
1

GUI Interaction Testing: Incorporating Event
Context

Xun Yuan, Member, IEEE, Myra B. Cohen, Member, IEEE, and Atif M Memon, Member, IEEE

Abstract—Graphical user interfaces (GUIs), due to their event driven nature, present an enormous and potentially unbounded way for
users to interact with software. During testing it is important to “adequately cover” this interaction space. In this paper, we develop a
new family of coverage criteria for GUI testing grounded in combinatorial interaction testing. The key motivation of using combinatorial
techniques is that they enable us to incorporate “context” into the criteria in terms of event combinations, sequence length, and by
including all possible positions for each event. Our new criteria range in both efficiency (measured by the size of the test suite) and
effectiveness (the ability of the test suites to detect faults). In a case study on eight applications, we automatically generate test
cases and systematically explore the impact of context, as captured by our new criteria. Our study shows that by increasing the event
combinations tested and by controlling the relative positions of events defined by the new criteria, we can detect a large number of
faults that were undetectable by earlier techniques.

Index Terms—GUI testing, automated testing, model-based testing, combinatorial interaction testing, GUITAR testing system.

✦

1 INTRODUCTION

An important characteristic of graphical user interfaces (GUIs)
is that their behavior is tightly integrated with the con-
text of their usage. As users invoke sequences ofevents
(e.g., ClickOnCancelButton, TypeInText) on GUI widgets(e.g.,
CancelButton, TextBox), the underlying software re-
sponds (typically via the execution of anevent handler e.g.,
an ActionListener) in one of several ways. This may include a
change to the software state, which may impact the execution
of subsequent events. Hence, thecontext, established by the
sequence of preceding events, in which an event executes
may have an impact onhow it executes. As Mathur notes
[1], there is a close connection between events in a software
system and its states. This context-sensitive and state-based
execution behavior of GUI events creates problems for testing;
each event needs to be tested in multiple contexts. Current
model-based GUI testing techniques either test only a subset
of event sequences by restricting the sequence to length two
or length three [2], [3] or use a random method [4], rather
than a systematic one, to test longer sequences [2], meaning
that they can only consider a limited context.

The problem of event context and software testing is also
relevant to the general class of event-driven software (EDS)
[5] (sometimes termed as reactive software [6]–[8]), of which
GUIs are a sub-class, as well as to any testing technique
that generates sequence-based test cases, such as in state-

• X. Yuan has completed her Ph.D. and is currently aSoftware Engineer in
Testat Google Kirkland.
E-mail: xyuan@cs.umd.edu

• M. B. Cohen is with the Department of Computer Science and Engineering,
University of Nebraska - Lincoln, Lincoln, NE USA.
E-mail: myra@cse.unl.edu

• A. M Memon is with the Department of Computer Science, University of
Maryland, College Park, MD 20742.
E-mail: atif@cs.umd.edu

based testing [9], [10]. In this paper we restrict our study of
event context to GUIs, but believe that our techniques may be
relevant to these other domains.

We use the termGUI testing to mean that a GUI-based
software application is tested solely by performing sequences
of events on GUI widgets; and the correctness of the software
is determined by examining only the state of the GUI widgets.
Although this type of testing interacts only with the GUI
interface, the types of faults uncovered are varied. In recent
work, Brookset al. [11] characterized thousands of real faults
detected via GUI testing and showed that a large proportion
of faults detected are in the underlying business logic of the
application, rather than in the GUI code itself.

The following example, obtained from our analysis of the
Java open source program,FreeMind [12], helps to illustrate
some real context related issues in a fielded GUI application. In
this program there are four events we will call{e1, e2, e3, e4}
that correspond to{SetNodeToCloud, NewChildNode, New-
ParentNode, Undo}. The execution of either of the following
3-event test sequences<e1, e2, e3> or <e2, e1, e3> throws
an ArrayIndexOutOfBoundsexception that should have been
found and fixed during testing. There are several interesting
points to note. First, the combination<e2, e3> triggers the
fault only whene1 provides context (i.e., a cloud node) for
this to happen. Hence, theorder of the sequence of events is
important;i.e., if we test<e2, e3, e1>, the fault is not detected.

Second, there is a difference between whether or not the
events are tested consecutively. While<e1, e2, e3> triggers
the fault, insertinge4 at strategic points in the sequence,
e.g., <e1, e2, e4, e3> causes the fault to go undetected. In
this example, having evente4 interrupt this sequence masks
the fault; however, sometimes such an insertion may cause a
previously undetected fault to be exposed. Suppose we had
used shorter (length two) sequences for testing, (sometimes
called smoke tests[3]). If we test <e2, e3> the fault will be
missed. But if we test this sub-sequence within a sequence of

2

events greater than length two, then we still have the possibility
of detecting this fault because<e2, e1, e3> contains the added
context ofe1.

Finally the absolute position of the event within the se-
quence affects fault detection. If the event sequence<e2, e3>

begins the test case (as the first two events of this sequence)we
have no chance of detecting it. However, if it appears some-
where later, then a sequence such as<e1, . . . , e2, e3> may
detect this fault as well (unless “. . .” containse4 immediately
aftere1, with no subsequente1). Similar test sequence specific
faults have been highlighted elsewhere [2].

One method of modeling a GUI for testing creates a repre-
sentation of events within windows (or components) called an
event-flow-graph(EFG). Much like how a control-flow graph
(CFG) encodes all possible execution paths in a program, an
EFG representsall possible sequences of eventsthat can be
executed on the GUI. Coverage criteria based on the EFG
have provided a notion of coverage of a GUI’s event space
for functional correctness [13]. However, these criteria cover
sequences of events bounded by a specific length, which are
essentially sub-paths through an EFG; they have the flavor
of path coverage[14] in the traditional CFG sense. It is
usually only possible to satisfy these criteria forlength two
event sequence coveragebecause the number of sub-paths
grows exponentially with length. Hence, these criteria, asis
the case with CFG path coverage, are useful from a theoretic
perspective; they have limited practical significance.

Since there are a large number of events that do not interact
with the business logic of the GUI application, such as those
responsible for opening and closing windows, a refinement
of the EFG was developed called anevent-interaction graph
(EIG) [2]. In an EIG events are modeled that do not pertain
to the structural nature of the GUI (opening, closing windows,
etc.) but that, instead, interact with the underlying application,
called system interaction events [2]. We refer to testing only
these events asGUI interaction testing.

These observations motivate a more complete examination
of context-informed interaction testing in GUIs. To incorporate
context we must first address the following limitations of the
current techniques.

1) We lack GUI modeling methods that abstract the system
interaction events in such a way that we can capture
context in long event sequences.

2) We lack a systematic exploration of the impact of
context-aware GUI interaction testing on fault detection.

3) We lack test adequacy criteria that sufficiently capture
this new model of event sequences and that consider
(i) event positions within test cases, (ii) whether certain
events are consecutive or not, and (iii) test case length.

In a recent short paper [15], we explored ideas from
combinatorial interaction testing(or CIT) [16], to study a
new automated technique to generate long test cases for GUIs
systematically sampled at a particular coverage strength,where
a higherstrengthindicates that we are systematically testing
more unique combinations of events. To facilitate this we
developed a new abstraction of GUI system-interaction events.
A preliminary feasibility study on one application showed

that the CIT based technique was able to detect previously-
undetected faults at a reasonable cost.

In this paper we explore these ideas more thoroughly. We
present a family of context-aware GUI interaction testing
criteria that use abstract event combinations, consider se-
quence length, and all possible positions of events within each
sequence. We begin with a new model for events, that is an
abstraction of the EFG, asystem interaction event set(SIES).
We then use key concepts from CIT [16], [17] to help describe
our new criteria. Our motivation for using CIT as a starting
point is that the coverage of a set of sequence-based test cases
can be described and computed in terms of the 2-, 3-, 4-, or
t-way relationships that are maintained between GUI events
in all possible combinations oft-locations in the sequences.
Our new GUI model, SIES, enables us to generate test cases
usingcovering arrays[17] (see Section 2). We note, however,
that the strict definition of CIT may be unnecessary for GUI
testing and explore variations that are more cost effective, but
that provide less coverage. We define a family of criteria with
varying degrees of GUI interaction coverage.

We then embark on the first comprehensive study of event
interaction coverage that considers context of events within
test sequences. We present a large case study on eight well-
studied applications to evaluate the effectiveness of thiscriteria
on fault detection and test suite size.

The results of our study show that by increasing event com-
bination strength and controlling starting and ending positions
of events, our test cases are able to detect a large number of
faults, not detected by exhaustive test suites of short tests. This
increase is directly reflected in increased percentages of event
strength coverage in our new criteria. Moreover, although the
stronger of our new criteria require larger suites than the
weaker criteria, these suites also detect additional faults. The
specific contributions of this work include:

• New coverage criteria that consider event combination
strength, sequence length, and all possible starting and
ending positions for each event.

• An abstraction of the stateful GUI domain that allows us
to recast the GUI test-case generation problem as one of
combinatorial interaction testing.

• Evaluation of the new criteria via a large case study.

The next section provides related work on test sequences,
some background on GUI testing, and an overview of combi-
natorial interaction testing. Section 3 describes the new CIT
based adequacy criteria. Sections 4 through 6 present the
design of the case study, its results, and limitations. Finally,
Section 7 concludes with a discussion of future work.

2 BACKGROUND AND RELATED WORK

A primary problem for GUI testing is that the length of the
event sequence invoked by the user is often unbounded. There
are an enormous number of possible permutations of these
events which in turn means the context for testing is very
large; testing all possible sequences a user may invoke is
not possible. Instead, current GUI testing attempts to drive
the software into different states by generating sequencesthat
represent a sample of the entire state space.

3

Suppose, for example, that a user can invoke any of the
following events on a drawing canvas in any order:{copy,
paste, resize, rotate90, color, erase}. The sequence<rotate90,
color, copy, paste> may behave differently than the sequence
<rotate90, color, paste, copy> because execution of the event
handler code forcopy and paste may differ, e.g., different
values of variables may be read/written, different branches
or paths may be executed. This relatively small set of events
leads to 36 unique length-two sequences, over 7,500 unique
length-five sequences, and more than 60 million unique length-
ten sequences. During the execution of these sequences, the
software may, in principle, transition through millions of
different states.

Recent research has demonstrated that (1) GUI events
interact in complex ways; a GUI’s response to an event
may vary depending on the context established by preceding
events and their execution order [2], (2) GUI-event coverage
is statistically related to the likelihood of detecting certain
kinds of faults [18], (3) long test sequences are able to detect
faults missed by short ones, even when the latter are system-
atically generated [19], and (4) events that interact directly
with the underlying program business logic, as opposed to
opening/closing menus/windows, are more likely to trigger
faults [2]. This suggests that we need systematic coverage
criteria for GUI testing that considers these issues.

