
Information and Software Technology 52 (2010) 559–575
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Iterative execution-feedback model-directed GUI testing

Xun Yuan, Atif M. Memon *

Department of Computer Science, University of Maryland, College Park, MD 20742, United States

a r t i c l e i n f o
Article history:
Available online 5 December 2009

Keywords:
Test-case generation
Model-based testing
GUI testing
Event-driven software
Event-flow graphs
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.11.009

* Corresponding author.
E-mail addresses: xyuan@cs.umd.edu (X. Yuan), ati

1 For brevity, whenever possible, we will use the wi
e.g., Cancel, File, etc.

2 This unaltered example is used to teach students h
a b s t r a c t

Current fully automatic model-based test-case generation techniques for GUIs employ a static model.
Therefore they are unable to leverage certain state-based relationships between GUI events (e.g., one
enables the other, one alters the other’s execution) that are revealed at run-time and non-trivial to infer
statically. We present ALT – a new technique to generate GUI test cases in batches. Because of its ‘‘alter-
nating” nature, ALT enhances the next batch by using GUI run-time information from the current batch.
An empirical study on four fielded GUI-based applications demonstrated that ALT was able to detect new
4- and 5-way GUI interaction faults; in contrast, previous techniques, due to their requirement of too
many test cases, were unable to even test 4- and 5-way GUI interactions.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

As computers find increasingly more general-consumer ori-
ented applications, the class of software applications that use a
graphical-user interface (GUI) front-end [3] is becoming ubiqui-
tous. GUIs are now seen in cars, phones, dishwashers, refrigerators,
etc. They are popular because of the flexibility that they offer to
both developers and users. They allow a software developer to
implement the GUI by coding reusable event-handlers (program
code that handles or responds to a user input event) that can be
developed and maintained fairly independently. Moreover, GUIs
give many degrees of freedom to the software user, i.e., the user
is not restricted to a fixed ordering of inputs. The user interacts
with complex underlying software by performing events (e.g.,
left-click-on-FILE-menu,1 left-click-on-CANCEL-button) that exer-
cise GUI widgets. The software responds by changing its state or pro-
ducing an output, and waits for the next input.

Consider the simple application shown in Fig. 1.2 The GUI con-
tains seven widgets labeled w1 through w7 on which a user can per-
form corresponding events e1 through e7. The application’s
functionality is very straightforward – the start state has Circle

and None selected; the text-box corresponding to w5 is empty;
and the Rendered Shape area (widget w8) is empty. Event e6 creates
a shape in the Rendered Shape area according to current settings of
w1; . . . ;w5; event e7 resets the entire software to its start state.

The other events behave as follows: Event e1 sets the shape to a
circle; if there is already a square in the Rendered Shape area,
ll rights reserved.

f@cs.umd.edu (A.M. Memon).
dget label to denote an event,

ow to use radio buttons.
then it is immediately changed to a circle. Event e2 is similar to
e1, except that it changes the shape to a square. Event e3 enables
the text-box w5, allowing the user to enter a custom fill color,
which is immediately reflected in the shape being displayed (if
there is a shape). Event e4 reverts back to the default color. A sum-
mary of the behavior of these events is shown in Table 1.

The GUI of this application is simple, yet quite flexible. The
number of length 1, 2, 3, 4, and 5 event sequences that may be exe-
cuted in the start state of the GUI is 6 (remember that w5 is initially
disabled), 37, 230, 1491, and 9641, respectively; quite large for
such a simple GUI. In general, the flexibility offered by GUIs creates
problems during execution because of the large number of permu-
tations of events that need to be handled by the GUI. In principle,
event handlers may be executed in any order; in earlier work, we
have shown that certain event interactions lead to serious software
failures [20]. Because the space of all possible interactions with a GUI
is enormous, each event sequence can result in a different state,
and the software may, in principle, need to be tested in all of these
states.

One of our existing fully automatic model-based GUI testing
solutions, motivated by work on search algorithms for test data
generation [14,15], is based on a static directed graph model of
the GUI called event-interaction graph (EIG) [20]. EIG nodes repre-
sent all GUI events except those that open menus and windows; a
directed edge from node nx (representing event ex) to ny (repre-
senting event ey) shows that event ey may be executed either
immediately after ex or after executing some intermediate menu-
or window-opening events.

