
Towards Incremental Component Compatibility Testing

Ilchul Yoon, Alan Sussman, Atif Memon, Adam Porter
Dept. of Computer Science, University of Maryland, College Park, MD, 20742 USA

{iyoon,als,atif,aporter}@cs.umd.edu

ABSTRACT
Software components are increasingly assembled from other
components. Each component may further depend on oth-
ers, and each may have multiple active versions. The to-
tal number of configurations—combinations of components
and their versions—deployed by end users can be very large.
Component developers, therefore, spend considerable time
and effort doing compatibility testing – determining whether
their components can be built correctly for all deployed con-
figurations. In previous work we developed Rachet to sup-
port large-scale compatibility testing of components.

In this paper, we describe and evaluate methods to enable
Rachet to perform incremental compatibility testing. We de-
scribe algorithms to compute differences in component com-
patibilities between current and previous component builds,
a formal test adequacy criterion based on covering the differ-
ences, and cache-aware configuration sampling and testing
methods that attempt to reuse effort from previous testing
sessions. We evaluate our approach using the 5-year evo-
lution history of a scientific middleware component. Our
results show significant performance improvements over Ra-
chet’s previous retest-all approach, making the process of
compatibility testing practical for evolving components.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Design, Experimentation

Keywords
incremental testing, software component, compatibility

1. INTRODUCTION
Testing modern software components is extremely diffi-

cult. One particular challenge is that components may be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0723-9/11/06 ...$10.00.

built in a great many configurations. Consider, for example,
InterComm [10], a component used to support coupled par-
allel scientific simulations. InterComm has complex depen-
dencies on multiple third-party components, each of which
in turn depend on other components, and every component
has multiple active versions. Each possible combination of
components and their versions is a configuration that might
contain unique errors. To make matters worse, each compo-
nent may evolve independently, and each configuration may
need to be rebuilt and retested after each change.

In past work, we have addressed some of these challenges
by creating Rachet [14, 15, 16], a process and infrastruc-
ture for testing whether a component can be built correctly
for all its configurations. Rachet includes a formal, graph-
based representation for encoding a component’s configura-
tion space – the set of all possible configurations. Using
this representation, developers specify the components and
versions, component dependencies, and constraints. Rachet
then automatically computes the component’s configuration
space. Rachet also defines a test adequacy criterion and al-
gorithms for generating a set of configurations that satisfy it.
Finally, Rachet efficiently tests the selected configurations,
distributing the build effort across a grid of computers. How-
ever, Rachet did not accommodate component evolution; it
simply retested all configurations, including the ones that
had already been tested in previous test sessions.

In this paper, we describe methods to enhance Rachet that
test component compatibilities incrementally, taking into ac-
count various types of component changes. We evaluate the
effectiveness of our approach on 20 actual builds for the In-
terComm component, developed over a 5-year period. Our
results show that the incremental approach is more efficient
than the previous retest-all approach. We also present opti-
mization techniques to reduce testing time even further by
reusing test artifacts and results inherited from previous test
sessions. More specifically, the work described in this paper
makes the following contributions:

• An incremental compatibility testing adequacy crite-
rion;

• An algorithm to compute incremental testing obliga-
tions, given a set of changes to the configuration space;

• An algorithm to select small sets of configurations that
efficiently fulfill incremental testing obligations;

• A set of optimization techniques that reuse test arti-
facts and results from previous test sessions, to greatly
decrease testing time.

The next section provides an overview of Rachet. Sec-
tion 3 defines a test adequacy criterion for incremental com-

*

+ D

B C

*

E

*

F

*

G

A

Figure 1: Example Configuration Model

patibility testing, and also describes algorithms to generate
configurations for incremental compatibility testing. Sec-
tion 4 presents the results of our empirical study. Section 5
describes related work and Section 6 concludes with a brief
discussion of future work.

2. RACHET OVERVIEW
In our previous work [14, 15, 16], we developed Rachet, a

process and tool to perform compatibility testing for comp-
onents. The Rachet process has several steps. First, develop-
ers formally model the configuration space of the component
under test. The model has two parts: (1) a directed acyclic
graph called the Component Dependency Graph (CDG) and
(2) a set of Annotations. As demonstrated in Figure 1,
a CDG contains one node for each component and speci-
fies inter-component dependencies by connecting component
nodes through AND and XOR relation nodes. For exam-
ple, component A depends on component D, which is rep-
resented by an AND node labeled * between component
A and component D. Component A also depends on exactly
one of either B or C, which is represented by the XOR node
labeled +. The model’s Annotations include one identifier
for each component version and, optionally, constraints be-
tween components and/or over full configurations, expressed
in first-order logic. A model must contain all component de-
pendencies and constraints, and the model cannot change in
a single test session.

Together, the CDG and Annotations implicitly define the
configuration space. More formally, a configuration to build
the component represented by the top node of the CDG is
a sub-graph that contains the top node, the relation node
connected to the outgoing edge of the top node, and other
nodes reachable from the top node, where we pick one child
node for an XOR node and all child nodes for an AND
node. Each component node is labeled with exactly one
valid version identifier. A valid configuration is one that
does not violate any constraint specified in a model, and
the configuration space is the set of all valid configurations.
For the example in Figure 1, a sub-graph that contains the
nodes A, B, D, E, F, G, along with intervening relation nodes,
is a valid configuration to build the component A. However,
for example, if the sub-graph does not contain component
G, it is not a valid configuration.

Because it is often infeasible to test all possible config-
urations, Rachet’s second step is to select a sample set of
configurations for testing. The default sampling strategy
is called DD-coverage, and is based on covering all direct
dependencies between components. In CDG terms, a com-

Figure 2: Example applying the BuildCFG algo-
rithm to cover a DD-instance for component A.

ponent c directly depends on a set of components, DD, such
that for every component, DDi ∈ DD, there exists at least
one path from c to DDi not containing any other compo-
nent node. In the running example, component A directly
depends on components B, C and D, and component A has
two direct dependencies – one is to build A with B and D and
the other with C and D.