There has been no prior work (other than in [15]) defining
coverage criteria for GUI test sequences based on combina-
torial interaction testing. However, several researchershave
developed and studied criteria for test sequences in other
domains, although context has not been their explicit focusin
terms of event permutations and positions. Danielset al. [20]
define and compare a number of coverage criteria, for object-
oriented software, based on method sequencing constraints
for a class. The constraints impose restrictions on method
behaviors and are derived from specifications of a class. Their
goal is to execute sequences of instance methods that are
obtained from the sequencing constraints and evaluate their
results for correctness. Similarly, Farooqet al. [21] develop
new coverage criteria based on colored Petri net models and
used them for automatic generation of test sequences. They
convert UML 2.0 activity diagrams, which are a behavioral
type of UML diagram, into a colored Petri net. They define
two types of structural coverage criteria for activity-diagram
based models, namely sequential and concurrent coverage.

Several other researchers have relied on existing conven-
tional criteria for test sequences. For example, Inkumsahet
al. [22] use branch coverage to evaluate test cases, which
are method sequences for object-oriented programs. Similarly,
Gallagher and Offutt [23] use classical graph coverage criteria
on data flow graphs for integration testing of object-oriented
software that uses components that are developed by different
vendors, in different languages, where the implementation
sources are not all available. Gargantiniet al. [24] use sim-
ilar graph criteria on abstract-state machines to evaluatethe
adequacy of test cases generated from a model checker.

The work presented in this paper is unique in that it
builds upon the foundation laid by combinatorial interaction
testing [16], and applies this to GUI testing. This section first

discusses prior work on GUI testing and then casts prior work
on combinatorial interaction testing in GUI terms.

2.1 GUI Testing

A large body of research on software testing for GUIs exists
[13], [25]–[31] and many GUI testing techniques have been
proposed; some have been implemented as tools and adopted
by practitioners. All of these techniques automate some as-
pect(s) of GUI testing including model creation (for model-
based testing), test-case generation, test oracle creation, test
execution, and regression testing. Although the nature andtype
of test cases may vary with different techniques, all of them
explore the GUI’s state space via sequences of GUI events.

Semi-automated unit testing tools such asJFCUnit, Abbot,
PounderandJemmy Module[32] are used to manually create
unit GUI test cases, which are then automatically executed.
Assertions are inserted in the test cases to determine whether
the classes/methods in the unit under test function correctly.
More advanced tools called capture/replay tools “capture”a
user session as a test case, which can later be “replayed”
automatically on the GUI [33]. Again, test creation is manual
and the tools facilitate only the execution of test cases. The part
of the GUI state space explored by these test cases depends
largely on the experience and knowledge of the testers and the
quality of the user sessions.

Model-based techniques have been used to automate certain
aspects of GUI testing. For example, manually createdstate
machinemodels [25], [27] have been used to generate test
cases. The nature and fault-detection effectiveness of generated
test cases depend largely on the definition of “GUI states.”
Other work on GUI testing has focused ongraph models to
minimize manual work. The most successful graph models that
have been used for GUI test-case generation include EFGs and
EIGs [3]. The nodes in these graphs represent GUI events;
edges represent different types of relationships between pairs
of events.

An EFG models all possible event sequences that may be
executed on a GUI. It is a directed graph that contains nodes
(one for each event in the GUI) and edges that represent
a relationship between events. An edge from nodenx to
node ny means that the event represented byny may be
performedimmediately afterthe event represented bynx. This
relationship is calledfollows. Note that a state-machine
model that is equivalent to this graph can also be constructed –
the state would capture the possible events that can be executed
on the GUI at any instant; transitions cause state changes
whenever the number and type of available events change.
The EFG is represented by two sets: (1) a set of nodesN
representing events in the GUI and (2) a setE of ordered pairs
(ex, ey), where{ex, ey} ⊆ N, representing the directed edges
in the EFG;(ex, ey) ∈ E iff ey follows ex. An important
property of a GUI’s EFG is that it can be constructed semi-
automatically using a reverse engineering technique called
GUI Ripping[3]. A GUI Ripperautomatically traverses a GUI
under test and extracts the hierarchical structure of the GUI
and events that may be performed on the GUI. The result of
this process is the EFG.

4

EIG nodes, on the other hand, do not represent events to
open or close menus, or open windows. The result is a more
compact, and hence more efficient, GUI model. An EFG can
be automatically transformed into an EIG by using graph-
rewriting rules (details presented in [2]).

Figure 1 presents a GUI that consists of four events,Cut,
Copy, Paste, andEdit. Figure 1(b) shows the GUI’s EFG; the
four nodes represent the four events; the edges represent the
follows relationships. For example, in this EFG, the event
Copyfollows Edit, represented by a directed edge from the
node labeledEdit to Copy.

Cut Copy

EditPaste

Cut Copy

Paste

(a) (b) (c)

Fig. 1. (a) A Simple GUI, (b) its EFG, and (c) EIG.

Figure 1(c) shows the corresponding EIG. Note that the EIG
does not contain theEdit event. In fact, the graph-rewriting
rule used to obtain this EIG was to (1) deleteEdit because it
is a menu-open event, (2) for all remaining eventsex replace
each edge(ex,Edit) with edge(ex, ey) for each occurrence of
edge(Edit , ey), and (3) for alley, delete all edges(Edit , ey)
and store the mapping “ey → (Edit , ey)” for use during test
execution. The GUI’s EIG is fully connected with three nodes
representing the three events.

The basic motivation of using a graph model to represent
a GUI is that graph-traversal algorithms (with well-known
run-time complexities) may be used to “walk” the graph,
enumerating the events along the visited nodes, thereby gen-
erating test cases. A technique to generate test cases, each
corresponding to an EIG edge has been developed; these test
cases are calledsmoke tests[3]. Two examples of such length
two smoke test cases for our example of Figure 1(c) are
<Copy ,Cut> and<Cut ,Paste>. There are a total of nine
such tests – one for each EIG edge. Because EIG nodes do
not represent events to open/close menus or open windows,
other events (in this caseEdit) needed to reach the EIG
events are automatically generated at execution time using
the mappings{Cut → (Edit , Cut), Paste → (Edit , Paste),
Copy → (Edit , Copy)} stored earlier, yielding an exe-
cutable test case [3]. The two test cases will “expand” to
<Edit ,Copy ,Edit ,Cut> and<Edit ,Cut ,Edit ,Paste>.

Based on these graph models, a class of coverage criteria
called event-based criteriahas been defined [13]. These cri-
teria use events and event sequences to specify a measure of
GUI test adequacy. AGUI componentis defined as the basic
unit of testing. The GUI is represented by its components
and their interactions. Two types of criteria are defined: (1)
intra-component criteria for events within a component and
(2) inter-component criteria for events across components.
However, these criteria did not account for context, sequence
length, and position of events in a test case.

In more recent work [15], we used covering arrays to

Events:{ClearCanvas, DrawCircle, Refresh}

1.<ClearCanvas, ClearCanvas>
2.<ClearCanvas, DrawCircle>
3.<ClearCanvas, Refresh>
4.<DrawCircle, DrawCircle>
5.<DrawCircle, Refresh>
6.<DrawCircle, ClearCanvas>
7.<Refresh, Refresh>
8.<Refresh, ClearCanvas>
9.<Refresh, DrawCircle>

CoveringArray : CA(9;2,4,3)

ClearCanvasRefreshDrawCircleRefresh

RefreshClearCanvasRefreshRefresh

DrawCircleDrawCircleClearCanvasRefresh

ClearCanvasDrawCircleRefreshDrawCircle

DrawCircleClearCanvasDrawCircleDrawCircle

RefreshRefreshClearCanvasDrawCircle

RefreshDrawCircleDrawCircleClearCanvas

DrawCircleRefreshRefreshClearCanvas

ClearCanvasClearCanvasClearCanvasClearCanvas

Smoke Tests

Fig. 2. Covering Array and Smoke Tests

generate long event sequences. Although we did not have
a notion of test adequacy, our test cases were useful – a
feasibility study on one subject application showed that the
new technique was able to detect faults that were previously
undetected. Our current work formalizes the notion of using
combinatorial interaction testing by defining adequacy criteria
that capture context.

2.2 Combinatorial Interaction Testing

The basis for combinatorial interaction testing is acovering
array. A covering array (written asCA(N ; t, k, v)) is anN×k

array onv symbols with the property that everyN × t sub-
array contains all ordered subsets of sizet of the v symbols
at least once [17]. In other words, any subset oft-columns
of this array will contain allt-combinations of the symbols.
We use this definition of a covering array to define the GUI
event sequences.1 Suppose we want to test sequences of length
four and each location in this sequence can contain exactly
one of three events (ClearCanvas, DrawCircle, Refresh) as is
shown in Figure 2. Testing all combinations of these sequences
requires 81 test cases. We can instead sample this system,
including all sequences of shorter size, perhaps two. We model
this sequence as aCA(N ; 2, 4, 3) (top portion of Figure 2).
The strengthof our sample is determined byt. For instance
we set t=2 in the example and include all pairs of events
between all four locations. If we examine any two columns
of the covering array, we will find all nine combinations of
event sequences at least once. In this example there are 54
event sequences of length two which consider the sequence
location. This can be compared with testingonly the nine
event sequences which would be used in our prior generation
technique for smoke tests (see bottom portion of Figure 2).

1. A more general definition for a covering array exists, thatdoes not
assume a singlev, but instead allows each location in the array to have a
different number of symbols. This type of array is not necessary for our
problem, since we will always have the same number of events in each of the
k positions.

5

The number of test cases required for thet-way property, is
N . In our example, we generate aCA(9; 2, 4, 3), i.e., a 9× 4
array on the3 events with the property that every9 × 2 sub-
array contains all ordered subsets of size2 of the 3 eventsat
leastonce. Since the primary cost of running the test case is the
setup cost, we cover many more event sequences for almost the
same cost as our smoke tests. In general we cannot guarantee
that the size ofN will be the same as the shorter sequence,
but it will grow logarithmically ink rather than exponentially
as does number of all possible sequences of lengthk [16].