Because we want our GUI testing to be fully automatic, the most
important property of a GUI’s EIG is that it can be constructed
automatically using a reverse engineering technique called GUI
Ripping [20]. The GUI Ripper automatically traverses a GUI under

http://dx.doi.org/10.1016/j.infsof.2009.11.009
mailto:xyuan@cs.umd.edu
mailto:atif@cs.umd.edu
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

Fig. 1. A simple GUI application.

Table 1
Events in the simple GUI application of Fig. 1.

e1 Changes shape to circle
e2 Changes shape to square
e3 Enables w5; color updated from text-field
e4 Disables w5; no color in shape
e6 Creates a shape
e7 Resets software to default state

560 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
test and extracts the hierarchical structure of the GUI and events
that may be performed on the GUI. The result of this process is
the EIG. Test cases are also automatically generated from the
EIG; the whole process of GUI test-case generation is therefore,
fully automatic.

Fig. 2 shows the EIG for the GUI of Fig. 1. Because the EIG is ob-
tained automatically using reverse engineering, it has several lim-
itations – an important limitation is that it does not contain any
state-based relationships, e.g., the (enable) relationship between
e3 and e5; hence this GUI’s EIG is a fully connected directed graph
with seven nodes, corresponding to the seven events. The first con-
tribution of this paper is that we address this limitation. Moreover,
the EIG is undesirable because its coverage requires a large number
of test cases. Consider our EIG-based test case generation algo-
rithm – test cases are generated, each covering one directed edge
(a pair of events) in the EIG. These test cases are referred to as
‘‘2-way covering” because each test targets a unique pair of EIG
events [20]. Note that some of these test cases may not be execut-
Fig. 2. EIG of ‘‘Radio Button Demo” GUI.
able because of extra EIG edges (e.g., ðe5; e3Þ in Fig. 2). Our previous
empirical studies showed that although these test cases reveal a
large number of GUI faults, additional faults may be detected by
executing certain types of multi-way covering (e.g., 3-, 4-, 5-way)
test cases [20,30]. For example, a 3-way covering test case is an
event sequence he1; e2; e3i such that ðe1; e2Þ and ðe2; e3Þ are directed
edges in the EIG; similarly, a 4-way covering test case he1; e2; e3; e4i
covers edges ðe1; e2Þ; ðe2; e3Þ, and ðe3; e4Þ. The challenge, of course,
is to generate and execute such ‘‘long” test cases; increasing the
degree of the event interaction coverage from all possible 2-way
to all possible 3-, 4-, . . ., multi-way interactions is not a viable solu-
tion as the number of test cases grows exponentially; for most
non-trivial applications, executing even all 3-way interactions is
not practical.

In previous work, we developed a feedback-based technique to
enhance a 2-way covering test suite to a 3-, 4-, and 5-way covering
test suite [30]. We did this by analyzing the effect of each GUI
event on the GUI’s run-time state and obtaining pairs of events that
influence one another in how they modify the GUI’s state. This
‘‘influence” was captured as the Event Semantic Interaction (ESI)
relation and modeled as a graph called the ESI Graph (ESIG). For
most non-trivial applications, the ESIG is much smaller than the
EIG, making it possible to generate 3-, 4-, and 5-way covering test
cases by enumerating all possible paths of length 3, 4, and 5 in the
ESIG. An important property of these test cases is that all adjacent
events are related via the ESI relationship. We summarize this
technique in Section 3. However, although better than the exhaus-
tive approach, the number of test cases required for the ESIG-based
technique also grows exponentially with length for most applica-
tions, making it difficult to test 5-way and above interactions.
The second contribution of this paper is that we are now able to
generate 5-way and above interaction test cases.

With these two contributions, we significantly improve upon
the previous ESIG-based approach. We continue to utilize the most
important aspect of this previous approach, namely feedback and
its use in the ESI relation. First, we formally define the ESI relation-
ships. Second, we generate test cases ‘‘in batches”. The first batch
consists of all possible 2-way covering test cases, generated auto-
matically using the existing EIG model of the GUI. This batch is
executed and the observed execution behavior of the GUI, captured
in the form of widgets and their properties, is used to selectively
extend some of the 2-way test cases to 3-way test cases via the
ESI relation. The new 3-way test cases are subsequently executed,
GUI execution behavior is analyzed, and some are extended to 4-
way test cases, and so on. In general, the new ‘‘alternating ap-
proach” (called ALT) executes and analyzes i-way covering tests,
identifying sets of events that influence one another’s execution
behavior (and hence should be tested together), and generates
(i + 1)-way covering test cases for members of each set. Hence
ALT generates ‘‘longer” test cases that expand the state space to
be explored, yet pruning those states that do not reflect event
interaction. An important property of the batch-style nature of this
new approach is that certain aspects of GUI test cases that are re-
vealed only at run-time and impossible to infer statically, e.g.,
unexecutable test cases, are also used to enhance the next batch.
An empirical study on four fielded GUI-based applications shows
that ALT allows us to generate longer and focused test cases that
are effective at detecting faults.