From these direct dependencies, Rachet computes DD-
instances, which are the concrete realizations of direct de-
pendencies, specifying actual component versions. A DD-
instance is a tuple, (cv, d), where cv is a version v of com-
ponent c, and d is a set of component versions on which
c directly depends. For example, there are 3 DD-instances
for component E in Figure 1: (E1,{G1}), (E2,{G1}), (E3,{G1}).
Once all DD-instances for all components in the model have
been computed, Rachet computes a set of configurations
in which each DD-instance appears at least once. Rachet
implements this step with an algorithm called BuildCFG.
The algorithm works greedily, attempting to generate each
configuration to cover as many previously uncovered DD-
instances as possible, with the goal of reducing the total
number of configurations needed to cover all DD-instances.

The BuildCFG algorithm takes two parameters: (1) a
set of DD-instances already selected for the configuration
under generation, and (2) a set of component versions whose
DD-instances must still be added to the configuration. To
generate a configuration that is to cover a given DD-instance
(call it ddi1 = (cv, d)), Rachet calls BuildCFG with the first
parameter set to ddi1 and the second parameter containing
all the component versions in d. BuildCFG then selects a
DD-instance for some component version in the second pa-
rameter. The configuration (the first parameter) is extended
with that DD-instance, and component versions contained
in the dependency part of the DD-instance are added to
the second parameter, if DD-instances for those component
versions are not yet in the configuration. BuildCFG then
checks whether the extended configuration violates any con-
straints. If the configuration does not violate constraints,
BuildCFG is called recursively with the extended config-
uration and the updated second parameter. If there has
been a constraint violation, BuildCFG backtracks to the
state before the DD-instance was selected and tries another
DD-instance, if one exists. BuildCFG returns true if the
configuration has been completed (i.e., the second parameter
is empty) or false if it runs out of DD-instances that can be
selected, due to constraint violations. If all of those calls re-
turn success, the configuration under construction contains
all DD-instances needed for a configuration that covers ddi1
(and all other DD-instances selected for the configuration).

The BuildCFG algorithm is applied first to generate a
configuration that covers a DD-instance for a component
at smaller depth in a CDG – the component at depth 0
is the top component, since the algorithm may then choose

G1

E2 E1 E3

F1 F3 F2

B1

D2

A1

C1

D2

A1

B2

D2

A1

F1 F3 F2

B1

D1

A1

C1

D1

A1

B2

D1

A1

B2 F1 B1 C1

C2 D1

D2

A1

A1

Figure 3: Test plan with DD-coverage. (Depen-
dency part of each DD-instance is omitted.)

more DD-instances that have not been covered by any other
configuration in the recursive process, and as a result, we
may reduce the total number of configurations generated.
Figure 2 illustrates the process of generating a configura-
tion to cover a DD-instance for component A, (A1, {B1,D1}).
Starting from the leftmost sub-graph, the figure shows DD-
instances selected for the configuration. For the example
model in Figure 1, BuildCFG generates 11 configurations
to cover all DD-instances.

Rachet’s third step takes each of the configurations and
topologically sorts its component nodes to produce a build-
ordered sequence of components. That is, the ith component
in the sequence does not depend on any component with an
index greater than i. Therefore, Rachet can first build the
1st component in the sequence, then build the 2nd compo-
nent, etc. Rachet combines the build sequences for each
configuration into a prefix tree, by representing each com-
mon build prefix (a build subsequence starting from the first
component) exactly once. Thus, each path from the root
node to a leaf node corresponds to a single build sequence,
but common build subsequences are explicitly represented.
The rationale behind combining configurations is that many
configurations are quite similar, so we can reduce test effort
by sharing partially built configurations across multiple con-
figurations. The prefix tree essentially acts as a test plan,
showing all opportunities to share common build effort. Fig-
ure 3 depicts a test plan for the example. This test plan
contains 37 nodes (components to be built), reduced from
56, the number contained in the 11 original configurations
generated by applying BuildCFG.

Finally, Rachet executes the test plan by distributing com-
ponent builds across multiple client machines and collecting
the results. Instead of distributing complete configurations,
Rachet distributes partial configurations (prefixes in the test
plan). The partial configurations are built in virtual ma-
chines (VMs), which can be cached (since a VM is a (large)
disk image), for reuse in building other configurations, – i.e.,
Rachet tries to build a prefix only once, reusing it to build
other configurations, sometimes by transferring a VM image
between machines across the network. In previous work [14,
15], we examined three different test plan execution strate-
gies, where each uses a different method to select the next
prefix to distribute to a machine that performs the build:
a depth-first strategy, a breadth-first strategy and a hybrid
strategy. In our studies, the hybrid strategy has generally
performed best across a wide variety of execution scenar-
ios. In the strategy, Rachet first distributes prefixes for non-
overlapping subtrees of a test plan to each machine and then
continues building components in depth-first order.

Rachet’s final output is test results indicating whether
each DD-instance was (1) tested and built successfully, (2)
tested and failed to build, or (3) was untestable, meaning
that there was no way to produce a configuration to test

G1

E2 E1 E4

F1 F2 F3

B1 C1

D2

A1

D2

A1

B2

D2

A1

B3

D2

A1

F1 F3 F2

B1 C1

D1

A1

D1

A1

B3

D1

A1

B2

D1

A1

F2 F1 F3

B2

D3

A1

C2 B1 C1

D2 D1 D3

A1 A1 A1

D3

A1

D3

A1

B3

D3

A1

(a) A test plan that retests all DD-instances

G1

E2 E1 E4

F1

B3

D2

A1

F1

B3

D1

A1

F1 F2 F3

B2

D2 D1

A1

C2 B1 C1

A1

B2

D3

A1

D3

A1

B3

D3

A1

D3

A1

D3

A1

(b) An incremental test plan

Figure 4: Test plans: Retest-All (56 components) vs.
Incremental (35 components). The shaded nodes
can also be reused from the previous test session.

that DD-instance. For example, suppose that in testing for
our example, all attempts to build B2 with E1, E2, and E3

fail. Then, two DD-instances of component A, (A1,{B2,D1})
and (A1,{B2,D2}), are untestable because the DD-instances
require a successfully built B2 to build A1.

