
Towards Dynamic Adaptive Automated Test Generation
for Graphical User Interfaces

Xun Yuan
Dept. of Computer Science

Univ. of Maryland
College Park, MD
xyuan@cs.umd.edu

Myra B. Cohen
Dept. of Computer Science

& Engineering
Univ. of Nebraska-Lincoln

Lincoln, NE
myra@cse.unl.edu

Atif M. Memon
Dept. of Computer Science

& UMIACS
Univ. of Maryland
College Park, MD
atif@cs.umd.edu

Abstract

Graphical user interfaces (GUIs) present an enor-
mous number of potential event sequences to users.
During testing it is necessary to cover this space, how-
ever the complexity of modern GUIs has made this an
increasingly difficult task. Our past work has demon-
strated that it is important to incorporate “context”
into GUI test cases, in terms of event combinations,
event sequence length, and by considering all possible
starting and ending positions for each event. Despite
the use of our most refined modeling techniques, many
of the generated test cases remain unexecutable. In this
paper, we posit that due to the dynamic state-based na-
ture of GUIs, it is important to incorporate feedback
from the execution of tests into test case generation
algorithms. We propose the use of an evolutionary al-
gorithm to generate test suites with fewer unexecutable
test cases and higher event interaction coverage.

1. Introduction

Graphical user interfaces (GUIs) comprise the main
method of interacting with programs today [6]. GUIs
respond to events (such as a mouse click or a menu
selection) to drive the program flow of control. The se-
quences of events triggered, the order in which these are
selected and the length of each sequence is typically un-
specified; these programs run indefinitely until a clos-
ing event occurs. As they run, the underlying states of
the program change based on context, i.e., the sequence
of all preceding events determines the current program
state. It is this ability—to interact in an almost infinite
number of ways with the external environment—that
makes the event driven programming paradigm pow-
erful. Yet, it is exactly the same ability that makes

GUIs notoriously difficult to validate or test. Embed-
ded in the program functionality are a combinatorially
large number of potential permutations of sequences
of events, or system states. Even when bounded by
sequence length, there are too many permutations to
effectively validate, but combinations of event interac-
tions are likely to trigger faults [10]. Given the ubiq-
uity of GUIs, the ever increasing complexity of these
programs and event interactions, and the cost of field-
based failures, a new generation of testing techniques
is needed to provide effective and efficient validation.
In this paper we focus on one important aspect of val-
idation for GUIs – automated test generation.

Current test generation techniques for GUI systems
include those based on state machine models and event
graphs. However, these techniques will not continue to
scale [10]. Some of the limitations of the current meth-
ods include: (1) an inability to decouple sampling cri-
teria from event sequence length which in turn dictates
the test suite sizes – sizes that grow exponentially; (2)
event interaction models that cannot predict infeasible
sequences of events (test cases which cannot be run) a
priori; many sequences may fail to execute when run
causing inadequate testing; and (3) test generation that
is based on a static view of the requirements or system
under test. This does not account for learned informa-
tion gathered during testing.

In this paper, we posit that dynamic sampling al-
gorithms are needed to generate test cases. Test cases
need to be generated in batches. The current batch,
once executed, will inform and refine the next batch,
helping to avoid unexecutable test cases. We believe
that we can address each of the above limitations
through a new test generation framework for GUIs.
The framework will sample event interactions and dy-
namically adapt and evolve to automatically generate

tests based on feedback obtained from prior test execu-
tion results1. Our proposed framework (1) uses sam-
pling techniques derived from combinatorial interaction
testing to generate tests that are not tightly coupled
with sequence length, and that adapt over time; (2)
uses feedback to uncover constraints between events
resulting in fewer infeasible test cases, and higher test
adequacy; and (3) incorporates these elements into an
evolutionary algorithm to dynamically generate test
cases that can potentially uncover more faults and that
have longer feasible sequences.