The specific contributions of this paper include:

� Formal definition of the run-time relationship between GUI
events.

� Generating GUI test cases in batches, where each batch is used
to improve the subsequent batch.

� Use of feedback to compute run-time relationships between
events and better handle unexecutable test cases.

X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575 561
� Empirical demonstration that the batch-wise approach is suc-
cessful at identifying complex interactions among GUI event
handlers.

The next section provides background and summarizes our pre-
vious work on GUI testing. Section 3 explains the ESIG-based ap-
proach. Section 4 presents an overview of ALT via an example
and Section 5 provides more formal details. Section 6 presents an
empirical study to evaluate ALT. Section 8 concludes with a discus-
sion of future work.
2. Related work

In the context of this work, execution feedback refers to infor-
mation obtained during test execution and used to guide further
test case generation. This is called dynamic test case generation
and, to the best of our knowledge, was originally proposed by Mill-
er and Spooner [22]. In their technique, the software source code is
instrumented to obtain execution feedback. The overall test case
generation process starts by executing an initial test. Execution
feedback is collected and analyzed; results are used to evaluate
the ‘‘closeness” of the previous execution to the desired outcome;
the model used to generate test cases is then modified accordingly
and a new test case is generated. This loop stops when the ‘‘close-
ness” evaluation is satisfied according to some criterion.

Since then, various types of execution feedback, models, and
algorithms have been used for test case generation. For example,
branch predicate evaluations along an execution path has been
used with a gradient descent approach [12,6,7] and a chaining ap-
proach [4], condition–decision coverage has been used with genet-
ic search [21], and object states have been used with a hybrid
approach [29]. McMinn [14] provides an excellent survey of meta-
heuristic search techniques for the automatic generation of test
data.

2.1. Branch predicate evaluations

Branch predicate evaluation refers to the flow of control during
an execution. It has been used with the gradient descent approach
to compute an input, i.e., test case, that will execute a given path in
the program [12,6,7]. It has also been used with the chaining ap-
proach to generate a test case that covers a selected statement
[4]. The branch predicate evaluations, which encode control flow
information, are collected during software execution on an initial
test case. The generation of the test case is modeled as an object
function minimization or optimization problem. The evaluation re-
sults are applied to gradually adjust the current test case so that it
gets closer and closer to the desired test case. One disadvantage of
these approaches is that they can get stuck in a local minima dur-
ing test case generation.

2.2. Object properties

Xie and Notkin have developed a feedback-based framework
that uses object states to generate new test cases [29]. This frame-
work integrates two techniques: (1) specification-based test gener-
ation and (2) dynamic specification inferences for test case
generation. This integration provides value considerably beyond
what the separate methods can provide alone.

Specification-based test generation is based on formal specifica-
tions, which express the desired behavior of a program. However,
because formal specifications are difficult to obtain, dynamic spec-
ification inference attempts to infer specifications, in the form of
operational abstractions, automatically from software execution.
The discovered operational abstractions consist of object proper-
ties that hold for all the observed executions; these object proper-
ties are used to indicate the deficiency of test cases.