3. INCREMENTAL TESTING
Our previous work cannot be used to test evolving sys-

tems, because Rachet will generate configurations that test
all DD-instances for components in a model after component
changes, and the set can include unnecessary configurations
that only test DD-instances whose results are already known
in previous testing sessions. To support incremental com-
patibility testing, we have extended Rachet to (1) identify
a set of DD-instances that need to be tested given a set
of component changes, and (2) compute a small test set of
configurations that cover those DD-instances.

Consider the running example from Figure 1. Suppose
that during the last testing session, B2 could not be built over
any version of component E. As a result, all DD-instances
in which component A must be built over B2 have not been
tested. Now suppose that new versions of components B and
D become available, and that the latest version of E, E3, has
been modified. In this case the configuration model changes
in the following ways. First, the new versions of B and D

are added to the configuration model as version identifiers
B3 and D3. Next, the modified component is handled by
removing the old version, E3, and then adding a new version,
E4. For this example, Rachet would previously produce a
test plan with 56 component versions to build (Figure 4(a)),
which is larger than necessary because some configurations
involve only result-known DD-instances.

3.1 Computing Incremental Test Obligations
The types of changes can include adding/deleting com-

ponents, component versions, dependencies or constraints.
To deal with all such changes in a uniform way, we assign
unique identifiers to each component and its versions, and
compute the set of DD-instances for both the old and new
configuration models and then use set differencing opera-
tions to compute the DD-instances to be tested. Using a
Venn diagram, we can describe the relationship between the
DD-instances for two successive builds. Figure 5 shows the

Figure 5: DD-instances for two consecutive builds,
buildi−1 and buildi. The DD-instances represented by
the shaded areas need to be tested in buildi.

set of DD-instances for two consecutive builds, buildi−1 and
buildi. DDi−1

all
and DDi

all represent the sets of all DD-
instances in the respective builds. DDi

new represents the
DD-instances in DDi

all, but not in DDi−1

all
. DDi−1

tested
is the

subset of DDi−1

all
whose build status (success or failure) was

determined in that testing session and DDi−1

untestable
is the

subset of DDi−1

all
whose build status is unknown – each of

those DD-instances could not be tested because at least one
of the component versions in the dependency part of the
DD-instance failed to build in all possible ways.

Using this set view, the DD-instances that must be tested
for buildi are shown as the shaded area in the figure, and
are computed as follows:

DDi

test = DDi

all − DDi−1

tested

We include previously untestable DD-instances in the cur-
rent testing obligations, since newly introduced component
versions might provide new ways to build a given compo-
nent, thus enabling previously untestable DD-instances to
be tested.

The next step applies the BuildCFG algorithm as many
times as needed to generate a set of configurations that cover
all the DD-instances in DDi

test. The algorithm generates
configurations for DD-instances that have not yet been cov-
ered, starting from DD-instances for the component clos-
est to the top node in a CDG. As previously discussed in
Section 2, we expect to generate fewer configurations. An
outline of this process is as follows:

1. Compute DDi
test.

2. Select the DD-instance from DDi
test that is to build

the component closest to the top node of the CDG (if
more than one, select one at random).

2.1 Generate a configuration that covers the selected
DD-instance, by applying BuildCFG.

2.2 Remove all DD-instances contained in the gener-
ated configuration from DDi

test

2.3 If DDi
test is not empty, go to step 2.

3. Merge all generated configurations into a test plan.
4. Execute the test plan.

On the running example, this new algorithm produces
9 configurations, reducing the test plan size from 56 (Fig-
ure 4(a)) to 35 components (Figure 4(b)). As the test plan
executes, Rachet caches partially-built configurations (pre-
fixes) on the client machines when a prefix can be reused
later in the test process. As a result, for the running ex-
ample, the total number of component builds is only 30,
because the 5 components depicted by shaded nodes in Fig-
ure 4(b) have already been built in partial configurations

and the configurations are cached in the previous test ses-
sion (assuming those partial configurations were not deleted
at the end of testing).

3.2 Cache-aware Configuration Generation
In our previous studies [14, 15, 16], we assumed that the

cache space in each test machine is empty at the beginning
of a test process. For incremental testing, however, previous
efforts can and should be reused. On the other hand, just
preserving the cache between test sessions may not actually
result in reduced effort unless the cached prefixes are shared
by at least one configuration generated for the new test ses-
sion. We present a method that uses information about
cached prefixes from previous test rounds in the process of
generating configurations, to attempt to increase the number
of configurations that contain cached prefixes. More specifi-
cally, step 2.1 in the configuration generation algorithm from
Section 3.1 is modified as follows:

2.1.1 Pick the best prefix in the cache for generating a con-
figuration that covers the DD-instance.

2.1.2 Generate a configuration by applying BuildCFG, us-
ing the prefix as an extension point.

2.1.3 Repeat from step 2.1.1 with the next best prefix, if no
configuration can be generated by extending the best
prefix.

To generate a configuration that covers a DD-instance, in
step 2.1.1, we first pick the best prefix, which is one that
requires the minimum number of additional DD-instances
to turn the prefix into a full configuration. Then in the
2.1.2, the BuildCFG algorithm is used to extend the prefix
by adding DD-instances. It is possible that BuildCFG will
fail to generate a configuration by extending the best prefix,
due to constraint violations. In that case, the new algorithm
applies step 2.1.1 with the next best cached prefix, until one
is found that does not have any constraint violations.

However, the best cached prefix can be found only after
applying the BuildCFG algorithm to every prefix in the
cache. That can be very costly, since the algorithm must
check for constraint violations whenever a DD-instance is
added to the configuration under construction. Therefore,
we instead employ a heuristic that selects the best prefix as
the one that requires the longest time to build all the com-
ponents in the prefix. The rationale behind this heuristic is
that fewer DD-instances should need to be added when a
configuration is constructed by extending the cached prefix
that takes longest to build. However, the downside of this
heuristic is that a prefix could be regarded as the best prefix
to cover a DD-instance only because it takes the longest time
to build, even though many components in the prefix are not
really needed. We currently overcome this problem by not
considering a prefix as an extension point if it contains at
least one component that appears later in the topological or-
dering of the components in the CDG than the component
in the DD-instance to be covered.

