MEðBjAþÞ is called the conditional effect of B at the
þ level of A. The effect of one factor (e.g., B) therefore
depends on the level of the other factor (e.g., A). Similar
equations exist for higher order effects and for designs with
nonbinary options. See Wu and Hamada [30] for further
details.

Once the effects are computed, developers will want to
determine which of them are important and which are not.
There are several ways to determine this, including using
standard hypothesis testing. We do not use formal hypoth-
esis tests primarily because they require strong assumptions
about the standard deviation of the experimental samples.
Instead, we display the effects graphically and let devel-
opers use their expert judgment to decide which effects they
consider important. While this approach has some down-
sides (see Section 4), even with traditional tests for statistical
significance, experimenters must still judge for themselves
whether a significant effect has any practical importance.

Our graphical analysis uses half-normal probability plots,
which show each option’s effect against their corresponding
coordinates on the half-normal probability scale. If j�j1 �
j�j2 � ::: � j�jI are the ordered set of effect estimations, the
half-normal plot then consists of the points

ð��1ð0:5þ 0:5½i� 0:5�=IÞ; j�jiÞ for i ¼ 1; :::; I; ð4Þ

where � is the cumulative distribution function of a
standard normal random variable.

The rationale behind half-normal plots is that unim-
portant options will have effects whose distribution is
normal and centered near 0. Important effects will also be
normally distributed, but with means different from 0.3

Options whose effects deviate substantially from 0 should
therefore be considered important. If no effects are im-
portant, the resulting plot will show a set of points on an
approximate line near y ¼ 0.

3.5 Conducting Supplementary Analysis

At this point, developers have a candidate set of important
options. One potential problem, however, is that we arrived
at these options by making the following assumptions:

1. The low-order effects identified as being important
really are, while the higher-order effects they are
aliased to are not.

2. Monitoring only low-order effects is sufficient to
produce reliable estimates.

Since these are only assumptions, it is important to check
them before proceeding since the reliability of our results
will be severely compromised if they do not hold. We
therefore validate these assumptions using two types of
follow-up experiments:

1. We first examine additional configurations to dis-
ambiguate any effects aliased to our purported low-
level important options.

2. We then examine additional configurations to look
for other higher-order effects.

In these follow-up experiments, we rely on another class
of efficient experimental designs called D-optimal designs
[22], which are, again, computer-aided designs. Given a
configuration space and a model the experimenter wishes
to fit, a D-optimal design uses search-based computer
algorithms (e.g., hill climbing or simulated annealing) to
select a set of configurations that satisfy a particular
optimality criterion. Unlike more common fractional
factorial designs, therefore, the size of D-optimal designs
need not be a perfect fraction of full factorial designs. D-
optimal designs are preferable to standard classical designs
when 1) the standard designs require more observations
than can be tested with available time and resources and
2) the configuration space is heavily constrained (i.e., when
not all the configurations are valid). Both factors are
frequently present in modern software systems. Full details
of D-optimal designs are beyond the scope of this paper
but can be found in books and articles (see Kolarik [11]
and Mitchell [22]).

Based on the results of this D-optimal design analysis,
developers may modify the set of important options. At this
point, developers have a working set of important options
that they can use to create a screening suite of configura-
tions to benchmark whenever the system changes.

4 FEASIBILITY STUDY

This section describes a feasibility study that assesses the
implementation cost and the effectiveness of the reliable

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

3. Since the effects are averages over numerous observations, the central
limit theorem guarantees normality.

effects screening process described in Section 3 on a suite of
large, performance-intensive software frameworks.

4.1 Experimental Design

Hypotheses. Our feasibility study explores the following
three hypotheses:

1. Our MDE-based Skoll environment cost-effectively
supports the definition, implementation, and execu-
tion of our reliable effects screening process de-
scribed in Section 3.

2. The screening designs used in the reliable effects
screening correctly identifies a small subset of
options whose effect on performance is important.

3. Exhaustively examining just the options identified
by the screening design gives performance data that
1) is representative of the system’s performance
across the entire configuration space, but less costly
to obtain and 2) is more representative than a
similarly sized random sample.

Subject applications. The experimental subject applica-
tions for this study were based on three open-source
software frameworks for performance-intensive systems:
ACE v5.4 + TAO v1.4 + CIAO v0.4, which can be
downloaded via www.dre.vanderbilt.edu. ACE provides
reusable C++ wrapper facades and framework components
that implements core concurrency and distribution patterns
[26] for distributed real-time and embedded (DRE) systems.
TAO is a highly configurable Real-time CORBA ORB built
atop ACE to meet the demanding QoS requirements of DRE
systems. CIAO extends TAO to support components, which
enables developers to declaratively provision QoS policies
end-to-end when assembling DRE systems.

ACE+TAO+CIAO are ideal subjects for our feasibility
study since they share many characteristics with other
highly configurable performance-intensive systems. For

example, they collectively have more than 2 million lines
of source code, functional regression tests, and performance
benchmarks contained in � 4;500 files that average more
than 300 CVS commits per week by dozens of developers
around the world. They also run on a wide range of OS
platforms, including all variants of Windows, most versions
of UNIX, and many real-time operating systems, such as
LynxOS and VxWorks.

Application scenario. Due to recent changes made to the
ACE message queuing strategy, the developers of
ACE+TAO+CIAO were concerned with measuring two
performance criteria: 1) the latency for each request and
2) total message throughput (events/second) between the
ACE+TAO+CIAO client and server. For this version of
ACE+TAO+CIAO, the developers identified 14 binary
runtime options they felt affected latency and throughput.
The entire configuration space therefore has 214 ¼ 16; 384
different configurations. To save space, we refer to these
options by their one letter indices, A-N (see Table 2 for more
details on the mapping of letters to options).

Using MDE tools to model an experiment scenario. To
ease experiment creation and generation, we used the Skoll
MDE tools to compose the experiment visually. In parti-
cular, we used BGML to generate the platform-specific
benchmarking code needed to evaluate the QoS of the
ACE+TAO+CIAO software framework configurations.
Fig. 3 shows how we used BGML to model the benchmark.