The test case generation process starts from an existing test
suite. Through executions of these test cases, object states (values
of variables and parameters, and return values) are recorded at the
entry and exit of method executions. Based on the collected traces
and a set of pre-defined axiom-pattern templates, equality pat-
terns are searched to create operational abstractions. By removing
or relaxing inferred preconditions on parameter values in the oper-
ational abstractions, both legal and illegal test cases are generated.
The newly generated test cases are executed. Because they were
generated by relaxing inferred preconditions, some of these test
cases may cause an uncaught runtime exception. The other, non-
crashing test cases are used to obtain new operational abstractions,
which are again used to generate additional test cases.
2.3. Method-call sequences

Pacheco et al. [23] have improved random unit test generation
by incorporating feedback obtained from executing test inputs as
they are created. They build inputs incrementally by randomly
selecting a method call to apply and finding arguments from
among previously-constructed inputs. The key idea of their work
is that they build upon a legal sequence of method calls, each of
whose intermediate objects is sensible and none of whose methods
throw an exception indicating a problem. As soon as an input is
built, it is executed and checked against a set of contracts and fil-
ters. The result of the execution determines whether the input is
redundant, illegal, contract-violating, or useful for generating more
inputs. The technique outputs a test suite consisting of unit tests
for the classes under test. Passing tests can be used to ensure that
code contracts are preserved across program changes; failing tests
(that violate one or more contract) point to potential errors that
should be corrected.

Similarly, Boyapati et al. employ a feedback-based technique to
obtain all non-isomorphic inputs (test cases) for a method [2]. A
programmer develops (1) a ‘‘guided test generation engine” that
outputs test cases to explore the method’s input space and (2) a
predicate from the method’s preconditions to check the validity
of the generated input. This technique prunes a large portion of
the input space by monitoring the execution of the predicate on
an initial test suite, guiding the engine and yielding a suite of all
non-isomorphic inputs.
2.4. Code coverage

Several researchers instrument elements (lines, branches, etc.)
of the program code, execute an initial test, obtain a coverage re-
port that contains the outcomes of conditional statements, and
use automated techniques to generate better test cases. The tech-
niques differ in their goals (e.g., cover a specific program path, sat-
isfy condition–decision coverage, cover a specific statement) and
their test case generation algorithms. For example, Miller et al.
[22] use code coverage and decision outcomes to generate float-
ing-point test data.

Genetic algorithms have also been used to automatically gener-
ate test suites that satisfy the condition–decision adequacy criterion
[21]. Condition–decision criterion requires that each condition in
the program be true for at least one test case and false for at least
one test case. A fitness function is defined for each branch. An ini-
tial test suite is obtained and executed. The fitness functions are
used to evaluate the ‘‘goodness” of each test case. If a test case cov-
ers a new condition–decision, it is considered to be ‘‘more fit”. The
test cases in the gene pool evolve to obtain a new generation of test
cases. The process stops when a desired level of fitness is obtained.

Fig. 3. Execution of events e2 and e6.

562 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
2.5. GUI testing

Our own ESIG-based GUI testing approach [30] was also moti-
vated by the above research. We introduced the idea of employing
feedback from the execution of a seed test suite (our 2-way cover-
ing test cases generated using the EIG) to generate additional mul-
ti-way interaction test cases. The key idea was to analyze the run-
time GUI state to identify sets of events that need to be tested to-
gether in multi-way covering test cases. The result of this analysis
is called the Event Semantic Interaction (ESI) relation between pairs
of events. We discuss details in the next section.

Our ESIG-based GUI testing approach falls under the general
umbrella of model-based GUI testing techniques. In earlier work
[19,16], we developed an automated GUI testing framework called
PATHS. PATHS uses a description of the GUI to automatically gen-
erate test cases and test oracles from pairs of initial and goal states
by using an AI planner. The other significant work on GUI testing is
by White et al. [26,28] who model a GUI in terms of ‘‘responsibil-
ities” (user tasks) and their corresponding ‘‘complete interaction
sequences” (CIS). A CIS is a sequence of GUI objects and selections
that may be used to complete a responsibility. Each CIS contains a
reduced finite-state machine (FSM) model, which is ‘‘traversed” to
generate test cases [26]. Other researchers have developed tech-
niques to address isolated problems of GUI testing. For example,
a variable finite state machine based approach to generate test
cases has been proposed by Shehady and Siewiorek [25].