Not all prefixes in the cache can be extended to generate a
configuration that covers a DD-instance. To reduce the cost
to generate configurations, we check whether any constraint
is violated when the DD-instance is added to each cached
prefix, before extending the prefix with the DD-instance.
This can be achieved efficiently by maintaining an auxiliary
data structure called a cache plan, which is a prefix tree that
combines prefixes in the cache. (In Figure 6, the sub-tree

G1

E2 E1 E4

F2

C1 B1 B3

D3

A1

D3

A1

D2 D1 D3

A1 A1 A1

B3 F1 F3 B3 B1 C1

B2

D2 D1 D3

A1 A1 A1

C2

D3

A1

Figure 6: Test plan produced from configurations
selected in a cache-aware manner. 34 component
versions must be built. (Shaded area is cached, from
the previous test session.)

reaching the shaded nodes is the cache plan for the example
system, after the first test session completes.) For a DD-
instance that is to be covered, the cache plan is traversed
in depth-first order, checking for whether constraints are
violated when the DD-instance is added to the path from
the root node to a node in the cache plan. If there is a
violation, we filter out all cached prefixes reaching any node
in the subtree starting at the node.

Figure 6 shows a test plan created by merging the con-
figurations produced by applying the cache-aware algorithm
to the example system. The test plan has 13 configurations,
which is 4 more than the test plan that does not consider
cached prefixes (Figure 4(b)). The number of components
that actually need to be built is 30 in both cases because
we can reuse prefixes in the cache. However, the average
build sequence length is smaller for the cache-aware plan
by about 1 1/3 components compared to the cache-unaware
plan, because almost half of its configurations are extended
from cached prefixes. This factor can greatly decrease the
turnaround time needed to complete the test plan.

3.3 Managing Cached Configurations
Because cache space is a limited resource, so when the

cache is full we must discard a previously cached prefix when
adding a new one. In previous work [14, 15, 16], we em-
ployed the commonly used Least-Recently-Used (LRU) cache
replacement policy. However, during the execution of a test
plan, Rachet can, for each prefix in the cache, compute how
many times the prefix can be reused for testing additional
DD-instances. This information can then be used to select
the victim prefix to be replaced in the cache. For example,
if all the plan nodes in the subtree rooted at the last node of
a prefix have already been tested, the prefix can be deleted
from the cache even though it has been recently used, with-
out increasing overall test plan execution time.

To keep prefixes with more reuse potential longer in the
cache throughout test sessions, we have designed a heuris-
tic to estimate the reuse potential of prefixes in the cache.
When we need to replace a prefix in the cache, we compute,
for each prefix in the cache: (1) the expected time saving by
reusing the prefix to execute the remaining portion of the
current test plan, and (2) the average change frequency of
components in the prefix across previous test sessions.

The expected time savings measures how useful a prefix
can be for executing the current test plan. To compute the
expected time savings for each prefix, we first identify, for
each plan node, the cached prefix that enables saving the
most time to test the node by reusing that cached prefix.
Then, we multiply the number of nodes that benefit the
most from reusing the prefix by the time required for build-
ing the prefix from an empty configuration. In Figure 6,

prefixes <G1,E2> (call that p1) and <G1,E2,F2> (call that p2)
are cached during the first test session. When the test plan
in the figure is executed in the next test session, the time
savings expected from p1 is 0, since p2 is the best prefix for
testing all plan nodes in the subtree starting from p1.

We also estimate how likely a prefix cached during the ex-
ecution of a test plan is to be helpful to execute test plans for
subsequent test sessions, by considering change frequencies
of components in the prefix. Component version annota-
tions in the CDG can include both officially released versions
of a component and also the latest states of development
branches for a component from a source code repository,
because developers often want to ensure compatibility of a
component with the most recent versions of other compo-
nents. To model an updated system build, a developer must
specify modified component versions in version annotations,
including patches for released versions or code changes in
development branches. We regard such changes as version
replacements in the CDG annotations, but also keep track
of the test sessions in which the changes occurred.

The change frequency of a cached prefix is computed by
counting the number of preceding test sessions in which a
component version has changed. We do the counting for
each component version contained in the prefix and compute
the average across the components to compute the frequency
for the whole prefix. Therefore, if a prefix in the cache con-
tains only component versions that have not changed at all,
the change frequency is 0, which means that components in-
volved in the prefix are not likely to change in the future so
that it may be worthwhile to keep the prefix in the cache.
On the other hand, if a prefix contains only component ver-
sions that have changed often across test sessions, it is more
likely that the prefix is not reusable in later test sessions.

When a cache replacement is necessary, the victim is the
prefix that has the least time savings. The highest change
frequency is used as a tie breaker. That is, we first focus on
completing the test plan under execution more quickly and
secondarily try to keep prefixes that may be useful for later
test sessions.

The scheduling strategy for test plan execution cannot
be considered separately from the cache replacement policy.
For the hybrid scheduling strategy described in Section 2,
when a client requests a new prefix to test, the scheduler
searches the test plan in breadth-first order starting from
the root node, or, if that client has cached prefixes available
for the test plan, in depth-first order from the last node of
the most recently used cached prefix.

For the new cache replacement policy, the prefix with the
least reuse potential, call it p1, is replaced when the cache
is full. If the test plan is searched starting from the most
recently used cached prefix, p1 could be replaced before it is
reused. If such a replacement happens, we must pay the cost
to build p1 from scratch later when we need p1 for testing
plan nodes beneath the subtree rooted at p1. Hence, we
search the test plan giving higher priority to prefixes with
low reuse potential, because such prefixes are more likely to
be reused for testing only a small part of the test plan. By
testing those parts of the plan earlier, those prefixes can be
replaced after they are no longer needed.