For the experiment, we modeled the operation ex-
changed between the client and server using BGML’s
operation element. We then associated this element with
BGML’s latency metric to compute the end-to-end measure-
ments for our experiments. The number of warmup
iterations and the data type exchanged between client and
server were all set as attributes to the operation and latency
elements provided by BGML. As shown in Fig. 3, BGML

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 7

TABLE 2
Some ACE+TAO Options

code generators generated the benchmarking code to
measure and capture the latency for our experiment.

Another step in designing our experiment involved
modeling the ACE+TAO+CIAO framework configurations.
We used the OCML MDE tool to ensure that the
configuration were both syntactically and semantically
valid, as shown in Fig. 4.

As shown in Fig. 4, OCML was used to enter the
ACE+TAO+CIAO configurations we wanted to measure.
OCML’s constraint checker first validated the configura-
tions we modeled, while the code generator produced the
framework configuration files.

Experimental process. Our experimental process used
Skoll’s MDE tools to implement the reliable effects screen-
ing process and evaluate our three hypotheses above. We
executed the reliable effects screening process across a
prototype Skoll grid of dual processor Xeon machines
running Red Hat 2.4.21 with 1 GB of memory in the real-
time scheduling class. The experimental tasks involved
running a benchmark application in a particular system
configuration, which evaluated performance for the appli-
cation scenario outlined above. The benchmark created an
ACE+TAO+CIAO client and server and then measured
message latency and overall throughput between the client
and the server.

In our experiment, the client sent 300K requests to the
server. After each request the client waited for a response
from the server and recorded the latency measure in
microseconds. At the end of 300K requests, the client

computed the throughput in terms of the number of
requests served per second. We then analyzed the resulting
data to evaluate our hypotheses. Section 8 describes the
limitations with our current experimental process.

4.2 The Full Data Set

To provide a baseline for evaluating our approach, we first

generated and analyzed performance data for all 16,000+

valid configurations of ACE+TAO+CIAO.4 We refer to

these configurations as the “full suite” and the performance

data as the “full data set.”
We examined the effect of each option and judged

whether they had important effects on performance. Fig. 5

plots the effect of each of the 14 ACE+TAO+CIAO options

on latency and throughput across the full data set. We see

that options B and J are clearly important, whereas options

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 3. Using BGML to generate benchmarking code.

4. We would not do this step in practice since it required about two days
of CPU time, which would be prohibitively expensive in most production
software development environments with scores of such experiments
running daily.

Fig. 4. Using OCML to capture experiment configuration.

Fig. 5. Option effects based on full data. (a) Half-normal probability plot

for latency (full-factorial). (b) Half-normal probability plot for throughput

(full-factorial).

I, C, and F are arguably important. The remaining options
are not important.

4.3 Evaluating Screening Designs

We now walk through the steps involved in conducting the
reliable effects screening process to see whether the
remotely executed screening designs can correctly identify
the same important options discovered in the full data set.

To perform these steps, we calculated and executed
several different resolution IV screening designs of differing
run sizes. The specifications for these designs appear in the
Appendix. The first set of designs examined all 14 options
using increasingly larger run sizes (32, 64, or 128 observa-
tions) to identify only important first-order effects. We refer
to these screening designs as Scr32, Scr64, and Scr128,
respectively. We also calculated and executed a second set
of designs that attempted to capture important first- and
second-order effects.

Fig. 6 shows the half-normal probability plots obtained
from our first set of screening designs. The figures show

that all screening designs correctly identify options B and J

as being important. Scr128 also identifies the possibly
important effect of options C, I, and F . Due to space
considerations in the paper, we only present data on latency
(throughput analysis showed identical results unless other-
wise stated).

4.4 Higher-Order Effects

The resolution IV design only calculates clear first-order
effects, which appears to work well for our subject
application and scenario, but might not be sufficient for
other situations. Fig. 7 shows the effects of all pairs of
options based on the full data set and the same effects
captured via a resolution VI screening design using
2,048 observations. From the figure we see several things:
1) the screening design correctly identifies the five most
important pairwise interactions at one-eighth the cost of
exhaustive testing and 2) the most important interaction
effects involve only options that are already considered
important by themselves, which supports the belief that

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 9

Fig. 6. (a) Half-normal probability plot for latency (resoultion IV, 32-run). (b) Half-normal probability plot for latency (resolution IV, 32-run). (c) Half-

normal probability plot for latency (resolution IV, 128-run).

Fig. 7. Pairwise effects based on full and screening suites. (a) Half-normal probability plot for latency (full-factorial). (b) Half-normal probability plot for

latency (resolution VI, 2,048-run).

monitoring only first-order effects will be sufficient for our
subject frameworks.

4.5 Validating Basic Assumptions

To compute the important options, we used a resolution IV
screening design, which according to the definition given in
Section 3, means that 1) we aliased some first-order effects
with some third-order or higher effects and some second-
order effects with other second-order or higher effects, and
2) we assume that third-order or higher effects are
negligible. If these assumptions do not hold, however,
performance estimations will be incorrect. Therefore, at this
stage we perform two further analyses to validate these
assumptions. In the remainder of this section, we analyze
the data from our 214�7

IV , 128-run experiment. We did this
experiment because it was the only one where we identified
five important options rather than two. The analysis
presented in this section is readily applicable to any
screening experiment.

4.5.1 Breaking Aliases

In the 214�7
IV , 128-run experiment, we identified options B

and J as being clearly important and options C, F , and I as
being arguably important (see Table 2 for the list of
options). In that design, some first-order effects were
aliased with some third–order or higher effects. Table 3
shows the aliasing structure for the important options up to

fourth-order effects. Note that the complete aliasing
structure for the important options contains a total of
640 aliases. Consider the alias B ¼ ACH for the important
option B; the effect of option B is aliased with the
interaction effect of options A, C, and H. Since the
experimental analysis cannot distinguish B from ACH,
there is an ambiguity whether B or ACH is really
important. If ACH, not B, is the important effect, then our
performance estimations would obviously suffer, as would
the rest of the aliases. Ambiguities involving aliased effects
for the important options should therefore be resolved to
ensure the reliability of the performance estimations. To
resolve the ambiguity in this experiment, we first formally
modeled the important effects and their 640 aliases by the
following linear formula:

y ¼ �0 þ �BxB þ �JxJ þ �CxC þ �FxF þ �IxI
þ �ACHxAxCxH þ �ixi; 8i 2 S � fACHg;

ð5Þ

where S is the set of all 640 aliased effects, �0 is the intercept
term, xB ¼ �1; 1 according to the level of option B (the
definitions for the other xs are similar), �s are the model
coefficients, etc.