Covering arrays have been used extensively to test input
parameters of programs [16], [34], [35] as well as to test
system configurations [36]–[38]. Other uses of covering array
sampling have been suggested, such as testing software prod-
uct line families [39] and databases [40]. A special type of
a covering array, (an orthogonal array) developed from Latin
squares, has been previously used to define GUI tests by White
[31]; however this work used covering arrays in a stateless
manner, to define subsets of the input parameter combinations.
Bryce et al. used covering arrays to test a flight guidance
system also modeled with state variables [41]; however, only
event sequences of length one were considered. In this paper,
we use covering arrays to sample long event sequences, where
events must consider state (determined by location in sequence
and all prior events).

3 EVENT COVERAGE TEST ADEQUACY

This section presents a family of event coverage adequacy
criteria created to capture our notion of interaction coverage.
The strongest criterion (described last) is derived directly from
a covering array, while the other criteria are relaxations of this
sampling technique. They are meant to capture specific types
of context manifested by consecutive and interrupting events.

We begin by defining event-tuples and event-positions in
a sequence. Assume we have a set of eventsE, and each
event can occupy any locationp in the sequenceS of length
k. Our first definition does not assume a specific position (or
context) within a sequence of the events, but rather defines a
combination of events that occur in order somewhere within
the sequence.

Definition: An event-t-tuple(ei, ej, . . . , et) is an ordered
tuple of sizet of events fromE. A set of eventsE gives rise
to |E|t event-t-tuples, i.e., all possible permutations of events.

The example shown in Figure 3 labels two eventse1 ande2

(other events are not labeled). There are four possibleevent-
2-tuplesfor these two events –(e1, e1), (e1, e2), (e2, e1), and
(e2, e2) shown in Figure 3(a). In a sequence of length 5, shown
in Figure 3(b), theseevent-2-tuplescan occur with and without
other events between them and in any location in the sequence.

To account for context, we need to associate positions within
a sequence to specific events. The next few definitions allow
for context.

Definition: An event-positionin a length-k sequenceS is
an ordered pair(e, p), where evente ∈ E is at positionp

(1 ≤ p ≤ k).
In the first row of the table seen in Figure 3(b), we see

evente1 in position 1 of the sequence; therefore this is event-

e1 e1

e1 e2

e2 e1

e2 e2

e1 e2 * * *

e1 * e2 * *

e1 * * e2 *

e1 * * * e2

* e1 e2 * *

* e1 * e2 *

* e1 * * e2

* * e1 e2 *

* * e1 * e2

* * * e1 e2

event-2-sequences

<(e1,1), (e2,2)>

<(e1,1), (e2,3)>

<(e1,1), (e2,4)>

.

.

.

<(e1,4), (e2,5)>

e1 e2 e1 e2 e2

e1 e1 e2 e1 e1

e2 e2 e2 e1 e2

(c) Three Length 5 Test Sequences

(a) 2-cover

(b) All possible event-2-sequences
for event-2-tuple (e1,e2)

Fig. 3. Event coverage and Event-position coverage

position (e1, 1). Similarly, for e2 in the same sequence, the
event position is(e2, 2).

Given a sequenceS of lengthk, we now extend the event-
position concept to a vector.

Definition: An event-t-sequenceis a vector of event-
positionsof length t, <(ei, p1), (ej , p2), ..., (en, pt)>, where
k ≥ t, 1 ≤ px ≤ k for all x, 1 ≤ x ≤ t, p1 < p2 < ... < pt,
andei, ej , ...en ∈ E.

In Figure 3(b), <(e1, 1), (e2, 2)> in the first row and
<(e1, 1), (e2, 3)> in the second row are bothevent-2-
sequences. Note that the definition includes the same events
in different positions; hence it is perfectly reasonable tohave
<(e1, 1), (e1, 2)> in a sequence ife1 appears in positions1
and 2. A single lengthk-sequence,S, with k ≥ t has

(

k
t

)

event-t-sequenceswithin it.
As theFreeMind example in Section 1 illustrates, for GUI

fault detection, it is important to distinguish between event
sequences in which certain events arerequiredto appear con-
secutively versus allowing other events to appear in between,
thereby establishing a different context of execution. We now
allow for this distinction, leading to two different concepts of
test adequacy.

Definition: An event-consecutive-t-sequenceis an event-
t-sequence<(ei, p1), (ej , p2), ..., (ek, pt)> such thatpx =
px−1 + 1, for all 1 < x ≤ t.

That is, the events in anevent-consecutive-t-sequencemust
be in adjacent positions. In 3(b), we have shown the expan-
sion of all possible positions for theevent-2-tuple(e1,e2) in
a length 5 sequence. Theevent-consecutive-2-sequencesare
shown in the highlighted rows.

We can use these definitions to develop our first notion of
event coverage adequacy. The coverage is tied to both the event
combination strengtht, as well as the length of the sequence
k. Context comes from the notion of position in the sequence.

Definition: A test suite ist-coveradequate if it executes all
possibleevent-t-tuples(all possible permutations of events) in

6

the form of anevent-consecutive-t-sequenceat least once.
Examining the set of three length 5 test sequences in Figure

3(c), we see that all fourevent-2-tuplesappear in the form of
an event-consecutive-2-sequenceat least once. For example,
the first test sequence covers(e1, e2), (e2, e1) and(e2, e2); the
second covers(e1, e1). This set of test sequences has 100%
2-cover adequacy. If we generate only length-2 sequences
(which in fact are our smoke tests), then for 100%2-cover
adequacy, we need the four sequences shown in Figure 3(a).
Whenevert==k, a t-cover adequate test suite is equivalent
to an exhaustive enumeration of sequences of lengthk. In
general, longer, carefully chosen sequences should allow us to
achieve better coverage using fewer sequences.

Going back to ourFreeMind example of Section 1,
a 3-cover adequate suite for this application would con-
tain all possibleevent-3-tuplesin the form of an event-
consecutive-3-sequence, including the exception-causing se-
quences<e1, e2, e3> and<e3, e2, e1>.

We now consider event sequences that are not consecutive.
Given a sequenceS of length k, wherek > t, if we have
at least oneevent-t-sequencecontained within it that is non-
consecutive (i.e., there is at least oneevent-positioninterrupt-
ing this sequence), we call this anevent-non-consecutive-t-
sequence.

Definition: An event-non-consecutive-t-sequenceis an
event-t-sequence<(ei, p1), (ej , p2), ...(en, pt)>, wherep1 <

p2 < ... < pt, such that at least one interval(p2−p1), ..., (pt−
pt−1) is greater than 1.

In Figure 3(b), the non-shaded rows representevent-non-
consecutive-2-sequencesfor the event-2-tuple(e1, e2).

This brings us to our next adequacy coverage metric.
Definition: A test suite ist+-cover adequate if it exe-

cutes all possibleevent-t-tuplesin the form of anevent-non-
consecutive-t-sequenceat least once. Adequacy is zero when
t==k.

In Figure 3(b), there are 6 possibleevent-non-consecutive-
2-sequencesto choose from for each of theevent-2-tuples. To
satisfy a2+-cover, we need to select only one of each. For
instance in rows 2, 3 and 4, we have a singleevent-2-tuple
represented by differentevent-non-consecutive-2-sequences.
Only one of these is needed to satisfy coverage. In Figure
3(c), the three test sequences cover allevent-2-tuplesin an
event-non-consecutive-2-sequenceat least once; therefore it
has 100%2+-coveradequacy.

We can combine these two coverage metrics to get a third
notion of adequacy.

Definition: A test suite ist∗-cover adequate if it is both
t-coveradequate andt+- coveradequate for a common set of
eventsE.

A 2∗-cover for Figure 3(a) requires at least 8event-t-
sequences(4 event-consecutive-2-sequencesand 4event-non-
consecutive-2-sequences). We have 100%2-cover adequacy,
but 0%2+-coveradequacy (recall that by definition this is 0
whent==k). Therefore we have only 50%2∗-coveradequacy.
However, Figure 3(c) has both 100%2-cover and 2+-cover
adequacy as well as 100%2∗-coveradequacy.

If we want to consider context more completely for testing,
then the length ofS when k > t, dictates a stronger set of

testing contexts;i.e., testing from all possible starting states.
There are

(

k

t

)

× |E|t possibleevent-t-sequenceswhich means
that the same set ofevent-t-tuplescan be tested from many
different positions. This is not captured in our adequacy sofar.
To define this criteria we use a covering array from traditional
CIT and extend it to the notion of sequences defined above.

Definition: A test suite with test cases of lengthk is
t-k-covering array adequate whent < k and it contains
all possibleevent-t-sequencesat least once. Covering array
adequacy is not defined whent==k since this is an exhaustive
enumeration of all possible event permutations.2

A 2-5-covering arrayfor the events in Figure 3(a) requires
that we include all of the possible combinations ofevent-2-
sequences. There are 40 combinations that must be covered in
a length 5 sequence for this set of 2 events.

If we examine the test sequences in Figure 3(c), although we
have 100% adequacy for a2∗-cover, the 2-5-covering array
adequacy is only 70% (28 of the 40event-2-sequencesare
covered). For instance, theevent-2-sequence<(e1, 2), (e2, 4)>
seen in row six of Figure 3(b), is missing from the set of test
sequences.

So far we have measured adequacy fort=2, but we can
easily extend this tot=3,4,..., etc. The3-cover adequacy for
Figure 3(c) is 87.5%. We are missing anevent-consecutive-
3-sequencefor the event-3-tuple(e1, e1, e1). The 3+-cover
is also missing anevent-non-consecutive-3-sequencefor the
event-3-tuple(e2, e1, e1). Together they provide 87.5% ade-
quacy for the3∗-cover. The 3-5-covering arrayadequacy is
much lower. Only 30event-3-sequencesare covered (out of
80) for an adequacy of 37.5%.

Our adequacy criteria have a clear subsumption relationship
when k > 2. The t-k-covering array subsumes all other
adequacy criteria, while thet∗-coversubsumes botht+-cover
and t-coveradequacy.

4 CASE STUDY

We now describe a case study to systematically explore the
effectiveness of our new adequacy criteria on event context.
The overall research question that we aim to answer is: “Is
there a correlation between the defined coverage-adequate
test criteria and fault detection?” To answer this question we
begin with a characterization of test suites using the strongest
coverage criteria defined,t-k-covering array adequate test
coverage. Our characterization first examines fault detection
and then quantifies the coverage of subsumed adequacy within
these test suites. We then examine how specific test suites
developed for each of the adequacy criteria perform with
respect to fault detection.