4. EVALUATION
Having developed a foundation for incremental compati-

bility testing between evolving components, we now evaluate

Comp. Description
ic InterComm, the SUT
ap High-level C++ array management library
pvm Parallel data communication component
lam A library for MPI (Message Passing Interface)
mch A library for MPI
gf GNU Fortran 95 compiler
gf77 GNU Fortran 77 compiler
pf PGI Fortran compiler
gxx GNU C++ compiler
pxx PGI C++ compiler
mpfr A C library for multi-precision floating-point number

computations
gmp A library for arbitrary precision arithmetic computation
pc PGI C compiler
gcr GNU C compiler
fc Fedora Core Linux operating system

Table 1: Description of components used in the In-
terComm model

our new approach and algorithms on a middleware compo-
nent from the high performance computing community.

4.1 Subject Component
Our subject component for this study is InterComm1,

which is a middleware component that supports coupled sci-
entific simulations by enabling efficient and parallel data re-
distribution between data structures managed by multiple
parallel programs [4, 10]. To provide this functionality, In-
terComm relies on other components, including compilers
for various programming languages, parallel data communi-
cation libraries, a process management library and a struc-
tured data management library. Some of these components
have multiple versions and there are dependencies and con-
straints between the components and their versions.

For this study, we examined the change history of Inter-
Comm and the components required to build InterComm
over a 5 year period. To limit the scope of the study, we
divided this 5 year period into 20 epochs, each lasting ap-
proximately 3 months. We took a snapshot of the entire
system for each epoch, producing a sequence of 20 builds.

4.2 Modeling InterComm
We first modeled the configuration space for each build.

This involved creating the CDGs, and specifying version
annotations and constraints. We considered two types of
version identifiers – one is for identifying versions officially
released by component developers, and the other is for the
change history of branches (or tags) in source code reposito-
ries. Currently, the modeling is manual work and based on
careful inspection of the documents that describe build se-
quences, dependencies and constraints for each component.

Figure 7 depicts dependencies between components for
one build, and Table 1 provides brief descriptions of each
component. The CDGs for other builds were different. For
instance, GNU Fortran (gf) version 4.0 did not yet ex-
ist when the first version of InterComm (ic) was released.
Therefore, the CDG for that build does not contain the
Fortran component and all its related dependencies (shaded
nodes in the figure).

Table 2 shows the history of version releases and source
code changes for the components in each build. Each row
corresponds to a specific build date (snapshot), and each
column corresponds to a component. For each build, en-

1http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic

*

+

+

++

p v m a p

*

m c hl a m

* **

*

p c

pxx

gxx

pf

gf

g f77

*

*

*

mpfr

*

g m p

gcr

*

fc

ic

Figure 7: CDG for InterComm

tries in the last 8 columns of the table indicate official ver-
sion releases of components. For example, InterComm (ic)
version 1.5 was released between 02/25/2006 (build6) and
05/25/2006 (build7). We use a version released at a given
build date to model that build and also for modeling all sub-
sequent builds. Entries in the 6 columns labeled Branches
contain version identifiers for development branches. We as-
sign a unique version identifier for the state of a branch at
a given build date by affixing to the branch name an in-
teger that starts at 1 and is incremented when the branch
state at a build date has changed from its state in the pre-
vious build.2 For example, 1.1d2 in the third column of
build5 indicates that there were file changes in the branch
1.1d between 08/25/2005 (build4) and 11/25/2005 (build5).
Compared to a released version whose state is fixed at its re-
lease date, the state of a branch can change frequently and
developers typically only care about the current state for
testing. Therefore, for a branch used to model a build, we
consider only the latest version identifier of the branch, so
include the latest version identifier in the model and remove
the previous version identifier for the branch.

Using this information, we define a build to contain all re-
leased component version identifiers available on or prior to
the build date, and the latest version identifiers for branches
available on that date. Note that Table 2 does not include
several components: fc version 4.0, ap version 0.7.9, mch
version 1.2.7, and the PGI compilers (pxx, pc, pf) version
6.2. For these components, we could access only one version
or we considered only one version to limit the experimental
effort (fc). For this study, we assumed that these versions
were available from the first build. Also, we considered de-

2Branches are not used for modeling builds unless there has
been at least one official version released from the branch.

Branches Released Versions

ic gcr gf77 gf gmp mpfr ic gcr gf77 gf gmp mpfr lam pvm
Build Date gxx gxx

0 08/25/04 3.4d1 3.4d1 1.1 3.4.0 3.4.0 6.5.9 3.2.6
3.4.1 3.4.1 7.0.6 3.3.11

1 11/25/04 1.1d1 3.4d2 3.4d2 3.4.2 3.4.2 3.4.5
3.4.3 3.4.3

2 02/25/05 3.4d3 3.4d3
3 05/25/05 3.4d4, 4.0d1 3.4d4 4.0d1 3.4.4 3.4.4 4.0.0 4.1.0,4.1.1 2.1.0

4.0.0 4.1.2,4.1.3 2.1.1
4.1.4

4 08/25/05 3.4d5, 4.0d2 3.4d5 4.0d2 4.0.1 4.0.1 2.1.2
5 11/25/05 1.1d2 3.4d6, 4.0d3 3.4d6 4.0d3 4.0.2 4.0.2 2.2.0
6 02/25/06 3.4d7, 4.0d4 3.4d7 4.0d4 3.4.5 3.4.5
7 05/25/06 1.1d3 3.4d8 3.4d8 4.0d5, 4.1d1 1.5 3.4.6 3.4.6 4.0.3 4.2.0,4.2.1

4.0d5, 4.1d1 4.0.3 4.1.0
4.1.0 4.1.1
4.1.1

8 08/25/06 1.5d1 4.0d6, 4.1d2 4.0d6, 4.1d2
9 11/25/06 4.0d7, 4.1d3 4.0d7, 4.1d3
10 02/25/07 1.5d2 4.0d8, 4.1d4 4.0d8, 4.1d4 2.2d1 4.0.4 4.0.4 2.2.1 7.1.3
11 05/25/07 1.5d3 4.1d5 4.1d5 2.2d2 4.1.2 4.1.2
12 08/25/07 1.5d4 4.1d6 4.1d6
13 11/25/07 1.5d5 4.1d7 4.1d7 2.3d1 4.2.2 2.3.0
14 02/25/08 4.1d8 4.1d8 2.3d2 2.3.1
15 05/25/08 4.1d9 4.1d9
16 08/25/08 4.1d10 4.1d10 2.3d3 4.2.3
17 11/25/08 2.3d4 4.2.4 2.3.2
18 02/25/09 4.1d11 4.1d11 2.3d5
19 05/25/09 4.3d1 4.3.0,4.3.1

Table 2: History of version releases and source code changes for components in the InterComm build sequence

velopment branches for only 4 major GNU compiler versions
(3.3, 3.4, 4.0 and 4.1), due to limited test resource avail-
ability and the time required to perform the experiments.