The most popular GUI testing approach used in practice em-
ploys semi-automated tools to do limited testing [5,27]. Examples
of some tools include extensions of JUnit such as JFCUnit, Abbot,
Pounder, and Jemmy Module [11] to create unit tests for GUIs. Other
tools include capture and replay tools that ‘‘capture” a user session
as a test case that can be later ‘‘replayed” automatically during
regression testing [8]. These tools facilitate only the execution of
test cases.
3. Modeling the ESI relationship

We now formally define the ESI relationship. But first we intro-
duce some necessary terms.
3.1. Preliminaries

A GUI is represented as a set W of widgets (e.g., buttons, text
fields); each widget w 2W is associated with a set Pw of properties
(e.g., color, size, font); at any time instant, each property p 2 Pw

may take a unique value (e.g., red, bold, 16pt); each value is evalu-
ated using a function from the set of the widget’s properties to the
set of values Vp. Hence, the set of triples ðw; p;vÞ, where
w 2W; p 2 Pw and v 2 Vp models the GUI’s state for a time instant.
The set of states SI at the time when a GUI is first invoked is called
the valid initial state set for the GUI. The state of a GUI is not static;
users interact with the GUI by executing events (e1; e2, . . ., en);
hence events are modeled as functions that transform one GUI
state to another. The function notation Sj ¼ exðSiÞ denotes that Sj

is the state resulting from the execution of event ex in state Si.
GUIs contain two types of windows: (1) modal windows3 (e.g.,

FileOpen, Print) that, once invoked, monopolize the GUI interac-
tion, restricting the focus of the user to the range of events within
the window until explicitly terminated using a Termination event
(e.g., using Ok, Cancel) and (2) modeless windows (e.g., the Find

and Replace windows) that do not restrict the user’s focus. If,
during an execution of the GUI, modal window M1 is used to open
3 Standard GUI terminology, e.g., see http://java.sun.com/products/jlf/ed2/book/
HIG.Dialogs.html.
another modal window M2, then M1 is called the parent of M2 for
that execution.

An important aspect of our feedback-based technique is the
seed suite. For this work, the seed suite consists of all 2-way cov-
ering test cases. We leverage a directed graph model, called the
event-interaction graph (EIG) of the GUI to generate these test
cases [20]. The 2-way covering test cases are short, each only cov-
ering a directed edge in the EIG; extra menu- and window-opening
events needed to reach the events adjacent to the edge are gener-
ated on-demand at test-execution time.

3.2. The ESI relationship

Informally, event ex and ey are related via the ESI relation, if,
when executed together in a sequence hex; eyi, they produce a
GUI state that is, in some sense, different from the two states that
would be obtained had ex and ey been executed in isolation. Con-
sider the example shown in Fig. 3 (this application was described
earlier). The top-left shows the initial state ðS0Þ of the application.
After an event e2 is executed (click on Square radio button), the
GUI changes its state to the one shown in the top-right ðe2ðS0ÞÞ.
In this state, Square is set; Circle is reset. Starting from S0, one
can execute another event e6 (click on Create Shape button)
and obtain the state shown in the bottom-left ðe6ðS0ÞÞ; a circle is
rendered. If, however, the sequence he2; e6i is executed in S0, a
new state ðe6ðe2ðS0ÞÞÞ, shown in the bottom-right is obtained; a
square has been created. This execution is equivalent to executing
event e6 in the state e2ðS0Þ. According to the intuition presented at
the beginning of this paragraph, because the sequence he2; e6i pro-
duces a GUI state that is different from the two states that would
be obtained had e2 and e6 been executed in isolation, the two
events should be tested together to check for interaction problems.

Because each event is executed using its corresponding event
handler, one could hypothesize that all events whose event han-
dlers interact in terms of code elements (e.g., share variables, ex-
change messages, share data) should be tested together. Lets look
at the event handlers for e2 and e6 in Fig. 4; we see that they share
variables created and currentShape; e6 sets created to true

and influences e2’s flow of control; e2 sets currentShape to a
square, which e6 uses as a parameter to setShape(); hence it’s
not surprising that they interact. One may employ a variety of sta-
tic program-analysis techniques to identify such interactions [24];
they can certainly be used successfully in this example. However,
in general, the limitations of static analysis in the presence of mul-

http://java.sun.com/products/jlf/ed2/book/HIG.Dialogs.html
http://java.sun.com/products/jlf/ed2/book/HIG.Dialogs.html

Fig. 4. Source code of two event handlers in the radio button example.

X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575 563
ti-language GUI implementations, callbacks for event handlers, vir-
tual function calls, reflection, and multi-threading are well known
[24]. Also, since most GUI applications employ a large number of
library elements (e.g., Java Swing), source code may not be avail-
able for parts of the GUI. Hence, our approach avoids static analy-
sis; instead it approximates the identification of interactions
between event handlers by analyzing feedback from the run-time
state of the GUI. The remaining question is: What constitutes event
interaction as computed from the GUI’s state?