4.1 Study Setup

We selected two different sets of subjects for our study.
The first set consists of four applications:TerpPaint,
TerpPresent, TerpSpreadSheet, and TerpWord of

2. This differs from the traditional definition of a coveringarray [17] where
t ≤ k.

7

theTerpOffice suite developed at the University of Mary-
land.3 We have usedTerpOffice in numerous experi-
ments before, and are very familiar with its code and func-
tionality, which is very important as Step 2 of the study
procedure will show. To minimize threats to external va-
lidity, our second set consists of four open source GUI-
based applications (CrosswordSage 0.3.5, FreeMind
0.8.0, GanttProject 2.0.1, JMSN 0.9.9b2) down-
loaded from SourceForge. These applications have also been
used in our previous experiments [42]; details of why they
were chosen have been presented therein.

For theTerpOffice applications, a GUI fault is defined
as a mismatch, detected by a test oracle, between an “ideal”
(or expected) and actual GUI state. Hence, to detect faults,a
description of ideal GUI execution state is needed. We develop
the test oracle from a “golden” version of the subject appli-
cation and use the oracle to test otherfault-seeded versions
of the application. An automated tool executes each event in
each test case on the golden version, and captures the GUI
state (widgets, properties, and values) automatically by using
the Java Swing API. The state information is then converted to
a sequence ofassertEquals(X, Y) statements, whereX
is the extracted value of a widget’s property.Y is a placeholder
that is instantiated with the corresponding value extracted from
the fault-seeded version. The methodassertEquals() re-
turnsTRUE if its two parameters are equal, otherwiseFALSE.
The test cases are also executed on each fault-seeded version
(one fault per version). The results of theassertEquals()
are recorded. If, after an evente in a test caset executes on
fault seeded versionFi, even oneassertEquals() method
returnsFALSE, thent is said to have “detected the faultFi.”
The number of seeded faults relevant to this study seeded
in TerpPaint, TerpPresent, TerpSpreadSheet, and
TerpWord, are 116, 126, 114, and 71, respectively.

In theSourceForge application set we rely onnaturally
occurring faults. Here, the application is said to have passed a
test case if it did notcrash(terminate unexpectedly or throw an
uncaught exception) during the test case’s execution; otherwise
it failed. Such crashes may be detected automatically by the
script used to execute the test cases. Due to their popularity,
these applications have undergone quality assurance before
release. To further eliminate “obvious” bugs, we used a static
analysis tool calledFindBugs[43] on these applications; after
the study, we verified that none of our reported bugs were
detected by FindBugs.

We generate and execute smoke tests using the EIG-based
algorithm for all subjects; the faults detected by these test cases
are labeled “smoke faults” and no longer used in this study
(they are not included in the seeded fault numbers mentioned
above).

4.2 Study Procedure

The study is conducted in six steps on each subject application
independently, as described next. The most complex part of

3. Detailed specifications, requirements documents, source code
CVS history, bug reports, and developers’ names are available at
http://www.cs.umd.edu/users/atif/TerpOffice/.

this study is the completion of the first three steps through
test-case generation. To achieve our new coverage criteria, we
need to control permutations of events and their positions;cov-
ering arrays provide the strongest coverage criteria. However,
they also provide some unique challenges that need careful
modeling and preparation.

When combining events, one must consider that GUI events
have strict structural constraints (e.g., the eventPrinterProp-
erties in the Print window can be executed only after
the Print window is open) and complex GUI-state-based
dependencies (e.g., execution of one event results in a GUI
state in which another event is enabled/disabled); one cannot
simply concatenate different events together to obtain a single
executable test case – certain events may be unavailable or
disabled. Our study procedure explicitly models and adds
state-based constraints that reduce the need for structural
ordering relationships between GUI events. The first step in
the study models and creates the system interaction event set
(SIES) to be used as the basis for the covering array algorithm.
The second step generates the test cases for our study. The
third step takes the output of the covering arrays and converts
them into executable tests. The fourth and fifth step run our
tests, detect faults and capture coverage while the last step
analyzes our results for the various coverage criteria developed
in Section 3. Details for each step are described next.

Step 1. Prepare the GUI model for Covering Arrays:
In this step we use our reverse engineering toolGUI Ripper
to create the event-interaction graph (EIG) model. Detailsof
the GUI Ripperhave been described in earlier reported work
[3]. Here, it is sufficient to know that theRipperautomatically
traverses the GUI structure of the program under study; the
output is the EIG. The most important property of EIGs for
this work is that the EIG may not contain all the events in
the GUI; some events are abstracted away; we will revisit the
impact of this property in Step 4.

We next group the events by functionality. The events within
each group constitute the events for a single model that are
used to generate test sequences. Events that are not contained
within the same group will not be tested together. However,
one event may be a part of multiple groups. This part of
our process is currently done manually. Domain knowledge is
required to determine which events are likely to be includedin
similar functionality. Future work is to automate this process
through the use of historical data on similar domains. The
output is a model that lists the specific event groups as well as
the number of events per group. The groups and their number
of events (#Events(v)) are shown for each of our applications
in Table 1; note that because groups may be overlapping, the
“Total” column is not the sum of events in the groups shown
– the Total column shows the number ofuniqueevents in the
groups.4

Once the event graphs and groups have been identified, it
is necessary to specify constraints on events such that the
generated event sequences are executable. This is necessary
because some events may not run without a set of prior set-

4. Complete experimental results can be found at
http://www.cs.umd.edu/users/atif/tse09/.

8

Groups 1 2 3 4 5 6 7 8 9 Total

TerpPaint Tool Image Clipboard Layer File
Description Mgt. Settings Ops. Manip. Ops.
#Events(v) 27 35 11 11 6 88

TerpPresent
Description View Format Text Shape ContentClipboardWindows Tools
#Events(v) 14 20 31 13 14 11 7 10 102

TerpSpreadSheet Format Cell Graphs Content Table Find/
Description Cell Function Format Replace
#Events(v) 14 12 4 12 8 5 46

TerpWord Table DocumentContent Ins. Image Font ClipboardWindow SearchingManage
Description Style PropertiesSettings Style Plugins
#Events(v) 14 32 16 7 12 8 3 11 3 92

CrosswordSage Manage Solve Open andPreference
Description Crossword Word Save Settings
#Events(v) 11 6 4 14 33

FreeMind Map Format Edit Clipboard File Node Tools
Description Ops. Node Ops. Ops. Ops.
#Events(v) 11 18 16 10 23 17 10 99

GanttProject Mgmt. File Format Print Settings Task
Description Ops. Preview Properties
#Events(v) 14 14 13 12 7 25 85

JMSN
Description Logon View Tools Settings Report
#Events(v) 4 15 18 18 8 63

TABLE 1
Event Grouping in Subject Applications

up events, or must occur only after another event has been
fired. For instance, inTerpSpreadSheet, the Undo event
requires that one of the eventsCut, Paste, PasteSpecial, Clear
occurs first; otherwiseUndo remains disabled; we will use
these constraints in Step 4. This ends the modeling stage of
our test case generation.

Step 2. Generate Covering Arrays: We generatet-10-
covering arraysfor our test cases; i.e., strengtht covering
arrays with 10 columns. There are three inputs to this step of
the process. The first isk which determines the length of our
abstract sequences (i.e., those that may need the insertion of
other events to become executable). In this study,k=10 for
all our subjects. This was chosen heuristically as the longest
feasible size for overall success with our test harness. The
second is the number of abstract events per location,v, with
a list of thev abstract events that are to be tested. This comes
from the previous step. The third is the strength of the desired
covering array,t. Using these parameters, a covering array is
generated using one of the known covering array generation
algorithms; simulated annealing [17].

The covering array containsN rows consisting of abstract
events. In this study, we generate covering arrays for con-
secutive successive strengths starting att=2, until our arrays
reach sizes larger than 20,000 test sequences. This number
was chosen due to resource limitations. The sizes of these
covering arrays and the number of test cases generated per
group is shown in Section 5, Tables 4 and 5. The strengths
of covering arrays in our subjects ranges fromt=2 to t=8.
(Two groups ofTerpWord had only three events allowing us
to increaset to 8.) The majority of our groups are not tested
beyondt=4. These covering arrays, each row corresponding to
an abstract event sequence, are then passed to the next phase
for translation into executable tests.

Step 3. Generate Executable Tests: The abstract event se-
quences from Step 2 are expanded in this step to generate exe-
cutable test cases. The expansion process is done in two stages.
We will explain these stages via an example. Consider an ac-

tual abstract event sequence<WriteInTable, ComputeAverage,
WriteInTable, Undo, InputFunction, Count, InputFunction,
ComputeSum, ComputeMin, ComputeSum> from the 2-way
covering array for Group 2 ofTerpSpreadSheet. First,
the constraints from Step 2 are used to increase the test case’s
chances of executing to completion, by ensuring that none of
the events are disabled. In this example sequence, we know
thatUndowill remain disabled unless it is preceded with spe-
cific events; hence eventCopy is inserted beforeUndo, result-
ing in the expanded sequence<WriteInTable, ComputeAver-
age, WriteInTable, Copy, Undo, InputFunction, Count, Input-
Function, ComputeSum, ComputeMin, ComputeSum>. How-
ever, certain parts of the sequence are still not executable; for
example, the subsequence<WriteInTable, ComputeAverage>

cannot be executed; eventComputeAverageis not available
in the GUI after eventWriteInTable has been executed.
Additional events are needed to “drive” the GUI so that
ComputeAveragebecomes available. Hence, in the second
stage of expansion, some events that were abstracted away
in Step 1, are now re-inserted to “reach” other events; these
reaching events are obtained automatically [2]. The fully
expanded sequence is<WriteInTable, Function(Menu), Com-
puteAverage, WriteInTable, Edit(Menu), Copy, Edit(Menu),
Undo, InputFunction, Function(Menu), Count, InputFunc-
tion, Function(Menu), ComputeSum, Function(Menu), Com-
puteMin, Function(Menu), ComputeSum>, where events
Function(Menu) and Edit(Menu) correspond to “click-on-
Function-menu” and “click-on-Edit-menu”, respectively.

Step 4. Execute Test Cases: Each application is launched
in a state in which most of the events are enabled – in all
cases, this requires loading a previously saved application
file. Because we need 1,257,619 test runs, we use a cluster
of 40 machines to speed up execution; all are Pentium 4
2.8GHz Dual-CPUs with 1GB memory, running Red Hat
Enterprise Linux version 2.6.9-11. The total time used is 9
days per machine. Data is collected via our automated oracle
to determine test cases that detect faults; this forms the error
report. (Later analysis of the error reports confirmed that the
faults detected by the smoke tests were subsumed by the
covering-array-based tests.)