The next section gives a brief discussion of GUI test-
ing, and an overview of combinatorial interaction test-
ing. Section 3 provides an overview of our proposed
iterative feedback-based refinement of the combinato-
rial test model. Section 4 concludes with a discussion
of future work.

2. Background and Related Work

Many GUI testing techniques have been pro-
posed; some have been implemented as tools and
adopted by practitioners (see [6] for more details). All
of these techniques automate some aspect(s) of GUI
testing including model creation (for model-based test-
ing), test-case generation, test oracle creation, test ex-
ecution, and regression testing. All of these explore the
GUI’s state space via sequences of GUI events.

Semi-automated unit testing tools such as JFCU-
nit, Abbot, Pounder and Jemmy Module are used to
manually create unit GUI test cases, which are then
automatically executed. More advanced tools called
capture/replay tools “capture” a user session as a test
case, which can later be “replayed” automatically on
the GUI. Model-based techniques have been used to
automate certain aspects of GUI testing. For exam-
ple, manually created state machine models have been
used to generate test cases. Our own work on GUI
testing has focused on graph models to minimize man-
ual work. Our most successful graph models that have
been used for GUI test-case generation include Event
Flow Graphs, (EFGs), and Event Interaction Graphs,
(EIGs). The nodes in these graphs represent GUI
events; the edges represent different types of relation-
ships between pairs of events. An important property
of a GUI’s EIG is that it can be constructed semi-
automatically using a reverse engineering technique
called GUI Ripping.

The basis for combinatorial interaction test-
ing is a covering array. A covering array (written as

1By “prior” we do not mean the previous version’s test cases;
rather, test cases will be generated in batches for the current
version; execution results from batch 1 through batch i− 1 will
be used to generate additional (improved) test cases for batch i.

Generate Batch of Test Cases

Execute Test Cases

Compute Coverage and

Identify Infeasible Event Sequences

 Extract GUI Events

 Create Initial Model

Evolve Test Cases and Model

Evolve/Update Model

Figure 1. Automated Test Framework

CA(N ; t, k, v)) is an N × k array on v symbols with
the property that every N × t sub-array contains all
ordered subsets of size t of the v symbols at least once.
In other words, any subset of t-columns of this array
will contain all t-combinations of the symbols. We use
this definition of a covering array to define GUI event
sequence samples.

The strength of our sample is determined by t. For
instance we set t = 2 to include all pairs of events
between all event locations in the sequence. In this way
the covering array provides not only 2-way coverage but
it does this for each pair of locations in the sequence,
providing more context for testing.

The number of test cases required for the t-way
property, is N . Since the primary cost of running a
test case is setup cost, we cover many more event se-
quences than the shorter 2-way sequences. In general
we cannot guarantee that the size of N will the same
as a shorter sequence, but it will grow logarithmically
in k rather than exponentially as does the number of
all possible sequences of length k [1].

Covering arrays have been used extensively to test
input parameters of programs [1] and to test system
configurations [8]. A special type of a covering array,
(an orthogonal array) developed from Latin squares,
has been previously used to define GUI tests by White
[7], however this work used covering arrays in a state-
less manner, to define subsets of the input parameter
combinations. In [9] we used covering arrays to sample
long event sequences, where events must consider state
(determined by their location in the sequence).

3. Iterative Refinement Through Evolu-
tionary Test Generation

There have been some recent approaches for devel-
oping automated test generation techniques that in-
corporate feedback during the test process [4, 5]. Most
of these methods use some sort of structural measure
such as code coverage for feedback, although a few have

used programmer supplied predicates or program be-
havior, both of which use the program state to provide
feedback. One common way to automate test genera-
tion/feedback is through the use of evolutionary algo-
rithms such as genetic algorithms [3, 4, 5]. An emerging
field of software engineering, called search based soft-
ware engineering utilizes meta-heuristic search to solve
common software engineering problems [2].