In addition to the CDGs and version annotations, Inter-
Comm places several constraints on configurations. For ex-
ample, if compilers from the same vendor for different pro-
gramming languages are used in a configuration (e.g., gcr,
gxx, gf and gf77), they must have the same version iden-
tifier. These constraints eliminated configurations that we
knew a priori would not build successfully.

4.3 Study Setup
To evaluate our incremental testing approach, we first

gathered component compatibility data (i.e., success or fail-
ure to build the component version encoded by each DD-
instance) and on the time required to build each component
version. To obtain this data, we created a single config-
uration space model containing identifiers for all released
component versions and all branch states that appear in
any build. We then built every configuration using a sin-
gle server (Pentium 4 2.4GHz CPU with 512MB memory,
running Red Hat Linux) and 32 client machines (Pentium 4
2.8GHz Dual-CPU machines with 1GB memory, all running
Red Hat Enterprise Linux), connected via Fast Ethernet. To
support the experiment we enhanced Rachet to work with
multiple source code repositories and to retrieve source code
for development branches as needed. Currently, Rachet sup-
ports the CVS, Subversion and Mercurial [7] source code
management systems.

By running the test plan for the integrated model, we ob-
tained compatibility results for 15128 DD-instances needed
to test the InterComm builds. Building components was
successful for 6078 DD-instances and failed for 1098 DD-
instances. The remaining 7952 DD-instances were untest-
able because there was no possible way to successfully build
one or more components in the dependency part of the DD-
instances. For example, all the DD-instances to build an

InterComm version with the dependency to the PVM com-
ponent version 3.2.6 could not be tested, because all possi-
ble ways to build that PVM version failed.

Using the data obtained from the experimental run de-
scribed earlier, we simulated a variety of use cases with dif-
ferent combinations of client machines and cache sizes. For
example, we used the average time required to build a com-
ponent for calculating total build times for each simulation.
Table 3 shows the number of DD-instances corresponding
to each region in the diagram in Figure 5.

For the i-th build in the InterComm build sequence, the
second column in the table is the total number of DD-insta-
nces represented by the annotated CDG. Note that for some
builds the number of DD-instances does not differ from
the previous build. This is because model changes between
builds only involved replacing branch version identifiers with
more recent ones. The last column is the number of nodes
in the initial test plan for each build. In some cases, the
number of nodes in a test plan is fewer than the number of
DD-instances to cover (the sum of the 4th and 5th columns).
That happens when a large number of DD-instances are
classified as untestable when we produce the set of configu-
rations that are merged into the test plan for the build.

We ran the simulations with 4, 8, 16 or 32 client ma-
chines, each having 4, 8, 16, 32, 64 or 128 cache entries. To
distribute configurations to multiple machines, we used the
modified plan execution strategy described in Section 3.3.
For each machine/cache combination, we conducted multi-
ple simulations to test the InterComm build sequence: (1)
retest-all: retests all DD-instances for each build from scratch
(DDi

test = DDi
all), (2) test-diff: tests builds incrementally

(DDi
test = DDi

all − DDi−1

tested
) but without reusing configu-

rations cached in prior builds, (3) c-forward: test-diff plus
reusing cached configurations across builds but without ap-
plying any optimization technique, (4) c-aware: c-forward
plus applying cache aware configuration production (Sec-
tion 3.2), (5) integrate-all: c-aware plus applying the im-

retest−all
test−diff

 0

 1

 2

 3

 4

 5

 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Tu
rn

ar
ou

nd
 T

im
e

(d
ay

s)

Builds

Figure 8: Turnaround times for testing DDi
all and

DDi
test for each build (8 machines and 4 cache entries

per machine)

i dd
i

all
dd

i−1

tested
dd

i−1

untestable
dd

i

new
of

∩ dd
i

all
∩ dd

i

all
plan nodes

0 123 0 0 123 252
1 403 44 42 317 579
2 403 141 186 76 170
3 781 141 186 454 756
4 945 271 320 354 753
5 1129 287 255 587 1061
6 1229 411 498 320 561
7 2480 416 341 1723 2766
8 2921 981 1170 770 960
9 2921 1050 1488 383 758
10 4407 981 1170 2256 3243
11 4407 1450 1886 1071 1594
12 4407 1585 1940 882 915
13 5064 1585 1940 1539 2078
14 5296 2031 2514 751 1654
15 5296 2355 2622 319 706
16 5576 2193 2568 815 1754
17 6146 2586 2728 832 1414
18 6146 2877 2622 647 1684
19 7073 3301 2844 928 1704

Table 3: Numbers of DD-instances for the Inter-
Comm build sequence

proved cache management strategy (Section 3.3). We mea-
sured the turnaround time for each build in the sequence,
for the different test strategies.

4.4 Retest all vs. Incremental test
The configuration space for InterComm grows over time

because it incorporates more component versions. As a re-
sult, we expect incremental testing to be more effective for
later builds. Figure 8 depicts the turnaround times for all
20 builds. The testing is done in two ways; by retesting
all DD-instances for each build and by testing DD-instances
incrementally. It is clear that turnaround times are drasti-
cally reduced with incremental testing. For example, for the
last build, retest-all takes about 6 days, while incremental
testing takes less than one day.