Note that since the first-order effects other than B, J ,
C, F , and I are negligible (Section 4.3), we excluded
them from the model. We then augmented our 128-run
screening experiment using the D-optimal design ap-
proach. This search-based technique determined an
appropriate design, which required benchmarking an
additional 2,328 configurations. We then collected the
results and analyzed them together with the results of the
original screening experiments.

Fig. 8a plots the Type III sum of squares for the factorial
effects. In this figure, the effects are ordered in descending
order. Due to space limitations, only the top 10 effects are
given. The higher the sum of squares, the more important
the effects are.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

TABLE 3
Partial Aliasing Structure for the Important Option in the 214�7

IV ,
128-Run Design

Fig. 8. (a) Complete dealiasing experiment and (b) up to and including third-order effects dealiasing experiment.

As can be seen from this figure, options B, J , C, F , and I
are important, while the higher-order interactions to which
they are aliased are not, i.e., the low-order effect explains
roughly 10 times the variance of its higher-order alias.
Further statistical analysis also showed that these options
are statistically significant at 99.99 percent confidence level
or better.

Although this analysis confirmed our earlier results, it
required benchmarking an additional 2,000+ configuration,
which in large-scale systems might too expensive. To
further reduce costs, instead of a complete dealiasing of
important options, one might consider dealiasing them up
to a certain level of order (e.g., up to third–order or
fourth-order effects) or dealiasing only suspected aliases
based on developer’s domain knowledge. To see how
much savings partial dealiasing might yield, we repeated
the evaluation process by dealiasing the important
options only up to and including third–order effects. This
required us to benchmark only an additional 64 config-
urations. As can be seen in Fig. 8b, in this particular
example, we were able to reach the same conclusions as
the complete dealiasing experiment.

4.5.2 Checking for Higher-Order Effects

As described earlier in Section 4.5, our second assumption
was that monitoring only first-order effects was sufficient
for our subject frameworks. Below, we investigate the
validity of that assumption. Without loss of generality, we
will look for important effects up to and including third–
order effects. Developers can choose up to which level to
examine, keeping in mind that as the level increases, the
number of observations needed converges to exhaustive
testing.

Just as in Section 4.5.1, we augmented the 214�7
IV , 128-run

experiment using the D-optimality criterion. This time,
however, our generalized linear model consisted of all the
first-order, second-order, and third–order effects. This
design required only an additional 381 configurations.
Fig. 9 shows the results of this study. We identified the top
six effects: B, J , F , I, BJ , and C, as statistically significant at
a 99.9 percent confidence level or better. Among these
important options, we have only one interaction effect: BJ .
Since this interaction involves only options that are already
considered important by themselves, we conclude that
monitoring only first-order effects was sufficient for our
subject frameworks.

The results presented above suggest that screening
designs can detect important options at a small fraction of
the cost of exhaustive testing and that techniques exist to
economically check key assumptions underlying the tech-
nique. The smaller the effect, however, the larger the run
size needed to identify it. Developers should therefore be
cautious when dealing with options that appear to have an
important but relatively small effect, as they may actually
be seeing normal variation (Scr32 and Scr64 both have
examples of this).

4.6 Estimating Performance with Screening Suites

Our experiments thus far have identified a small set of
important options. We now evaluate whether benchmark-
ing all combinations of these most important options can be

used to estimate performance quickly across the entire

configuration space we are studying. The estimates are

generated by examining all combinations of the most

important options while randomizing the settings of the

unimportant options.
In Section 4.3, we determined that options B and J were

clearly important and that optionsC, I, and F were arguably

important. Developers therefore made the estimates based

on benchmarking either 4 (all combinations of optionsB and

J) or 32 (all combinations of options B, J , C, I, and F)

configurations. We refer to the set of 4 configurations as the

“top-2 screening suite” and the set of 32 configurations as

the “top-5 screening suite.”
Fig. 10 shows the distributions of latency for the full suite

versus the top-2 screening suite and for the full suite versus

the top-5 screening suite. The distributions of the top-2 and

top-5 screening suites closely track the overall performance

data. Such plots, called quantile-quantile (Q-Q) plots, are

used to see how well two data distributions correlate by

plotting the quantiles of the first data set against the

quantiles of the second data set. If the two sets share the

same distribution, the points should fall approximately on

the x ¼ y line.
We also performed Mann-Whitney non-parametric tests

[3] to determine whether each set of screening data (top-2

and top-5 suites) appears to come from the same distribu-

tion as the full data. In both cases, we were unable to reject

the null hypothesis that the top-2 and top-5 screening suite

data come from the same distribution as the full suite data.

These results suggest that the screening suites computed at

Step 4 of the reliable effects screening process (Section 3)

can be used to estimate overall performance in-house at

extremely low time/effort, i.e., running 4 benchmarks takes

40 seconds, running 32 takes 5 minutes, and running

16,000+ takes two days of CPU time.

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 11

Fig. 9. Looking for higher-order effects up to and including third-order

effects.

4.7 Screening Suites versus Random Sampling

Another question we addressed is whether our reliable

effects screening process was better than other low-cost

estimation processes. In particular, we compared the

latency distributions of several random samples of four

configurations to that of the top-2 screening suite found by

our process. The results of this test are summarized in

Fig. 11. These box plots show the distributions of latency

metric obtained from exhaustive testing, top-2 screening

suite testing, and random testing. These graphs suggest the

obvious weakness of random sampling, i.e., while sampling

distributions tend toward the overall distribution as the

sample size grows, individual small samples may show

wildly different distributions.

4.8 Dealing with Evolving Systems

The primary goal of reliable effects screening is to detect

performance degradations in evolving systems quickly. So

far, we have not addressed whether—or for how long—

screening suites remain useful as a system evolves. To
better understand this issue, we measured latency on the
top-2 screening suite, once a day, using CVS snapshots of
ACE+TAO+CIAO. We used historical snapshots for two
reasons: 1) the versions are from the time period for which
we already calculated the effects and 2) developer testing
and in-the-field usage data have already been collected and
analyzed for this time period (see www.dre.vanderbilt.
edu/Stats), allowing us to assess the system’s performance
without having to test all configurations for each system
change exhaustively.