Meta-heuristic search techniques can be applied to
problems which can be formulated as an optimiza-
tion problem that cannot be solved through exhaustive
methods. The problem can be specified as a set Σ of
feasible solutions (or states) together with a cost c(S)
associated with each S ∈ Σ. An optimal solution cor-
responds to a feasible solution with overall (i.e. global)
minimum (or maximum) cost.

Genetic algorithms are from the class of meta-
heuristic algorithms called evolutionary algorithms.
These model the biological evolutionary process. A
population is composed of many individuals from the
set of feasible solutions. Pairs of solutions (parents)
are selected based on their fitness. A crossover and
recombination stage take place during which parents
exchange and combine information to generate a set
of children. A mutation is applied to the new popu-
lation to diversify individuals and the fittest solutions
from this new population are then selected and the pro-
cess is repeated. The common driving elements for any
type of meta-heuristic search is to formulate a fitness
function that can be evaluated for each feasible solu-
tion, and to have a way to transform (or crossover) the
individual or population.

3.1. The Proposed Algorithm

In [10] we proposed a feedback mechanism for gen-
erating new event sequences for testing using a state-
based approach, but this was not automated. In our
existing event driven test generation algorithm on GUIs
we have found that it is feasible to exhaustively test
all 2-way (length 2) sequences with limited resources.
We call these smoke tests [10]. This is used as a seed
to generate Event Semantic Interaction (ESI) relation-
ships. To encode these relationships each possible event
in the system is encoded with a unique event ID. From
the ESI relationships we develop an ESI graph (ESIG).
The ESIG contains nodes representing events and di-
rected edges to show a relationship from one event to
another. Given nodes n1 and n2, an edge from n1 to
n2 means that there is an ESI relationship from the
event represented by n1 to the event represented by
n2. Figure 2 is an example of an ESIG graph for a
small example program. Six of the 10 events are found
to interact.

We used this method on four GUI-based open source
programs and found that 25% of the events domi-
nate the ESI relationships, indicating this is where we
should focus our testing. When we used the ESIG
to generate longer sequences (3,4,5-way interactions)
based on combinatorial testing, new faults were uncov-
ered, showing that the ESI approach has promise [9].
But we also ran into many infeasible test sequences.

This makes us believe that sampling by the use of
combinatorial testing as well as modeling using Event
Semantic Interaction information will improve context
and provide stronger fault detection. However, we need
to address the issue of infeasible test sequences. Dur-
ing our experimentation we have uncovered patterns
of infeasible sequences that we were unable to detect
statically. This makes us believe that an evolutionary
algorithm which generates ESI based test sequences,
and then automatically adapts after a batch of test
sequences is run will increase the interaction coverage
and avoid infeasible test sequences.

Our genetic algorithm for GUI test generation,
works as follows (see Figure 1). We begin by (1) gen-
erating an initial model of the GUI event interactions
and an initial set of test sequences based on this model.
Next we (2) generate and (3) run a batch of test cases
and (4) determine code coverage and identify infeasible
sequences. This will be done by examining patterns of
failures and relative locations where events fail. Once
we have this information, we will remove infeasible test
sequence combinations from the model and (5) update
our model to reflect the new ESI. Finally we will calcu-
late our ESI coverage and evolve the population with
the aim of covering as many uncovered ESI relation-
ships previously uncovered as possible. We will use the
ESIs to calculate fitness and select the next generation
of tests.

The fitness function may be calculated several ways.
The first method is based on the paths in the ESIG
model. Longer paths will mean a higher (fitter) indi-
vidual since these represent longer feasible sequences.
Alternative fitness may be based on covering new event
sequences (not seen before) or on a priority based ba-
sis. If we have information after step (4) indicating
that particular ESI sequences are more fault prone we
may use this to increase our interaction coverage (and
model) in this part of the graph. In essence we can use
this information to prioritize our test sequences or to
increase our strength of ESI coverage.