Step 5. Compute Coverage: The input to this step is the
set of test cases, and the last successfully executed location
in the sequence. This data is analyzed against all of our
coverage criteria. We calculate the adequacy up through the
last executed sequence in a test case. Our denominator is
the number of requiredt-tuples and their associatedevent-
positionsfor the particular adequacy criterion being measured.
The results of this computation are discussed in Section 5.

Step 6. Analyzing Test Adequate Suites: Our final step is
to analyze our data for the various coverage criteria developed
in Section 3. We use a greedy technique for this process.
Since ourt-10-covering arraycontains the highest possible
coverage, we use these test cases as our starting point. For
each group and each strength (t) that finds at least one fault,
we find a subset of test cases from its corresponding covering
array that will satisfy the maximum coverage for each of the
adequacy criteria, one row at a time. We begin by selecting
a test case (randomly from among the best when there is

9

a tie) that gives us the highest coverage for the adequacy
criteria desired. We then select the test case that has the largest
increase in cumulative coverage. We continue adding test cases
until we have reached the maximum coverage obtainable for
that criterion in our covering array. For instance if we are
interested in a2-cover adequate test suite and the original
2-10-covering arrayfor that subject/group was 95%2-cover

adequate, we select test cases until we reach 95% coverage.
We note that we do not restrict the test cases to those which are
length10. Although most of the selected test cases are length
10, it is possible that ones which did not run to completion
(i.e., have a shorter length) are selected by the algorithm,when
this provides the largest increase in coverage. To obtain our
t∗-cover suites we take a set union (eliminating duplicates)
of the correspondingt-coverand t+-cover test suites. This is
an upper bound on the size of the suites, since we may be
able to remove duplicate coverage, but we are guaranteed to
have completet∗ coverage by doing this. To compute the fault
detection of each coverage adequate test suite we analyze the
fault matrices from the covering array test execution runs.

4.3 Practical Limitations of Study Procedure

As is the case for conventional software, where there are in-
feasible paths in programs, we may have infeasible sequences
in our test cases. These infeasible sequences cause some of
our test cases to not run to completion. Similar problems have
been noted in other state-based testing domains [9]. However,
we do not know which event sequences are infeasiblea priori.
The impact of this situation on test adequacy is expected to be
similar to that of adequacy for statement or branch coverage
in a program. We can only cover 100 percent of thefeasible
sequences. In this work we do not attempt to repair infeasible
sequences, but leave that as a future avenue to pursue. The
parts of the test cases that did not execute is recorded; we
use this information to characterize our test cases in the next
section.

In this study, we devised several domain-specific modeling
steps to reduce the generation of those event sequences that
execute infeasible paths. Many of these steps are done manu-
ally. First, we manually group events together by functionality.
Second, we manually identify constraints on events such that
the generated event sequences are likely to be executable. We
consider this manual effort to be a serious limitation of our
test-case generation techniques. We will pursue this limitation
in future work.

4.4 Independent and Dependent Variables

For our study the independent variables are the coverage
criteria described in the previous section,t-10-covering array
adequate test suites,t-cover, t+-cover and t∗-cover test
suites. We use a singlet-10-covering array for each sub-
ject/group/strength, but we generate five test suites for each of
the other coverage-adequate test suites. We do this to reduce
the likelihood that a random choice of test case impacts our
results. The dependent variables are the covered percentage
for each criterion defined, fault detection and test suite size.

4.5 Threats to Validity

We have tried to reduce threats to validity of our study but
as with all experiments there are limitations to the resultsthat
can be inferred. We discuss the main threats here. The first
threat that we identify is the threat to generalization of our
results. Four of our subjects (theTerpOffice applications)
were written by students in a University setting. We believe
however that these are realistic GUI applications and they have
been used in many other studies. To reduce this threat, we
have selected four open source applications as well. Another
threat is that we have run only a single covering array for
each strength of each group, but we have generated each one
independently of the others and believe that the general trends
are still valid. Given the large resources required to run all
of these tests suites we do not believe that we could have
performed such a broad study and run multiple covering arrays
at each strength as well.

The second threat we address is that of internal validity.
All of our testing is performed in an automated fashion and
we use many programs to analyze the resulting data. We have
validated our programs and have hand analyzed subsets of the
data to confirm the results obtained are accurate. We have cross
checked our adequacy of suites using more than one program.

Finally it is possible that we have selected the wrong
metrics (construct validity) for study, but we believe thatfault
detection, coverage and test suite size are important metrics
that impact test suite effectiveness and are a reasonable starting
point for evaluation.

5 CHARACTERIZATION OF GENERATED TEST
SUITES

To answer our research question we begin with a charac-
terization of the covering array test suite developed in Step
2. In this section we quantify the fault detection of our
covering array test suites which represents the maximum
possible fault detection. We then quantify the various adequacy
criteria within each test suite. In the next section we examine
the effectiveness of the different adequacy criteria test suites
developed in Step 6. We examine this with respect to both
fault detection and the size of the test suites.

5.1 Overall Fault Detection

Since all subjects were tested prior to this study with smoke
tests, any fault found in this study isnew and considered
undetectable by them. Table 2 shows the detailed fault data
for each subject ofTerpOffice for the highest adequacy
criterion,t-10-covering arrays. In this table each row is a test
suite labeledTCAt=n, whereTCA stands for the covering
array test suite andt=n is the strength of the covering array
for testing. The columns of this table are the different groups
tested in each application. A dash in a cell means that we
did not have a test suite at that strength. The totals shown for
each test suite and each group represent the totaluniquefaults
found. The columns and rows cannot simply be added since
there is overlap in fault detection for both the test suites and
for the groups; some groups share events and faulty code.

10

Test Suite
Groups

Total1 2 3 4 5 6 7 8 9
TerpPaint

TCAt=2 69 3 5 0 0 - - - - 76
TCAt=3 - - 8 0 0 - - - - 8
TCAt=4 - - - - 5 - - - - 5

Total 69 3 8 0 5 - - - - 82
TerpPresent

TCAt=2 1 1 0 0 10 44 0 94 - 105
TCAt=3 5 5 - 0 10 50 0 114 - 119
TCAt=4 - - - - - - 0 - - 0

Total 5 5 0 0 10 50 0 114 - 119
TerpSpreadSheet

TCAt=2 17 1 2 9 1 9 - - - 35
TCAt=3 19 1 2 35 1 10 - - - 65
TCAt=4 - - 2 - 1 9 - - - 12
TCAt=5 - - 2 - - 11 - - - 11

Total 19 1 2 35 1 11 - - - 66
TerpWord

TCAt=2 0 1 16 0 0 0 0 0 0 17
TCAt=3 1 - 39 0 0 0 0 0 0 39
TCAt=4 - - - 0 - 0 0 - 0 0
TCAt=5 - - - - - - 0 - 0 0
TCAt=6 - - - - - - 0 - 0 0
TCAt=7 - - - - - - 0 - 0 0
TCAt=8 - - - - - - 0 - 0 0

Total 1 1 39 0 0 0 0 0 0 40

TABLE 2
TerpOffice Covering Array

Test Suite Fault Detection

Test Suite Groups Total1 2 3 4 5 6 7
CrosswordSage

TCAt=2 0 0 0 0 - - - 0
TCAt=3 0 0 0 0 - - - 0
TCAt=4 - 0 0 - - - - 0
TCAt=5 - - 0 - - - - 0

Total 0 0 0 0 - - - 0
FreeMind

TCAt=2 0 0 1 1 0 1 0 3
TCAt=3 0 0 2 1 - 3 0 4

Total 0 0 2 1 0 3 0 4
GanttProject

TCAt=2 0 1 0 0 0 0 - 1
TCAt=3 3 1 2 2 0 - - 7
TCAt=4 - - - - 0 - - 0

Total 3 1 2 2 0 0 - 7
JMSN

TCAt=2 0 0 0 0 0 - - 0
TCAt=3 0 0 0 0 0 - - 0
TCAt=4 0 - - - 0 - - 0
TCAt=5 0 - - - - - - 0

Total 0 0 0 0 0 - - 0

TABLE 3
SourceForge Covering Array

Test Suite Fault Detection

In theTerpOffice applications we detected a large num-
ber of faults that were previously undetected. InTerpPaint
we found a total of 82 (out of 116) new faults across all
groups. InTerpPresentwe uncovered 119 (out of 126) new
faults. As we increased our strength of testing, the number of
faults detected usually increased within individual groups. For
instance we found 5 new faults in Group 3 ofTerpPaint at
t=2 and 8 faults att=3.TerpSpreadSheet andTerpWord

0

20

40

60

80

100

120

+ cov * CA + cov * CA + cov * CA + cov * CA

TerpPaint TerpPresent TerpSpreadSheet TerpWord

N
u

m
b

er
 o

f
F

au
lt

s
D

et
ec

te
d

Test Suites

t=5
t=4
t=3
t=2

Fig. 4. Cumulative Fault Coverage:
(TerpOffice)

0

1

2

3

4

5

6

7

+ cov * CA + cov * CA + cov * CA + cov * CA

CrosswordSage FreeMind GanttProject JMSN

N
u

m
b

er
 o

f
F

au
lt

s
D

et
ec

te
d

Test Suites

t=3

t=2

Fig. 5. Cumulative Fault Coverage:
(SourceForge)

show similar results for a total of 66 (out of 114) and 40
(out of 71) new faults respectively. InTerpWord we found
new faults only in a small number of groups (1-3) but the
trends for those groups hold. Although an increase in covering
array strength usually increased the number of faults we did
see some exceptions. For instance, inTerpSpreadsheet,
Group 6, we found 10 faults whent=3; however, fort=4, we
found only 9 of the 10 previously found faults. We attribute
this to chance; a specific longer sequence needed to detect
this fault happened to appear in the lower strength test suite.
Figure 4 shows the cumulative fault coverage across all groups
by covering array strength for theTerpOffice applications.
The last column for each subject is thet-10-covering array
fault detection, labeled CA. The other columns represent the
other adequacy criteria and are discussed later.

In theSourceForge applications we found new faults as
well, but not as many as were found in theTerpOffice
applications. This is expected since they arereal faults, and
only detected by crashes, rather than seeded ones detected
by oracles. Table 3 shows the results for each of these
applications. InCrosswordSage andJMSN no new faults
were found, but inFreeMind we uncovered 4 new faults and
in GanttProject we detected 7. Once again, the strength
of the test suite seems to correlate with the ability to find new
faults. For instance inGanttProject we found no new
faults in Group 1 whent=2 but found 3 new faults whent=3.
Figure 5 shows the cumulative fault coverage for all of the
SourceForge applications.