With retest-all, the turnaround time required for a test
session increases as the number of DD-instances (DDi

all)
increases. However, for incremental testing, the test time
varied depending on the number of DD-instances covered
by generated configurations. For example, as seen in Ta-
ble 3, the sizes of DDi

test (DDi
all − DDi−1

tested
) for build 11

and build 15 are comparable (2957 for build 11 and 2941
for build 15), but the required testing time for build 11 is

 0

 100

 200

 300

 400

 500

 600

 700

4 8 16 32 64 128

Tu
rn

ar
ou

nd
 T

im
e

(h
ou

rs
)

Number of cache entries per each machine

Turnaround Times for testing all 20 InterComm builds

M=4 (integrate-all)
M=8 (integrate-all)

M=16 (integrate-all)
M=32 (integrate-all)

M=4 (test-diff)
M=8 (test-diff)

M=16 (test-diff)
M=32 (test-diff)

Figure 9: As the number of cache entries per ma-
chine increases, overall test cost decreases up to 24%
when optimization techniques are applied, compared
to the baseline incremental test.

twice as much as the time for build 15. The reason is that
857 DD-instances were covered by configurations generated
for build 11, compared to 369 for build 15. The rest of the
DD-instances were classified as untestable while generating
configurations, because there was no possible way to gener-
ate configurations to cover those DD-instances because of
build failures identified in earlier builds.

4.5 Benefits from Optimization Techniques
Figure 9 depicts the aggregated turnaround times for incre-

mental testing without cache reuse across builds (test-diff)
and for incremental testing with all optimization techniques
applied (integrate-all). The x-axis is the number of cache en-
tries per client machine and the y-axis is turnaround times.
The simulations use 4 to 32 client machines and the number
of cache entries per machine varies from 4 to 128.

As we increase the number of cache entries, we observe
that the optimization techniques reduce turnaround times
by up to 24%.3 That is because a larger cache enables stor-
ing more prefixes between builds, so more configurations can
be generated by extending cached prefixes and also cached
prefixes can be more often reused to execute test plans for
later builds. On the other hand, for test-diff, we see few
benefits from increased cache size. These results are consis-
tent with results reported in our previous study [15], that
little benefit was observed beyond a cache size of 8 for In-
terComm. Also, as reported in the study, turnaround times
decreased by almost half as the number of machines doubles.

We also observed that the benefits from the optimization
techniques decrease as more machines are employed. With
4 machines, the turnaround time decreases by 24% when
the number of cache entries per machine increases from 4
to 128, but decreases by only 10% when 32 machines are
used. There are two reasons for this effect. First, with
more machines the benefits from the increased computa-
tional power offset the benefits that are obtained via intel-
ligent cache reuse. With 32 or more machines, parallel test
execution enables high performance even with only 4 cache
entries per machine. Second, communication cost increases

3For our subject component, turnaround times did not de-
crease further with more than 128 cache entries per machine.

test−diff
integrate−all

 0

 5

 10

 15

 20

 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Tu
rn

ar
ou

nd
 T

im
e

(h
ou

rs
)

Builds

Turnaround times required for testing each build (M=16,C=128)

Figure 10: test-diff vs. integrate-all. There are sig-
nificant cost savings for some builds from the opti-
mization techniques. (16 client machines, 128 cache
entries per machine)

for more machines, because each machine is responsible for
fewer nodes in the test plan and machines that finish their
work faster will take work from other machines. In many
cases, the best cached configurations for the transferred work
must be sent over the network.

As we previously noted, the cost savings vary depending
on the component changes between two builds. In Figure 10,
we compare turnaround times for each build, for test-diff and
integrate-all. We only show results for 16 machines, each
with 128 cache entries, but the overall results were similar
for other machine/cache size combinations.

In the figure, we see significant cost reductions for sev-
eral, but not all, builds (1, 5, 7–8, 10–13). We found that
for those builds there were either new version releases or
source code updates for InterComm, the top component in
the CDG. Since we have to first build all other components
before building InterComm, we can significantly reduce the
execution time for the builds of interest by first extending
configurations that took more time to build in the process
of the configuration generation, and then reuse those con-
figurations during test plan execution. From the results, we
see a decrease of more than 50% in build time for builds 11
and 12 and a 40% time reduction on average for the other
builds of interest.

The optimization techniques are heuristics, and do not
always reduce testing time much. There were smaller cost
reduction for builds 0–4 and 14–19. There are several rea-
sons for that. First, test plans for builds 0–4 contain fewer
nodes than for other builds, and therefore the plan execution
times are dominated by the parallel computation. Second,
for builds 14–19, as seen in Table 2, there were no changes
for InterComm or for other components close to the top node
in the CDGs. Although the test plan sizes for those builds,
seen in Table 3, were comparable to those for other test plans
where we achieved larger cost savings, for these builds we
could only reuse shorter prefixes that can be built quickly
from an empty configuration, because changes are confined
to components close to the bottom node in the CDGs.

4.6 Comparing Optimization Techniques
Figure 11 shows turnaround times for testing each build

using 16 machines, with cache sizes of 4 (top) and 128 (bot-
tom) per client machine. We only show results for builds for
which we saw large benefits in Figure 10, when both opti-
mization techniques are applied. For each build of interest,

test−diff
c−forward
c−aware
integrate−all

 0

 5

 10

 15

 20

 25

1 5 7 8 10 11 12 13

Tu
rn

ar
ou

nd
 T

im
e

(h
ou

rs
)

Builds

Turnaround times required for testing each build (M=16,C=4)

test−diff
c−forward
c−aware
integrate−all

 0

 5

 10

 15

 20

 25

1 5 7 8 10 11 12 13

Tu
rn

ar
ou

nd
 T

im
e

(h
ou

rs
)

Builds

Turnaround times required for testing each build (M=16,C=128)

Figure 11: Each optimization technique contributes
differently for different cache sizes.

we show results for four cases – test-diff, c-forward, c-aware
and integrate-all.

In both graphs, we do not see large time decreases from
simply forwarding cached configurations across builds (c-
forward), even for a large cache. This implies that we must
utilize cached prefixes intelligently. For the c-forward case,
whether cached prefixes are reused or not depends on the
order in which the DD-instances in the test plans for subse-
quent builds are executed, and the order in which configu-
rations are cached and replaced.

With a smaller cache size, benefits from the optimization
techniques are limited because configurations cached from
earlier builds often get replaced before they are needed in
later builds. However, we still see a small cost reduction by
keeping the most valuable configurations in the cache.