Fig. 12 depicts the data distributions for the top-2
screening suites broken down by date (higher latency
measures are worse).

We see that the distributions were stable the first two
days, crept up somewhat for days 3 through 5, and then
shot up day 6 (14 December 2003). They were brought back
under control for several more days, but then moved up
again on the last day. Developer records and problem

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 10. Q-Q plots for latency for the top-2 and top-5 screening suites.

Fig. 11. Latency distributions from full, top-2, and random suites. Fig. 12. Performance estimates across time.

reports indicate that problems were not noticed until
14 December 2003.

Another interesting finding was that the limited in-house
testing conducted by the ACE+TAO+CIAO developers
measured a performance drop of only around 5 percent
on 14 December 2003. In contrast, our screening process
showed a much more dramatic drop—closer to 50 percent.
Further analysis by ACE+TAO+CIAO developers showed
that their unsystematic testing failed to evaluate configura-
tions where the degradation was much more pronounced.

Taken together, our results suggest that benchmarking
only all combinations of the important options identified in
steps 1 through 4 of the reliable effects screening process
gives much the same information as benchmarking the entire
configuration space, but at a substantially reduced cost.

5 DISCUSSION OF FEASIBILITY STUDY

5.1 Threats to Validity

All empirical studies suffer from threats to their internal
and external validity. For the experiments described in
Section 4, we were primarily concerned with threats to
external validity since they limit our ability to generalize the
results of our experiment to industrial practice. One
potential threat is that several steps in our process require
human decision making and input. For example, devel-
opers must provide reasonable benchmarking applications
and must also decide which effects they consider important.

Another possible threat to external validity concerns the
representativeness of the ACE+TAO+CIAO subject applica-
tions, which are an integrated suite of software (albeit a
very large suite with more than 2 million lines of code). A
related issue is that we have focused on the subset of the
entire configuration space of ACE+TAO+CIAO that only
has binary options and has no interoption constraints.
While these issues pose no theoretical problems (screening
designs can be created for much more complex situations),
there is clearly a need to apply reliable effects screening to
larger and richer configuration spaces in future work to
understand how well the process scales.

Another potential threat is that for the time period we
studied, the ACE+TAO+CIAO subject frameworks were in
a fairly stable phase. In particular, changes were made
mostly to fix bugs and reduce memory footprint, but the
software’s core functionality was relatively stable. For time
periods where the core software functionality is in greater
flux, e.g., in response to new requirements from sponsors or
efforts to port the software to new and different platforms,
it may be harder to distinguish significant performance
degradation from normal variation.

5.2 Hypotheses

Despite the limitations described in Section 5.1, we
believe the study presented in Section 4 supports our
basic hypotheses presented in Section 4.1. We reached
this conclusion by noting that our study suggests that the
1) MDE-based Skoll system allows QA engineers to
quickly construct complex DCQA processes, 2) reliable
effects screening process provides developers with fast,
cheap and reliable estimates of performance across a
system’s entire configuration space, and 3) developers of

ACE+TAO+CIAO believe the technique provides them
with important development information.

Benefits from applying our MDE tools. Our MDE tools
helped improve the productivity of QA engineers by
allowing them to create QA task models and to compose
benchmarking experiments visually rather than wrestling
with low-level formats and source code. These tools thus
resolve tedious and error-prone accidental complexities
associated with writing correct code by autogenerating
them from higher level models. For example, Table 4
summarizes the BGML code generation metrics for a
particular configuration.

This table shows how BGML automatically generates 8 of
10 required files that account for 88 percent of the code
required for the experiment. Since these files must capture
specific information for each configuration, these tools imply
large improvements in productivity for performing bench-
marking QA tasks. Similarly, OCML enabled us to generate
both syntactically and semantically correct middleware
configurations, thereby eliminating accidental complexity
in generating middleware configurations.

Reliable effects screening. Our experiments showed
that the reliable effects screening process was fast, cheap,
and effective. We came to this conclusion by noting that:

1. Screening designs can correctly identify important
options (Section 4.3, Section 4.4, and Section 4.5).

2. These options can be used to produce reliable
estimates of performance quickly across the entire
configuration space at a fraction of the cost of
exhaustive testing (Section 4.6).

3. The alternative approach of random or ad hoc sam-
pling can give highly unreliable results (Section 4.7).

4. The reliable effects screening process detected per-
formance degradation on a large and evolving
software system (Section 4.8.).

5. The screening suite estimates were significantly
more precise than the ad hoc process currently used
by the developers of ACE+TAO+CIAO (Section 4.8).

User acceptance. Informally, we found that ACE+
TAO+CIAO developers have been quite happy with the
results of our experiments described in Section 4. As we
move toward fully integrating reliable effects screening into
their development processes, they continue to find new
ways in which this information can help them improve their
development processes, including:

Using option importance to prioritize work. Our
quantitative results showed that options L, M, and N did
not have a strong effect on latency and throughput. These
findings surprised some ACE+TAO+CIAO developers,
who had spent considerable time optimizing code affected
by these options. Further investigation showed that the

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 13

TABLE 4
Generated Code Summary for BGML

options can have a somewhat larger effect, but only in very
specific circumstances. The developers now see reliable
effects screening as a means to better understand how
widespread the effects of different pending changes may be.

Using changes in option importance to detect bugs. Prior
to the release of an ACE+TAO+CIAO beta, developers noted
a significant (� 25 percent) drop in performance. Since
reliable effects screening had not yet been fully integrated
into their development processes, the ACE+TAO+CIAO
developers fell back on traditional ad hoc QA and debug-
ging techniques. When they failed to identify the problem’s
cause, they froze their CVS repository and used an
exhaustive QA approach to painstakingly narrow down
the change that had degraded performance.

Ultimately, they found the change that caused the
degradation was a feature addition that enabled
TAO+CIAO to support the IPv6 protocol. Specifically, they
observed that a modification to TAO’s connection handler
had degraded performance. Interestingly, this code is
controlled by option B. In retrospect, a reliable effects
screening would have shown a dramatic change in the
importance of optionB, thus enabling the ACE+TAO+CIAO
developers to localize the problem quickly, i.e., because one
setting of option B triggered the buggy code, option B’s
effect would have been 2.5 times greater after the change
than before it. Based on this experience, the developers now
see added value in frequently recalibrating the important
options to alert them to changes in option importance.