11

�������������
����	����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�������
�� �����
�� �����
�� �����
�� �����
�� �����
���������������
�� ��� !"#

(a) TerpSpreadSheet Group 6 and Group 1

$%$&$'$($)$
*$+$,$-$%$$

./& ./' ./(./& ./' ./(./& ./' ./(./& ./' ./(0%1234./& 0%1234./' 0,1234./& 0,1234./'567869:;<6=>?
8@ ABCDEFG

(b) TerpPresent Group 1 and Group 8

HIHJHKHLHMH
NHOHPHQHIHH

RSJ RSK RSL RSJ RSK RSL RSJ RSK RSL RSJ RSK RSLTKUVWXRSJ TKUVWXRSK TNUVWXRSJ TNUVWXRSKYZ[\Z]̂_̀Zabc
\d efghijk

(c) Freemind Group 3 and Group 6

lmlnlolplql
rlsltlulmll

vwn vwo vwp vwq vwn vwo vwp vwq vwn vwo vwp vwq vwn vwo vwp vwn vwo vwpxqyz{|vwn xqyz{|vwo xqyz{|vwp xnyz{|vwn xnyz{|vwo}~��~����~����
� �������

(d) GanttProject Group 5 and Group 2

Fig. 6. Adequacy of Covering Array Test Suites

12

5.2 Adequacy of Test Suites

The next part of our characterization analyzes the coverageof
our test suites based on the context based adequacy criteria
developed in Section 3. We have seen that more faults are
found in higher strength covering arrays, but in some cases we
find that increasing strength does not improve fault detection
at all or only does so slightly. To obtain more insight into this
we examine the adequacy of the covering array test suites.

Figure 6 shows data for twoTerpOffice applications
and twoSourceForge applications. In each graph we have
selected two groups to show. We see similar trends in the other
applications/groups. We measure the adequacy up tot+1 where
t is the highest strength test suite in a group. For instance
TerpSpreadSheet Group 6 (Figure 6(a)) was tested up to
t=5, therefore we show coverage up throught=6 . In Group
1 (right portion of the same graph) we tested up tot=3 so we
show coverage up tot=4. On thex-axis we list thet+-cover

(+), t-cover (cov), t∗-cover (∗), followed by thet-k-covering
array (CA) adequacy, for eacht, while on they-axis we
show the percent adequacy. Each of the delineated regions on
thex-axis represents a singlet-10-covering arraytest suite,
labeled as Gx:TCAt=y wherex stands for the group number
andy stands for the strength of testing; G2:TCAt=2 is at=2
array for Group 2.

We see that even in the case where we had many test
cases fail and ourt-k-covering arrayadequacy is quite low,
we have a high percentage oft+-cover and t∗-cover cover-
age. For instance if we examine the adequacy fort=4 for
TerpPresent (Figure 6(b)) In the3-10-covering arrays, we
see that in both groups (second and last regions of this graph)
our 4-10-covering arrayadequacy is very low (less than 20%),
but we have 100%t+-cover adequacy in the same arrays.
We see lowert-cover adequacy and a mid-range fort∗-cover
adequacy. This is not as obvious as the other results, as it is
a stronger criterion thent-cover, but sincet∗-coveradequacy
containst+-cover adequacy within it, and this has reached
100% the overall adequacy is not as low as thet-cover. If
we examine the2-10-covering arraysfor both groups (first
and third regions of the same graph) we have less than 5%
4-10-covering arrayadequacy but more than 60%t+-cover
adequacy. Once again thet∗-cover coverage is between the
t+-coverand t-coveradequacy.

In Figure 6(c), FreeMind and Figure 6(d)
GanttProject, we see that the groups had slightly
different overall adequacies, but the general trends are the
same as that of theTerpOffice applications. Figure 6(d)
shows results forGanttProject. In this subject, Group 2
has an overall low adequacy, only reaching 50%2+ coverage
and less than 20%2-10-covering arrayadequacy.

In general we can see that thet+-cover coverage is the
highest, followed byt∗-cover, followed by t-cover. This
makes sense since there are combinatorially more opportu-
nities to cover anevent-non-consecutive-t-sequencethan an
event-consecutive-t-sequencein a fixed length test sequence.
It also suggests that the weakest test criteria (the easiestto
cover) is t+-cover, while the strongest is thet-10-covering
array. This provides us with a characterization of the adequacy

obtained within our original test suites, but it does not provide
us information about the relative strength of fault detection for
each criteria. We examine that next.

6 FAULT DETECTION RESULTS

We can see from the characterization of our test suites that
(t + 1)+ and t + 1-cover is often higher than the associated
t-10-coveringarray adequacy which means they are easier to
satisfy and may be potentially useful for testing. But we do
not yet know if these test suites are effective at finding faults.
We now analyze the fault detection by each of the adequacy
criteria from the test suites derived in Step 6, and then discuss
some of the specific faults detected by our test cases.

6.1 Fault Detection and Adequacy Criteria

Figures 7 and 8 show the average fault detection by coverage
criteria for some of our subjects. For example, the upper-left
graph in Figure 7 shows the results forTerpWord, Group 3.
The y-axis shows the average number of faults detected across
all five samples; the x-axis shows the criteria for each strength.
The graph clearly shows thatt=3 coverage outperforms itst=2
counterparts. It also confirms thatt+-coveradequate test suites
have the lowest fault detection while thet-10-covering array
has the highest fault detection.t∗-cover is the next strongest
criteria while,t-cover falls in-between the others.

0
5
10
15
20
25
30
35

t=2 t=3

G3

Av
era

ge
 Fa

ult
s D

ete
cte

d

TerpWord

+
cov
*
CA 0

1
2
3
4
5
6
7
8

t=2 t=3

G4

Av
era

ge
 Fa

ult
s D

ete
cte

d

TerpPaint

+
cov
*
CA

���������
���

��� ��� ��� ��� ��� ����� �� ������� �¡�¢£¤¥¦�¤
�§¤�̈ ©ª«¬«ª®ª °̄ ±²³´µ¶·

¹̧º¸º¹»¸»¹¼¸¼¹ ½¾» ½¾¼ ½¾» ½¾¼ ½¾» ½¾¼ ½¾¿ ½¾¹Àº À¿ ÀÁÂÃÄÅÆÇÄÈÆÉÊËÌÍÄ
ËÄÎËÄÏ ÐÑÒÓÔÓÒÑÕÖÔ×ÑÑØ ÙÚÛÜÝÞß

Fig. 7. Fault Detection by Coverage Criteria (TerpOffice)

13

The other graphs (includingFreeMind in Figure 8) show
more or less similar trends. This is consistent with our ex-
pectations for the adequacy criteria. In some cases we see that
using a medium strength criteria,t-cover or t∗-coverprovides
almost the same fault detection as using at-10-covering array
(TerpPresent Group 5, TerpSpreadsheet Group 1,
TerpPaint Group 4 (whent=3) andFreemind Group 3
and 6). We examine the tradeoff of size below.

We see some small anomalies in the graphs where the
t+-cover adequate test suites find more faults than the
(t+1)+-coveradequate suites. This includesTerpPresent
Group 6 and andFreeMind, Group 3. We also see an
inversion for t-10-covering arraysbetweent=3 and t=4 for
TerpSpreadSheet, Group 6. These may be due to the
greedy method we used to select the test suites. Upon ex-
amining some of thet + 1 test suites we have found a single
test case that is shared between several of the test suites for
the lower coverage criteria that finds a large number of faults.

ààáâàáãàáäàáåææáâæáãæáä
æáåâ

çèâ çèé çèâ çèé çèâ çèéêé êã êäëìíîïðíñïòóôõöí
ôí÷ôíø ùúûûüýþÿ �������

Fig. 8. Fault Detection by Coverage Criteria (FreeMind)

Figures 4 and 5, presented earlier, provide cumulative fault
coverage across groups for each of the adequacy criteria. The
data is consistent with the individual group coverage.

The last part of our analysis examines the test suite size of
the various criteria. Tables 4 and 5 show data for our subjects.
In these tables we show each subject, each group and the
average fault detection and test suite size for each coverage
criteria at each strength. For instance inTerpPaint we can
see that thet+-covertest suite fort=2 in Group 1 contains only
43.8 test cases on average, while thet-cover contains almost
4 times as many (123.4). While the least expensive criterion
to satisfy ist+-cover, we also lose effectiveness. In this same
subject/group, we see that thet+-coveronly detected 19 faults
on average while thet-cover detected 33. One interesting
observation is that thet∗-cover suites find more faults than
the t-cover in some cases. For instance inTerpPresent,
Group 8, we see this trend for both fort=2 andt=3. We find
on average 38.6 vs. 31.6 faults att=2 when comparingt∗-
cover and t-cover and 99.6 vs. 97.6 fort=3. This suggests
that t+-coverand t∗-cover adequate test suites find different
sets of faults.

In the SourceForge applications (Table 5) the fault
detection differences are not as dramatic. In fact, in
GanttProject, Group 1, whent=2 we find the same 3
faults usingt+-cover for an average of 169 test cases, as we
do for the2-10-covering arraywhich has almost 6,000 test
cases. Only a couple of groups show weaker fault detection

Group Strength t
+-cover t-cover t

∗-cover t-10-CA
TerpPaint

Group 1 t=2 19.0/43.8 33.0/123.438.0/161.8 69/1055
Group 2 t=2 3.4/73.6 4.0/208.6 4.0/273.4 4/1783

Group 3 t=2 1.4/8.8 2.4/22.6 2.8/28.8 5/171
t=3 6.8/40.2 8.0/255.8 8.0/291.8 8/2870

Group 5 t=4 5.0/22.0 5.0/81.4 5.0/84.2 5/3428
TerpPresent

Group 1
t=2 0.0/13.0 0.2/33.6 0.2/45.4 1/280
t=3 0.0/74.4 1.4/494.4 1.4/562.0 5/5964

Group 2
t=2 0.0/24.8 0.0/66.8 0.0/89.8 1/578
t=3 0.2/207.6 4.0/1428.64.0/1621.2 5/19214

Group 5 t=2 1.6/14.4 5.0/36.4 5.2/45.8 10/280
t=3 7.0/83.4 10.0/555.210.0/623.0 10/5964

Group 6
t=2 13.0/8.0 6.4/21.0 16.4/28.0 44/171
t=3 9.4/38.4 36.2/239.037.4/274.0 50/2870

Group 8
t=2 18.8/6.4 31.6/17.0 38.6/22.6 94/144
t=3 53.8/28.8 97.6/181.899.6/209.2114/2133