In the bottom graph, with cache size 128, we observe
that the cache-aware configuration generation technique (c-
aware) plays a major role in reducing turnaround times. A
larger cache can hold more prefixes for reuse, and therefore
fewer cache replacements are necessary, and also we can ex-
tend cached prefixes with a few additional DD-instances.
Consequently, it takes less time to execute the resulting test
plans. In both graphs, the new cache management policy
did not greatly decrease test plan execution time. Since our
scheduling policy searches the test plans mostly in depth-
first order, in many cases, the least recently used prefixes in
the cache were also less valuable for the new policy.

In the simulation with 16 machines, each with 128 cache
entries, there was no cache replacement for the entire build
sequence. We still observe some additional cost reduction for
integrate-all, compared to the c-aware case. We believe that
the benefit is from synergy between the scheduling policy for
dispatching prefixes to client machines and the new cache
management policy.

5. RELATEDWORK
Work on regression testing and test case prioritization [2,

3, 13] attempts to reduce the cost to test software systems

when they are modified, by selecting tests that were effec-
tive in prior test sessions and also by producing additional
test cases if needed. Rachet has similar goals in its attempts
to reduce test cost as components in a system evolve over
time. In particular, Qu et al. [8] applied regression testing to
user configurable systems and showed that a combinatorial
interaction testing technique can be used to sample config-
urations. Robinson et al. [9] presented the idea of testing
user configurable systems incrementally, by identifying con-
figurable elements affected by changes in a user configuration
and by running test cases relevant to the changes. Although
their basic idea is similar to our work, those approaches
are applied only to a flat configuration space, not for hier-
archically structured component-based systems [8], or they
only test modified configurations after a user has changed
a deployed configuration [9] without proactively testing the
configuration space before releasing the system.

ETICS [6], CruiseControl [1] and Maven [5] are systems
that support continuous integration and testing of software
systems in diverse configurations, via a uniform build in-
terface. Although these systems can be used to test the
component build process, their process is limited to a set
of predetermined configurations. Rachet instead produces
configurations dynamically, considering available component
versions and dependencies between components.

Virtual lab manager [11, 12], developed by VMware, can
be used to test the build process for a component in various
configurations. However, configurations must be manually
customized by building each configuration in a virtual ma-
chine. Our approach can test compatibilities between com-
ponents without any intervention from developers after they
model the configuration space for their components.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we have presented an approach to support

incremental compatibility testing for component-based sys-
tems that contain multiple components that can indepen-
dently evolve over time. As part of the approach, we have
defined test obligations for testing system builds by captur-
ing the difference across builds and described algorithms for
sampling and testing configurations that test only the differ-
ence, while reusing test results obtained in prior builds. We
also presented methods that make proactive use of configu-
rations cached in prior builds to further reduce the time re-
quired for compatibility testing. The results of our empirical
study show large performance improvements from incremen-
tal testing. In addition, we showed that our cache-aware op-
timization methods can often reduce test time significantly.

In the future, we plan to investigate methods to automat-
ically extract component dependencies directly from source
code and build instructions, thereby enabling developers to
more easily create configuration space models that can be
used as input to the Rachet test process. We are also working
to release the Rachet tool to the wider community and are
beginning to investigate techniques for compatibility testing
for functionality and performance.

Acknowledgments
This research was supported by NSF grants #CCF-0811284,
#ATM-0120950, #CNS-0855055, and #CNS-0615072, DOE
grant #DEFC0207ER25812, and NASA grant #NNG06GE
75G.

7. REFERENCES
[1] http://cruisecontrol.sourceforge.net.
[2] S. Elbaum, A. Malishevsky, and G. Rothermel. Test

case prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering, 28(2):159–182,
Feb. 2002.

[3] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter,
and G. Rothermel. An empirical study of regression
test selection techniques. ACM Transactions on
Software Engineering and Methodology, 10(2):184–208,
Apr. 2001.

[4] J.-Y. Lee and A. Sussman. High-performance
communication between parallel programs. In
Proceedings of 2005 Joint Workshop on
High-Performance Grid Computing and High-Level
Parallel Programming Models, Apr. 2005.

[5] V. Massol and T. M. O’Brien. Maven: A Developer’s
Notebook. O’Relilly Media, 2005.

[6] A. D. Meglio, M.-E. Bégin, P. Couvares, E. Ronchieri,
and E. Takacs. ETICS: the international software
engineering service for the Grid. Journal of Physics:
Conference Series, 119, 2008.

[7] B. O’Sullivan. Mercurial: The Definitive Guide.
O’Reilly Media, first edition, 2009.

[8] X. Qu, M. B. Cohen, and G. Rothermel.
Configuration-aware regression testing: An empirical
study of sampling and prioritization. In Proceedings of
the International Symposium on Software Testing and
Analysis, pages 75–86, Jul. 2008.

[9] B. Robinson and L. White. Testing of user
configurable software systems using firewalls. In
Proceedings of the 19th International Symposium on
Software Reliability Engineering, pages 177–186, Nov.
2008.

[10] A. Sussman. Building complex coupled physical
simulations on the Grid with InterComm. Engineering
with Computers, 22(3–4):311–323, Dec. 2006.

[11] VMware. Accelerating test management through
self-service provisioning - whitepaper, 2006.

[12] VMware. Virtual lab automation - whitepaper, 2006.
[13] W. E. Wong, J. R. Horgan, S. London, and H. A.

Bellcore. A study of effective regression testing in
practice. In Proceedings of the 8th International
Symposium on Software Reliability Engineering, 1997.

[14] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Direct-dependency-based software compatibility
testing. In Proceedings of the 22th IEEE/ACM
International Conference On Automated Software
Engineering, Nov. 2007.

[15] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Effective and scalable software compatibility testing.
In Proceedings of the International Symposium on
Software Testing and Analysis, pages 63–74, Jul. 2008.

[16] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Prioritizing component compatibility tests via user
preferences. In Proceedings of the 25th IEEE
International Conference on Software Maintenance,
Sep. 2009.