6 USAGE GUIDELINES

This section focuses on providing some guidelines on how to
use the Skoll-based reliable effects screening process. We
examine how to select an appropriate resolution and size for
the screening designs, how to identify the important options,
and how to validate the basic assumptions in identifying the
important options. We also summarize on our experience in
applying this process on the ACE+TAO+CIAO software
frameworks.

Step 1: Choose the resolution. Leverage a priori knowl-
edge of the software being tested, if it is available, to decide
the resolution of the screening experiment, i.e., which high-
order effects are considered important versus negligible. If
no or limited a priori information is available, use screening
experiments in an iterative manner (e.g., going from lower
resolutions to higher ones) to obtain this information.
Section 4.1 illustrated how we did this for the ACE+TAO+
CIAO software frameworks, where we selected 14 specific
options to explore based on prior knowledge of a recent
change.

Step 2: Choose the size. Depending on available
resources and how fast the underlying software changes,
determine the maximum number of observations allowed
in the screening experiment. Note that the resolution of the
experiment chosen in Step 1 may dictate the minimum size
of the experiment. If this size is not feasible, consider
lowering the resolution of the experiment by carefully
choosing the aliasing structure so that no potentially
important higher-order effects are aliased with lower-order
ones. Sections 4.3 and 4.4 illustrate how we did this for the
ACE+TAO+CIAO software frameworks, where we created

three resolution IV designs with run sizes of 32, 64, and 128,
and where we created one resolution VI design with a run
size of 2,048.

Step 3: Identify the important options. After the
screening design is computed, conducted, and analyzed,
use the half-normal probability plots described in Sec-
tion 4.3 to identify important options. If no effects are
important, these plots will show a set of points on a rough
line near y ¼ 0. Any substantial deviations from this line
indicate important options. Depending on the benchmark-
ing test and the desired precision of the performance
estimates, decide how large effects must be to warrant
attention. Section 4.3 shows how we did this for the
ACE+TAO+CIAO software frameworks, where we identi-
fied two important and three arguably important options.

Step 4: Validate the basic assumptions. If needed,
validate the assumptions imposed by the choice of the
resolution. Use D-optimal designs described in Section 4.5
to augment the screening experiment to 1) dealias the
important options and 2) identify remaining higher-order
effects. Section 4.5 illustrated how we did this for the
ACE+TAO+CIAO software frameworks and showed that
our basic assumptions helped and that our initial analysis
was therefore reliable.

Step 5: Estimate performance after changing software.
Focusing on important options allows developers to reduce
the effective configuration space significantly by evaluating
all combinations of the important options, while randomiz-
ing the rest. Section 4.5 illustrated how we did this for the
ACE+TAO+CIAO software frameworks and showed that
our approach gave reliable estimates of performance across
the entire configuration space using only 40 seconds (for
top-2 suite) or 2 minutes (for top-5 suite) of CPU time.

Step 6: Frequently recalibrate important options. The
importance of different options may change as software in a
system changes. We therefore recommend frequent recali-
bration of the important effects. Although our feasibility
study in Section 4 does not show the need for recalibration,
our experience applying reliable effects screening to
ACE+TAO+CIAO over time indicates that recalibration is
essential.

7 RELATED WORK

This section compares our work on reliable effects screening
and performance evaluation techniques in Skoll with other
related research efforts, including

1. applying design-of-experiments (DOE) testing to soft-
ware engineering,

2. large-scale testbed environments for conducting
experiments using heterogeneous hardware, OS,
and compiler platforms,

3. evaluating the performance of layered software
systems,

4. feedback-based optimization techniques that use
empirical data and mathematical models to identify
performance bottlenecks.

Applying DOE to software engineering. As far as we
know, we are the first to use screening designs to assess
software performance. The use of DOE theory within

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

software engineering has focused mostly on interaction
testing, largely to compute and sometimes to generate
minimal test suites that cover all combinations of specified
program inputs. Mandl [19] first used orthogonal arrays, a
special type of covering array in which all t-sets occur
exactly once, to test enumerated types in ADA compiler
software. This idea was extended by Brownlie et al. [5], who
developed the orthogonal array testing system (OATS).
They provided empirical results to suggest that the use of
orthogonal arrays is effective in fault detection and
provides good code coverage.

Dalal et al. [8] argue that the testing of all pairwise
interactions in a software system finds a large percentage of
the existing faults. In further work, Burr and Young [6],
Dunietz et al. [9], and Kuhn and Reilly et al. [15] provide
more empirical results to show that this type of test coverage
is effective. These studies focus on finding unknown faults in
already tested systems and equate covering arrays with code
coverage metrics. Yilmaz et al. [31] used covering arrays as a
configuration space sampling technique to support the
characterization of failure-inducing option settings.

Large-scale benchmarking testbeds. EMULab [29] is a
testbed at the University of Utah that provides an
environment for experimental evaluation of networked
systems. EMULab provides tools that researchers can use
to configure the topology of their experiments, e.g., by
modeling the underlying OS, hardware, and communica-
tion links. This topology is then mapped to � 250 physical
nodes that can be accessed via the Internet [24]. The
EMULab tools can generate script files that use the
Network Simulator (NS) (www.isi.edu/nsnam/ns) syntax
and semantics to run the experiment.

The Skoll infrastructure provides a superset of EMULab
that is not limited by resources of a particular testbed but,
instead, can leverage the vast end-user computer resources
in the Skoll grid. Moreover, the Skoll’s MDE-based tools
described in Section 2 can generate NS scripts to integrate
our benchmarks with experiments in EMULab.

Feedback-driven optimization techniques. Traditional
feedback-driven optimization techniques can be divided
into online, offline, and hybrid analysis. Offline analysis has
commonly been applied to program analysis to improve
compiler-generated code. For example, the ATLAS [34]
numerical algebra library uses an empirical optimization
engine to decide the values of optimization parameters by
generating different program versions that are run on
various hardware/OS platforms. The output from these
runs are used to select parameter values that provide the
best performance. Mathematical models are also used to
estimate optimization parameters based on the underlying
architecture, though empirical data is not fed into the
models to refine it.