TerpSpreadSheet

Group 1
t=2 15.6/12.6 15.8/33.8 16.4/44.2 17/280
t=3 18.0/75.0 19.0/498.819.0/568.8 19/5964

Group 2 t=2 1.0/9.6 1.0/25.4 1.0/34.2 1/206
t=3 1.0/48.8 1.0/313.6 1.0/358.2 1/3749

Group 3

t=2 2.0/2.0 2.0/2.6 2.0/4.4 2/25
t=3 2.0/3.0 2.0/11.2 2.0/13.8 2/131
t=4 2.0/7.4 2.0/49.4 2.0/56.6 2/639
t=5 2.0/23.8 2.0/222.8 2.0/244.0 2/2777

Group 4
t=2 4.4/14.0 6.4/30.8 6.4/39.2 9/206
t=3 10.2/64.4 25.6/352.626.8/392.8 35/3749

Group 5
t=2 1.0/5.0 1.0/11.8 1.0/16.0 1/92
t=3 1.0/16.0 1.0/94.4 1.0/109.2 1/1081
t=4 1.0/83.0 1.0/814.6 1.0/891.2 1/11454

Group 6

t=2 5.0/2.0 5.4/4.8 5.8/6.0 9/37
t=3 8.2/4.2 8.4/22.8 8.8/26.4 10/263
t=4 9.0/16.6 9.0/127.6 9.0/142.6 9/1613
t=5 9.0/75.4 9.0/727.8 9.0/794.8 11/8977

TerpWord
Group 1 t=3 0.4/81.0 1.0/535.0 1.0/607.0 1/5964
Group 2 t=2 1.0/64.4 1.0/179.4 1.0/233.6 1/1432

Group 3 t=2 14.0/17.0 14.2/44.2 14.2/58.6 16/363
t=3 15.6/112.016.8/750.217.6/851.039/10942

TABLE 4
TerpOffice: Average Fault Detection / Test Suite Size

Group Strengtht
+-cover t-cover t

∗-cover t-10-CA
FreeMind

Group 3
t=2 1.0/26.0 1.0/54.2 1.0/60.2 1/363
t=3 0.4/166.2 2.0/833.4 2.0/879.8 2/10942

Group 4 t=2 0.0/6.0 0.8/14.8 0.8/19.0 1/144
t=3 0.0/17.0 0.8/114.0 0.8/125.4 1/2133

Group 6 t=2 1.0/28.6 1.0/65.8 1.0/76.0 1/412
t=3 1.0/187.03.0/1020.63.0/1077.63/11168

GanttProject
Group 1 t=3 3.0/168.6 3.0/645.8 3.0/692.6 3/5964

Group 2 t=2 1.0/22.0 0.8/34.0 1.0/40.4 1/280
t=3 1.0/76.2 1.0/200.4 1.0/224.4 1/5964

Group 3 t=3 1.0/40.8 1.4/205.8 1.4/214.6 2/4851
Group 4 t=3 2.0/31.8 1.6/208.0 2.0/230.2 2/3749

TABLE 5
SourceForge: Average Fault Detection / Test Suite Size

14

using t+-cover. We see only a minor improvement using2-
10-covering arrayadequacy overt-cover leading us to the
conclusion that for these subjects the weaker test criteriamay
be a better choice since they are almost as effective for a
fraction of the cost.

6.2 Analysis of Faults Detected

To better understand the role of context on fault detection and
adequacy, we analyzed the faults that were detected only by
the covering array test cases. This section provides details of
our analysis and findings.
FreeMind: As mentioned in Section 1, inFreeMind
0.8.0, initially launched with an existing mindmap, con-
taining at least one node, loaded from a file, eventse1:
SetNodeToCloud, e2: NewChildNode, and e3: NewParentN-
ode, executed in a sequence (either as<e1, e2, e3> or
<e2, e1, e3>) result in anArrayIndexOutOfBoundsException
(in line 124 of ConvexHull.java). Detection of this
fault requires the execution of at least these three events
in a specific order, without certain interleaving events. The
exception is thrown when the code attempts a Graham scan
to calculate the convex hull (in methoddoGraham() in
ConvexHull.calculateHull) when painting a currently
selected cloud node’s view during the creation of its new
parent. Hence,e1 is needed to change the existing node’s
view to cloud. Evente2 is needed to ensure that the currently
selected node is a child node; evente3 is then performed
on this selected node, which attempts to repaint the map
and update the MapView. During the repainting, it invokes
the paintChildren() method, which in turn invokes the
paintClouds() method. In this method, during painting,
an incorrect value of a variableM used to index an array
throws the exception. Hence, the exception is thrown only
when creating a parent for a currently selected child node in
a mindmap that also contains a cloud node.

If another event (e.g., Undo, CloseMap, CreateNewMap,
etc.) occurs somewhere in the exception-causing sequence,the
new event may cause any number of changes to the GUI’s
state, preventing the fault from being detected – the child
node may no longer be selected (if the root node is selected),
it may no longer exist (if the child node is deleted or the
previous operation is undone), the map may be closed (on a
Closeevent), and so on.

This fault is detected by thet=2 and t=3 test suites for
FreeMind Group 3. The fact that thet=3 suite detected it is
not surprising. However, thet=2 also detected it is interesting.
Because all our test cases are of length 10, this suite also
covers some 3-way interactions, as evident by the G3:TCAt=2

section in Figure 6(c), one of them leading to the exception.
GanttProject: In GanttProject 2.0.1, events e1:
NewResource (event ImportResource also works here),
e2: NewTask, and e3: NewTask, executed in a sequence
<e1, e2, e3> result in a NullPointerException(Line 460 of
GanttTree.java) for certain large projects. The excep-
tion is thrown only when a secondNewTaskevent is fired
before GanttProject has completely handled the first
NewTaskevent; this only happens for large projects that

impose a significant performance overhead on the underlying
Java Virtual Machine. During the execution of the exception-
causing sequence,e1 loads and sets user focus on a “resource
tree.” The event handler forNewTaskcreates aTask object
and then updates a “task tree.” In doing so, it invokes the
setEditingTask() method to update the current editing
task in the task tree, where it creates a newTreePath
for the currently selected task. The user focus in the task
tree is on the new task. A secondNewTaskevent performed
before the previous updates (being handled by a different
thread) are complete fails to switch focus to the newly formed
tree node; invocation of thegetSelectedTaskNode()
method fromsetEditingTask() returns null, throwing a
NullPointerExceptionon subsequent accesses to this object’s
fields.

This example highlights the need for incorporating timing
information in our GUI test cases – this is a subject for future
work. It also shows how combining certain events together is
absolutely needed to detect certain faults. If these eventshad
not been executed consecutively, the fault would have been
missed.
TerpPaint: In TerpPaint, one set of faults (86, 87,
88) was detected by several test cases in our covering
array sample. These faults are all found in the handler
for the event SelectEraserToolwhich corresponds to the
methoderaserActionPerformed(). The faults incor-
rectly change an “==” to an “!=” in three different conditions
in this handler to checkcurZoom, a property that will decide
what type of cursor is to be used for the eraser tool. If
curZoom == zoom2, for example, the eraser cursor’s size
will be set to one size, but whencurZoom == zoom1, it
will be set to a different size. When the condition results
are incorrectly returned, and the eraser tool is used, different
results will occur. One of the test cases from the covering
array sample in Group 1 which detects this fault contains
the following abstract event sequence:<TextTool, LineTool,
FillWithColor, SelectDoubleZoom, EraserTool, FillWithColor,
LineTool, MoveMouseInCanvas, ShowToolBar, EllipseTool>.

Upon examining the code, we realized that detection re-
quires more than three events. First the test case must reach
the faulty statements in the code. Two events are needed for
this: 1) SelectAZoomTool(There are four possibilities which
correspond tozoom1, zoom2, zoom3, zoom4for curZoomin
the code.); 2)SelectEraserTool. The order of these two events
can not be changed. Simply reaching this code is not enough
for detection however. The faulty behavior needs to show itself
in the GUI for detection by our GUI-based test oracle. In
this case, an image is needed where theEraserToolcan be
applied, and the wrong eraser will wipe out a different part of
the image. By checking the resulting image on the canvas, one
can detect the fault. Here, at least two more events are needed,
that is, one for setting up an image and the other for using the
eraser tool (FillWithColor andMoveMouseInCanvasin our test
case). Therefore, the shortest sequence that can detect this fault
would be a length four sequence. In our experiments, the GUI
is started with no image (a white canvas). In the detecting test
case theFillWithColor event fills the empty canvas with the
default color, which is black. After performing theEraserTool

15

event, it moves the mouse on the canvas with the eraser tool,
then, a black area will be removed (turns white). As the type
(therefore the size) of eraser is incorrectly set by the fault, the
resulting image is different from the expected one and the test
case detects the fault.

7 CONCLUSIONS AND FUTURE WORK

This paper presented a new family of test adequacy criteria for
GUI testing. The new criteria are unique in that they allow
for “context” in GUI test cases in terms of event combina-
tion strength, sequence length, and all possible positionsfor
each event. A case study on eight applications showed that
increasing event combination strength and controlling starting
and ending positions of events helps to detect a large number
of previously undetected faults. We abstracted our event space
into a new model, a system interaction event set, that does
not have strict ordering constraints, so that we could leverage
ideas from CIT for sampling. We then relaxed the CIT criteria
to define a family of criteria with increasing coverage and cost.
We believe that an important part of our future work should
examine more closely the exact cost tradeoff for the various
type of criteria.

This work has raised many interesting questions that point to
future research. In fact, we consider this as a promising starting
point. We are currently examining new techniques to generate
test cases that can systematically improve coverage, as speci-
fied by our new criteria; in this paper we used subsets of larger
test suites rather than directly generated the test cases. The
covering array based test case generation approach provided a
good starting point, but unexecutable parts of test cases suggest
that our approach needs to be augmented. In some groups,
the events seem to be extremely interdependent despite our
best modeling attempts; allowable sequences require precise
execution orders. For such groups, we will manually construct
state-machines, instead of automatically reverse engineered
event-interaction graphs and we are exploring a dynamic
adaptive approach through the use of evolutionary algorithms
[44] to discover and repair our constraints during iterative
generation and execution.

All of our test cases in the case study were fixed to length
10. In the future, we will vary this length and study the impact
of test-case length on faults and coverage. Finally, we currently
manually partition the GUI events into groups. Future work
will study the automatic partitioning of events,e.g., based on
how events change the GUI’s state [19].