Figure 2 shows an example of our initial fitness based
on test sequence length of the ESIG. Shaded cells in-
dicate they are part of an ESIG graph and will impact
our coverage. We measure fitness as the length of each
of the longest sequences (sub-sequences are subsumed).

e
1

Select

e
2

Draw

Triangle

e
8

Crop

e
3

Rotate 90

e
4

Stretch

e
9

Move

ESIG

5

4

3

2

1

No Length (cost)

Event

Path

51,8,3,4,2

41,8,4,2

31,8,2

31,9,2

21,2

Fitness= 6

contains 1,4 = 2+4

Fitness= 5

contains 1,3 = 2+3

1 8 7 4 2 9 6 8

2 9 1 4 8 3 6 2

!

Candidate Test Sequences

Figure 2. ESIG and Potential Test Sequences After Executing Some Test Cases

In this example the first test sequence is selected be-
cause it is fitter. We have been working to implement
this algorithm to test empirically as a first step towards
realizing our adaptive framework.

4. Conclusions and Future Work

Our earlier work based on a static model of the
GUI used event semantic information and a combinato-
rial based test case generation approach for generating
GUI test sequences. However, the percentage of unex-
ecutable parts of test cases suggest that this approach
needs to be augmented. In this position paper, we mo-
tivated the need for a dynamic approach to covering-
array-based test-case generation.

In order to realize this framework we believe that
several avenues of research in GUI testing are impor-
tant to pursue. First sampling techniques that aim to
incorporate context, such as those based on combina-
torial interaction testing must be explored and under-
stood further. We need coverage and adequacy criteria
to understand how these impact fault detection. Sec-
ond we need to further refine our ESI models to cap-
ture and extract those events that are likely to interact.
Third, automated methods to extract failing patterns
are needed, and finally, heuristics to define effective
fitness functions for evolutionary algorithms should be
developed. We believe that advances in each of these
areas will bring us closer to our vision of an automated
adaptive test generation framework for GUI testing.

Acknowledgments

This work is supported in part by the National Sci-
ence Foundation through awards CCF-0747009 and
CCF-0447864, the Office of Naval Research grant
N00014-05-1-0421 and the Air Force Office of Scien-
tific Research through award FA9550-09-1-0129. Any
opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the position or policy of NSF,
the Navy or AFOSR.

References

[1] D. M. Cohen, S. R. Dalal, M. L. Fredman, and
G. C. Patton. The AETG system: an approach
to testing based on combinatorial design. IEEE
Trans. on Soft. Eng., 23(7):437–444, 1997.

[2] M. Harman. The current state and future of search
based software engineering. In Future of Soft.
Eng., pages 342–357, 2007.

[3] B. Korel. Automated software test data genera-
tion. IEEE Trans. on Soft. Eng., 16(8):870–879,
1990.

[4] P. McMinn. Search-based software test data gen-
eration: A survey. Soft. Test., Verif. and Rel.,
14(2):105–156, 2004.

[5] R. Pargas, M. J. Harrold, and R. Peck. Test-data
generation using genetic algorithms. Soft. Test.,
Verif. and Rel., 9(3):263–282, 1999.

[6] J. Strecker and A. M. Memon. Testing graphical
user interfaces. In Enc. of Info. Sci. and Tech.,
Second ed. IGI Global, 2009.

[7] L. J. White. Regression testing of GUI event in-
teractions. In Intl. Conf. on Soft. Maint., pages
350 – 358, 1996.

[8] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in com-
plex configuration spaces. IEEE Trans. on Soft.
Eng., 31(1):20–34, 2006.

[9] X. Yuan, M. Cohen, and A. M. Memon. Covering
array sampling of input event sequences for auto-
mated GUI testing. In Intl. Conf. on Auto. Soft.
Eng., pages 405–408, 2007.

[10] X. Yuan and A. M. Memon. Using GUI run-time
state as feedback to generate test cases. In Intl.
Conf. on Soft. Eng., pages 396–405, may 2007.