Like ATLAS, Skoll’s MDE tools use an optimization
engine to configure/customize software parameters in
accordance to available OS platform characteristics (such
as the type of threading, synchronization, and demultiplex-
ing mechanisms) and characteristics of the underlying
hardware (such as the type of CPU, amount of main
memory, and size of cache). This information can be used to
select optimal configurations ahead of time that maximize

QoS behavior. Online analysis is commonly used for
feedback control to adapt QoS behaviors based on dynamic
measures. An example of online analysis is the ControlWare
middleware [35], which uses feedback control theory by
analyzing the architecture and modeling it as a feedback
control loop. Actuators and sensors then monitor the
system and affect server resource allocation. Real-time
scheduling based on feedback loops has also been applied
to Real-time CORBA middleware [18] to automatically
adjust the rate of remote operation invocation transparently
to an application.

Though online analysis enables systems to adapt at
runtime, the optimal set of QoS features are not determined
at system initialization. Using the MDE tools, QoS behavior
and performance bottlenecks on various hardware and
software configurations can be determined offline and then
fed into the models to generate optimal QoS characteristics
at model construction time. Moreover, dynamic adaptation
can incur considerable overhead from system monitoring
and adaptation, which may be unacceptable for perfor-
mance-intensive DRE systems. Hybrid analysis combines
aspects of offline and online analysis. For example, the
continuous compilation strategy [7] constantly monitors
and improves application code using code optimization
techniques. These optimizations are applied in four phases
including

1. static analysis, in which information from training
runs is used to estimate and predict optimization
plans,

2. dynamic optimization, in which monitors apply code
transformations at run-time to adapt program
behavior,

3. offline adaptation, in which optimization plans are
actually improved using actual execution, and

4. recompilation, where the optimization plans are
regenerated.

Skoll’s MDE-based strategy enhances conventional hy-
brid analysis by tabulating platform-specific and platform-
independent information separately using the Skoll frame-
work. In particular, Skoll does not incur the overhead of
system monitoring since behavior does not change at run-
time. New platform-specific information obtained can be
fed back into the models to optimize QoS measures.

Generative Benchmarking Techniques. There have
been several initiatives that use generative techniques
similar to our approach for generating test-cases and
benchmarking for performance evaluation. The ForeSight
[17] tool uses empirical benchmarking engine to capture
QoS information for COTS based component middleware
system. The results are used to build mathematical models
to predict performance. This is achieved using a three-
pronged approach of 1) create a performance profile of how
components in a middleware affect performance, 2) con-
struct a reasoning framework to understand architectural
trade-offs, i.e., know how different QoS attributes interact
with one another and 3) feed this configuration information
into generic performance models to predict the configura-
tion settings required to maximize performance.

The SoftArch/MTE [10] tool provides a framework for
system architects to provide higher-level abstraction of the

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 15

system specifying system characteristics such as middle-
ware, database technology, and client requests. The tool
then generates an implementation of the system along with
the performance tests that measure system characteristics.
These results are then displayed back, i.e., annotated in the
high-level diagrams, using tools such as Microsoft Excel,
which allows architects to refine the design for system
deployment.

Our MDE approach closely relates to the aforementioned
approaches. Both the ForeSight and SoftArch tools, how-
ever, lack DCQA environments to help capture QoS
variations accurately on a range of varied hardware, OS,
and compiler platforms. Rather than using generic mathe-
matical models to predict performance, MDE tools use a
feedback-driven approach [13], wherein the DCQA envir-
onment is used to empirically evaluate the QoS character-
istics offline. This information can then be used to provide
QA engineers with accurate system information. Moreover,
platform-specific and application-specific optimization
techniques [12] can then be applied to maximize QoS
characteristics of the system.

8 CONCLUDING REMARKS

This paper presents a new distributed continuous quality

assurance (DCQA) process called “reliable effects screening”
that uses in-house and in-the-field resources to efficiently
and reliably detect performance degradation in perfor-
mance-intensive systems that have large configuration
spaces. The novelty of our approach stems from its
application of statistical quality control techniques to
efficiently identify a subset of system configurations that
accurately represents the performance of the entire config-
uration space. Benchmarking this subset after a change
provides a reliable estimate of the distribution of perfor-
mance across all configurations. Unexpected changes in this
distribution signal unintended side effects that must be
examined further.

To evaluate the reliable effects screening process, we
integrated it with the Skoll DCQA environment and applied it
to three large software projects (ACE, TAO, and CIAO) using
a grid of computing resources managed by the Skoll DCQA
environment. Skoll’s reliable effects screening process is also
supported by model-driven engineering (MDE) tools that
control and manage its execution across a grid of in-house
and in-the-field computing resources. The results of our
experiments in this environment indicated that:

. The reliable effects screening process helped devel-
opers detect and understand performance bottle-
necks across large configuration spaces.

. The ACE+TAO+CIAO developers used the informa-
tion provided by this process as a scalable defect
detection aid, i.e., when the important options
change unexpectedly (at recalibration time), devel-
opers reexamined the frameworks to rapidly identi-
fy possible problems with software updates.

. ACE+TAO+CIAO developers also used information
provided by the reliable effects screening process to
understand and arbitrate disputes about subtle

changes in framework and application performance
characteristics.

In conclusion, we believe that this line of research is
novel and fruitful, though much R&D remains to be done.
We are therefore continuing to develop enhanced MDE-
based Skoll capabilities and use them to create and validate
more sophisticated DCQA processes that overcome the
limitations and threats to external validity described in
Section 5. In particular, we are exploring the connection
between design-of-experiments theory and the QA of
other software systems with large software configuration
spaces. We are also incorporating the tools in the Skoll
environment and the reliable effects screening process
into open-source software repositories, such as ESCHER
(www.escherinstitute.org). Finally, we are conducting a
much larger case study using Skoll and reliable effect
screening to orchestrate the ACE+TAO+CIAO daily build
and regression test process with more than 200 machines
contributed by users and developers worldwide, as shown
on our online DCQA scoreboard at www.dre.vanderbilt.
edu/scoreboard.