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for all of
their feedback, insights and comments on this paper. This
work was partially supported by the US National Science
Foundation under grants CCF-0747009, CCF-0447864, CNS-
0855139 and CNS-0855055, the Air Force Office of Scientific
Research through award FA9550-09-1-0129, the Office of
Naval Research grant N00014-05-1-0421 and by the Defense
Advanced Research Projects Agency through award HR0011-
09-0031. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and

do not necessarily reflect the position or policy of NSF, ONR,
AFOSR or DARPA.

REFERENCES

[1] A. P. Mathur,Foundations of Software Testing: Fundamental Algorithms
and Techniques. Pearson Education., 2008.

[2] Q. Xie and A. M. Memon, “Using a pilot study to derive a GUI model
for automated testing,”ACM Transactions on Software Engineering and
Methodology, pp. 1–35, 2008.

[3] A. M. Memon and Q. Xie, “Studying the fault-detection effectiveness
of GUI test cases for rapidly evolving software,”IEEE Transactions on
Software Engineering, vol. 31, no. 10, pp. 884–896, 2005.

[4] A. M. Memon and Q. Xie, “Using transient/persistent errors to develop
automated test oracles for event-driven software,” inASE ’04: Proceed-
ings of the 19th IEEE international conference on Automatedsoftware
engineering. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 186–195.

[5] A. M. Memon, “Developing testing techniques for event-driven per-
vasive computing applications,” inProceedings of The OOPSLA 2004
workshop on Building Software for Pervasive Computing (BSPC 2004),
Oct. 2004.

[6] G. J. Tretmans and H. Brinksma, “TorX: Automated model-based
testing,” inFirst European Conference on Model-Driven Software Engi-
neering, Nuremberg, Germany, A. Hartman and K. Dussa-Ziegler, Eds.,
December 2003, pp. 31–43.

[7] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson, “Model-based testing of object-oriented reactive
systems with Spec Explorer,” inFormal Methods and Testing, LNCS
4949, 2008, pp. 39–76.

[8] H. Ural and B. Yang, “A test sequence selection method forprotocol
testing,” IEEE Transactions on Communications, vol. 39, no. 4, pp. 514–
523, 1991.

[9] A. Marchetto and P. Tonella, “Search-based testing of Ajax web ap-
plications,” in 1st International Symposium on Search Based Software
Engineering, May 2009, pp. 3–12.

[10] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test
data from state-based specifications,”Software Testing, Verification and
Reliability, vol. 13, no. 1, pp. 25–53, 2003.

[11] P. Brooks, B. Robinson, and A. M. Memon, “An initial characterization
of industrial graphical user interface systems,” inICST 2009: Proceed-
ings of the 2nd IEEE International Conference on Software Testing,
Verification and Validation. Washington, DC, USA: IEEE Computer
Society, 2009.

[12] “FreeMind - free mind-mapping software,” 2009,
http://freemind.sourceforge.net.

[13] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria
for GUI testing,” in European Software Engineering Conference /
Foundations of Software Engineering (ESEC/FSE), 2001, pp. 256–267.

[14] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit testcoverage
and adequacy,”ACM Computing Surveys, vol. 29, no. 4, pp. 366–427,
1997.

[15] X. Yuan, M. Cohen, and A. M. Memon, “Covering array sampling
of input event sequences for automated GUI testing,” inInternational
Conference on Automated Software Engineering (ASE), 2007, pp. 405–
408.

[16] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: an approach to testing based on combinatorial design,”
IEEE Transactions on Software Engineering, vol. 23, no. 7, pp. 437–444,
1997.

[17] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge, “Con-
structing test suites for interaction testing,” inInternational Conference
on Software Engineering (ICSE), May 2003, pp. 38–48.

[18] J. Strecker and A. M. Memon, “Relationships between test suites, faults,
and fault detection in GUI testing,” inFirst international conference on
Software Testing, Verification, and Validation (ICST), 2008, pp. 12–21.

[19] X. Yuan and A. M. Memon, “Using GUI run-time state as feedback to
generate test cases,” inInternational Conference on Software Engineer-
ing (ICSE), 2007, pp. 396–405.

[20] F. J. Daniels and K. C. Tai, “Measuring the effectiveness of method
test sequences derived from sequencing constraints,” inTechnology of
Object-Oriented Languages and Systems (TOOLS), 1999, pp. 74–83.

[21] U. Farooq, C. P. Lam, and H. Li, “Towards automated test sequence
generation,” inAustralian Software Engineering Conference, 2008, pp.
441–450.

16

[22] K. Inkumsah and T. Xie, “Improving structural testing of object-oriented
programs via integrating evolutionary testing and symbolic execution,”
in Automated Software Engineering (ASE), 2008, pp. 297–306.

[23] L. Gallagher and J. Offutt, “Test sequence generation for integration
testing of component software,”The Computer Journal, pp. 1–16, 2007.

[24] A. Gargantini and E. Riccobene, “ASM-based testing: Coverage criteria
and automatic test sequence generation,”Jounal of Universal Computer
Science., vol. 7, no. 11, pp. 1050–1067, 2001.

[25] R. K. Shehady and D. P. Siewiorek, “A method to automate user interface
testing using variable finite state machines,” inInternational Symposium
on Fault -Tolerant Computing (FTCS), 1997, pp. 80–88.

[26] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI
test case generation using automated planning,”IEEE Transactions on
Software Engineering, vol. 27, no. 2, pp. 144–155, 2001.

[27] L. White and H. Almezen, “Generating test cases for GUI responsibili-
ties using complete interaction sequences,” inInternational Symposium
on Soft ware Reliability Engineering (ISSRE), 2000, pp. 110–121.

[28] S. McMaster and A. M. Memon, “Call-stack coverage for GUI test-suite
reduction,” IEEE Transactions on Software Engineering, 2008.

[29] Q. Xie and A. M. Memon, “Rapid “crash testing” for continuously
evolving GUI-based software applications,” inInternational Conference
on Software Maintenance (ICSM), 2005, pp. 473–482.

[30] F. Belli, “Finite-state testing and analysis of graphical user interfaces,” in
International Symposium on Software Reliability Engineering (ISSRE),
2001, pp. 34–43.

[31] L. J. White, “Regression testing of GUI event interactions,” in Interna-
tional Conference on Software Maintenance (ICSM), 1996, pp. 350–358.

[32] “JUnit, Testing Resources for Extreme Programming,”
http://junit.org/news/extension/gui/index.htm.

[33] “Mercury Interactive WinRunner,” 2003,
http://www.mercuryinteractive.com/products/winrunner.

[34] R. Brownlie, J. Prowse, and M. S. Phadke, “Robust testing of AT&T
PMX/StarMAIL using OATS,”AT& T Technical Journal, vol. 71, no. 3,
pp. 41–47, 1992.

[35] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and
A. Iannino, “Applying design of experiments to software testing,” in
International Conference on Software Engineering, (ICSE), 1997, pp.
205–215.

[36] D. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions
and implications for software testing,”IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[37] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient
fault characterization in complex configuration spaces,”IEEE Transac-
tions on Software Engineering, vol. 31, no. 1, pp. 20–34, 2006.

[38] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression
testing: An empirical study of sampling and prioritization,” in Interna-
tional Symposium on Software Testing and Analysis (ISSTA), July 2008,
pp. 75–85.

[39] M. B. Cohen, M. B. Dwyer, and J.Shi, “Coverage and adequacy in
software product line testing,” inWorkshop on the Role of Architecture
for Testing and Analysis (ROSATEA), July 2006, pp. 53–63.

[40] D. Chays, S. Dan, Y. Deng, F. I. Vokolos, P. G. Frankl, andE. J. Weyuker,
“AGENDA: A test case generator for relational database applications,”
Polytechnic University, Tech. Rep., 2002.

[41] R. C. Bryce, A. Rajan, and M. P. E. Heimdahl, “Interaction testing in
model-based development: Effect on model-coverage,” inAsia Pacific
Software Engineering Conference (ASPEC), 2006, pp. 259–268.

[42] Q. Xie and A. M. Memon, “Model-based testing of community-driven
open-source GUI applications,” inInternational Conference on Software
Maintenance (ICSM), 2006, pp. 145–154.

[43] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, 2004.

[44] X. Yuan, M. Cohen, and A. M. Memon, “Towards dynamic adaptive
automated test generation for graphical user interfaces,”in First Interna-
tional Workshop on TESTing Techniques & Experimentation Benchmarks
for Event-Driven Software (TESTBEDS), 2009, pp. 1–4.

Xun Yuan is a Software Engineer in Test (SET)
at Google Kirkland where she is in charge of en-
suring the quality of a web-based software prod-
uct called Website Optimizer. She completed her
PhD from the Department of Computer Science
at the University of Maryland in 2008 and MS
in Computer Science from the Institute of Soft-
ware Chinese Academy of Sciences in 2001.
Her research interests include software testing,
quality assurance, web application design, and
model-based design. In addition to her interests

in Computer Science, she also likes mathematics and literature.

Myra B. Cohen is an Assistant Professor in
the Department of Computer Science and En-
gineering at the University of Nebraska-Lincoln
where she is a member of the Laboratory for
Empirically based Software Quality Research
and Development (ESQuaReD). She received
the PhD degree in computer science from the
University of Auckland, New Zealand and the MS
degree in computer science from the University
of Vermont. She received the BS degree from
the School of Agriculture and Life Sciences,

Cornell University. She is a recipient of a National Science Foundation
Faculty Early CAREER Development Award and an Air Force Office of
Scientific Research Young Investigator Program Award. Her research
interests include testing of configurable software systems and software
product lines, combinatorial interaction testing, and search based soft-
ware engineering. She is a member of the IEEE and ACM.

Atif M Memon is an Associate Professor at the
Department of Computer Science, University of
Maryland. His research interests include pro-
gram testing, software engineering, artificial in-
telligence, plan generation, reverse engineering,
and program structures. He is the inventor of the
GUITAR system (http://guitar.sourceforge.net/)
for automated model-based GUI testing. He is
the founder of the International Workshop on
TESTing Techniques & Experimentation Bench-
marks for Event-Driven Software (TESTBEDS).

He serves on various editorial boards, including that of the Journal
of Software Testing, Verification, and Reliability. He has served on
numerous National Science Foundation panels and program commit-
tees, including ICSE, FSE, ICST, WWW, ASE, ICSM, and WCRE. He
is currently serving on a National Academy of Sciences panel as an
expert in the area of Computer Science and Information Technology, for
the Pakistan-U.S. Science and Technology Cooperative Program, spon-
sored by United States Agency for International Development (USAID).
In addition to his research and academic interests, he handcrafts fine
wood furniture.