APPENDIX

The screening designs used in Section 4.3 were calculated
using the SAS statistical package (www.sas.com).
Scr32 is a 214�9

IV with design generators F ¼ ABC,
G ¼ ABD, H ¼ ACD, I ¼ BCD, J ¼ ABE, K ¼ ACE,
L ¼ BCE, M ¼ ADE, N ¼ BDE.
Scr64 is a 214�8

IV with design generators G ¼ ABC,
H ¼ ABD, I ¼ ABE, J ¼ ACDE, K ¼ ABF , L ¼ ACDF ,
M ¼ ACEF , N ¼ ADEF .
Scr128 is a 214�7

IV with design generators H ¼ ABC,
I ¼ ABDE, J ¼ ABDF , K ¼ ACEF , L ¼ ACDG, M ¼
ABEFG, N ¼ BCDEFG.

The screening designs used in Section 4.4 were calcu-
lated using the SAS statistical package (www.sas.com).

They are 214�3
V I (2,048-run) designs with design gen-

erators L ¼ ABCDEFGHIJK, M ¼ EFGHIJK, and N ¼
CDGHIJK.

ACKNOWLEDGMENTS

This work was done when Balachandran Natarajan was
with the Department of Electrical Engineering and Com-
puter Science at Venderbilt University. This material is
based on work supported by the US National Science
Foundation under NSF grants ITR CCR-0312859, CCF-
0447864, CCR-0205265, and CCR-0098158, as well as
funding from BBN, Cisco, the US Defense Advanced
Research Projects Agency, Lockheed Martin Advanced
Technology Lab and Advanced Technology Center, ONR,
Qualcomm, Raytheon, and Siemens. The authors thank the
anonymous reviewers for their comments that helped
improve this paper.

REFERENCES

[1] SAS Institute, www. sas. com/.
[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S.

Neema, “Developing Applications Using Model-Driven Design
Environments,” Computer, vol. 39, no. 2, pp. 33-40 2006.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

[3] G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experi-
menters, John Wiley & Sons, 1978.

[4] L. Breiman, J. Freidman, R. Olshen, and C. Stone, Classification and
Regression Trees. Wadsworth, 1984.

[5] R. Brownlie, J. Prowse, and M.S. Padke, “Robust Testing of AT&T
PMX/StarMAIL using OATS,” AT&T Technical J., vol. 71, no. 3,
pp. 41-47, 1992.

[6] K. Burr and W. Young, “Combinatorial Test Techniques: Table-
Based Automation, Test Generation and Code Coverage,” Proc.
Int’l Conf. Software Testing Analysis & Rev., 1998.

[7] B. Childers, J. Davidson, and M. Soffa, “Continuous Compilation:
A New Approach to Aggressive and Adaptive Code Transforma-
tion,” Proc. Int’l Parallel and Distributed Processing Symp., Apr. 2003.

[8] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C.
Patton, and B.M. Horowitz, “Model-Based Testing in Practice,”
Proc. Int’l Conf. Software Eng. (ICSE), pp. 285-294, 1999.

[9] I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. Mallows, and A.
Iannino, “Applying Design of Experiments to Software Testing,”
Proc. Int’l Conf. Software Eng. (ICSE ’97), pp. 205-215, 1997.

[10] J. Grundy, Y. Cai, and A. Liu, “Generation of Distributed System
Test-beds from High-level Software Architecture Description,”
16th Int’l Conf. Automated Software Eng., Sept. 2001.

[11] W. Kolarik, Creating Quality: Systems, Concepts, Strategies and Tools.
McGraw-Hill Education, 1995.

[12] A.S. Krishna, A. Gokhale, D.C. Schmidt, V.P. Ranganath, and J.
Hatcliff, “Model-Driven Middleware Specialization Techniques
for Software Product-Line Architectures in Distributed Real-time
and Embedded Systems,” Proc. MODELS Workshop MDD for
Software Product-Lines, Oct. 2005.

[13] A.S. Krishna, D.C. Schmidt, A. Porter, A. Memon, and D. Sevilla-
Ruiz, “Improving the Quality of Performance-intensive Software
via Model-integrated Distributed Continuous Quality Assurance,”
Proc. Eighth Int’l Conf. Software Reuse, 2004.

[14] A.S. Krishna, N. Wang, B. Natarajan, A. Gokhale, D.C. Schmidt,
and G. Thaker, “CCMPerf: A Benchmarking Tool for CORBA
Component Model Implementations,” Proc. 10th Real-Time Tech-
nology and Application Symp. (RTAS ’04), May 2004.

[15] D. Kuhn and M. Reilly, “An Investigation of the Applicability of
Design of Experiments to Software Testing,” Proc. 27th Ann. NASA
Goddard/IEEE Software Eng. Workshop, pp. 91-95, 2002.

[16] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J.
Sprinkle, and G. Karsai, “Composing Domain-Specific Design
Environments,” Computer pp. 44-51, Nov. 2001.

[17] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen, “Designing a Test
Suite for Empirically-Based Middleware Performance Prediction,”
Proc. 40th Int’l Conf. Technology of Object-Oriented Languages and
Systems, Aug. 2002.

[18] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, “Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms,”
Real-Time Systems J., vol. 23, nos. 1-2, pp. 85-126, July 2002.

[19] R. Mandl, “Orthogonal Latin Squares: An Application of Experi-
ment Design to Compiler Testing,” Comm. ACM, vol. 28, no. 10,
pp. 1054-1058, 1985.

[20] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D.C. Schmidt, and
B. Natarajan, “Skoll: Distributed Continuous Quality Assurance,”
Proc. 26th IEEE/ACM Int’l Conf. Software Eng., May 2004.

[21] A.M. Memon, M.E. Pollack, and M.L. Soffa, “Hierarchical GUI
Test Case Generation Using Automated Planning,” IEEE Trans.
Software Eng., vol. 27, no. 2, pp. 144-155, Feb. 2001.

[22] T. Mitchell, “An Algorithm for the Construction of the ‘D-
Optimal’ Experimental Designs,” Technometrics, vol. 16, no. 2,
pp. 203-210, 1974.

[23] D.C. Montgomery, Introduction to Statistical Quality Control, third
ed. John Wiley & Sons, 1996.

[24] R. Ricci, C. Alfred, and J. Lepreau, “A Solver for the Network
Testbed Mapping Problem,” SIGCOMM Computer Comm. Rev.,
vol. 33, no. 2, pp. 30-44, Apr. 2003.

[25] D.C. Schmidt, “Model-Driven Engineering,” Computer, vol. 39,
no. 2, pp. 25-31, 2006.

[26] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, vol. 2. John Wiley & Sons, 2000.

[27] J.W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.
[28] E. Turkay, A. Gokhale, and B. Natarajan, “Addressing the

Middleware Configuration Challenges Using Model-Based Tech-
niques,” Proc. 42nd Ann. Southeast Conf., Apr. 2004.

[29] B. White et al., “An Integrated Experimental Environment for
Distributed Systems and Networks,” Proc. Fifth Symp. Operating
Systems Design and Implementation, pp. 255-270, Dec. 2002.

[30] C.F.J. Wu and M. Hamada, Experiments: Planning, Analysis, and
Parameter Design Optimization. Wiley, 2000.

[31] C. Yilmaz, M. Cohen, and A. Porter, “Covering Arrays for
Efficient Fault Characterization in Complex Configuration Spaces,
Proc. Int’l Symp. Software Testing and Analysis (ISSTA), pp. 45-54,
2004.

[32] C. Yilmaz, M.B. Cohen, and A. Porter, “Covering Arrays for
Efficient Fault Characterization in Complex Configuration
Spaces,” IEEE Trans. Software Eng., vol. 31, no. 1 pp. 20-34, Jan.
2006.

[33] C. Yilmaz, A.S. Krishna, A. Memon, A. Porter, D.C. Schmidt, A.
Gokhale, and B. Natarajan, “Main Effects Screening: A Distributed
Continuous Quality Assurance Process for Monitoring Perfor-
mance Degradation in Evolving Software Systems,” Proc. 27th Int’l
Conf. Software Eng. (ICSE ’05), pp. 293-302, 2005.

[34] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D.
Padua, K. Pingali, P. Stodghill, and P. Wu, “A Comparison of
Empirical and Model-Driven Optimization,” Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation, June 2003.

[35] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic, “Controlware: A
Middleware Architecture for Feedback Control of Software
Performance,” Proc. Int’l Conf. Distributed Systems, July 2002.

Cemal Yilmaz received the BS and MS degrees
in computer engineering and Information
Science from Bilkent University, Ankara, Turkey,
in 1997 and 1999, respectively. In 2002 and
2005, he received the MS and PhD degrees in
computer science from the University of Mary-
land at College Park. He is currently a post-
doctoral researcher at the IBM Thomas J.
Watson Research Center, Hawthorne, New
York, where he works in the field of software

quality assurance. His current research interests include automated fault
localization, performance modeling and optimization, distributed and
adaptive quality assurance, formal methods in testing, and highly
configurable systems. Dr. Yilmaz is a member of the ACM and the IEEE
Computer Society.

Adam Porter received the BS degree summa
cum laude in computer science from the
California State University at Dominguez Hills,
Carson, California, in 1986. In 1988 and 1991,
he received the MS and PhD degrees from the
University of California at Irvine. Currently an
associate professor, he has been with the
Department of Computer Science and the
Institute for Advanced Computer Studies at the

University of Maryland since 1991. He is a winner of the US National
Science Foundation Faculty Early Career Development Award and the
Dean’s Award for Teaching Excellence in the College of Computer,
Mathematics, and Physical Sciences. His current research interests
include empirical methods for identifying and eliminating bottlenecks in
industrial development processes, experimental evaluation of funda-
mental software engineering hypotheses, and development of tools that
demonstrably improve the software development process. Dr. Porter is a
senior member of the ACM and the IEEE.

Arvind S. Krishna received the masters and PhD degrees in computer
science from the University of California at Irvine
and Vanderbilt University. He is a senior en-
gineer at Qualcomm, where he is currently
working on wireless broadband networks. Before
joining Qualcomm, He worked on building
distributed object computing middleware and
techniques for middleware customization. His
interests include design patterns, design of
flexible and customizable middleware, and mod-
el-driven development techniques.

YILMAZ ET AL.: RELIABLE EFFECTS SCREENING: A DISTRIBUTED CONTINUOUS QUALITY ASSURANCE PROCESS FOR MONITORING... 17

Atif M. Memon received the BS, MS, and PhD
degrees in computer science in 1991, 1995, and
2001, respectively. He is an assistant professor
at the Department of Computer Science, Uni-
versity of Maryland. He was awarded a Gold
Medal in his undergraduate studies. He was
awarded Fellowships from the Andrew Mellon
Foundation for his PhD research. He received
the US National Science Foundation CAREER
award in 2005. His research interests include

program testing, software engineering, artificial intelligence, plan
generation, reverse engineering, and program structures. He is a
member of the ACM and the IEEE Computer Society.

Douglas C. Schmidt is a professor of computer
science and an associate chair of the Computer
Science and Engineering Program at Vanderbilt
University. He has authored more than 300 tech-
nical papers and eight books that cover a range
of research topics, including patterns, optimiza-
tion techniques, and empirical analyses of soft-
ware frameworks and domain-specific modeling
environments that facilitate the development of
distributed real-time and embedded (DRE) mid-

dleware and applications running over high-speed networks and
embedded system interconnects.

Aniruddha S. Gokhale received the bachelor of
engineering degree in computer engineering
from the University of Pune, India in 1989, the
master of science degree in computer science
from Arizona State University, Tempe, in 1992,
and the doctor of science degee from Washing-
ton University, St. Louis, Missouri, in 1998. He is
an assistant professor in the Electrical Engineer-
ing and Computer Science Department and a
senior research scientist at the Institute for

Software Integrated Systems (ISIS), both at Vanderbilt University,
Nashville, Tennessee. Dr. Gokhale’s research interests are in real-time
component middleware optimizations, model-driven engineering applied
to component middleware-based applications, and distributed resource
management. Dr. Gokhale is heading the R&D efforts on an open
source model driven engineering framework called CoSMIC (www.dre.
vanderbilt.edu/cosmic). He is a member of the ACM and the IEEE
Communications Society.

Balachandran Natarajan received the MS
degree in computer science from Washington
University in St. Louis, Missouri. He is a senior
principal software engineer at Symantech, India.
Prior to his current position, he was a senior staff
engineer with the Institute for Software Inte-
grated Systems at Vanderbilt University, Nash-
ville, Tennessee. He has also worked as a
software consultant developing software and
tools for CAD, CAM, and CAE applications.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