The term ‘‘different from” used at the beginning of this section
is somewhat misleading. It seems to suggest that checking state
non-equivalence would be sufficient to identify interacting events,
i.e., by using a predicate P such as ðexðS0Þ– eyðexðS0ÞÞÞ _ ðeyðS0Þ–
eyðexðS0ÞÞÞ, where events ex and ey, and state S0 are universally
quantified (for improved readability, we will skip the universal
quantification). However, this is not the case. Consider an example
of two non-interacting events, ex and ey, which toggle the states of
two independent check-box widgets �x and �y, respectively.
Starting in a state S0 ¼ f�x;�yg, i.e., both boxes unchecked, each
event would ‘‘check” its corresponding check-box, i.e., exðS0Þ ¼
f x;�yg; eyðS0Þ ¼ f�x; yg, and eyðexðS0ÞÞ ¼ f x; yg. Even though
P would evaluate to TRUE for this example, events ex and ey are
non-interacting and need not be tested together. In order to avoid
this confusion, we formalize the notion of interacting events by
developing formal predicates [30]. We note that these predicates
are not special cases of P.

The predicate for the example of Fig. 3 is written as: 9w 2W ;

p 2 Pw; v 2 Vp; v 0 2 Vp, s.t.4 ððv – v 0Þ ^ ððw; p;vÞ R fS0 \ exðS0ÞgÞ
^ððw; p;vÞ 2 eyðS0ÞÞ ^ ððw; p;v 0Þ 2 eyðexðS0ÞÞÞÞ; it is read as: ‘‘there is
at least one widget w that does not exist in the initial state S0, it
is created by ey with property p and value v. However, the widget
is modified when the sequence hex; eyi is executed, i.e., the value of
w’s property p changes from v to v 0”. This predicate evaluates to true
for e2 and e6 because the rendered shape widget does not exist in the
initial state. It is created by event e6 with Shape property set to
4 Notation for ‘‘such that”.
value Circle. However, this property changes to Square when
he2; e6i is executed.

It turns out that the example illustrated in Fig. 3 is just one case
of how the GUI state may be used to pinpoint interactions between
event handlers – there are many more. In our previous work, we
defined six cases; we now extend our previous work by identifying
a total of 12 cases. They are presented because they were encoun-
tered numerous times in our work on GUI testing. The twelve cases
will describe (as evaluative predicates) situations in which events
e1 and e2 interact, i.e., the combined effect of e1 and e2 is different
from the effect of the individual events e1 and e2. In these cases,
e1 and e2 are system-interaction events in modeless windows; this
situation will be called Context 1.

Case 1. There is at least one widget w with property p with initial
value v (hence the triple ðw; p;vÞ is in S0), which is not affected by
the individual events e1 or e2 (the triple is also in e1ðS0Þ and e2ðS0Þ);
however, it is modified when the sequence he1; e2i is executed, i.e.,
the value of w’s property p changes from v to v 0. Formally,
9w 2W ; p 2 Pw; v 2 Vp; v 0 2 Vp, s:t:ððv – v 0Þ ^ ððw; p;vÞ 2 fS0\
e1ðS0Þ \ e2ðS0ÞgÞ ^ ððw; p;v 0Þ 2 e2ðe1ðS0ÞÞÞÞ.

Fig. 5 gives an example of Case 1. This is a ‘‘GUI Demo” applica-
tion with several widgets. The Fill with color check-box fills
the currently selected shape (highlighted with a deep grey border)
with the chosen color determined by the radio buttons White and
Blue. Check-box Fill with pattern determines whether to fill
the selected shape with a pattern. Checking Apply to all sets
all shapes in the right panel with the same color and pattern.

For the purpose of Case 1, e1 is Check Fill with color and e2 is
Check Apply to all. The initial state has the rectangle widget se-
lected and color is set to white. The square widget (marked with
W) is not modified by e1 or e2 individually; however, the event se-
quence he1; e2i fills the square with the white color. Hence Case 1 is
applicable here and e1 is ESI related to e2 because e1 influences e2

and their combination modifies the previously unmodified widget
W.

Case 2. There is at least one widget w with property p that has an
initial value v, which is not modified by the event e1; it is modified
by e2; however, it is modified differently by the sequence he1; e2i.
Formally, 9w 2W ; p 2 Pw; v 2 Vp; v 0 2 Vp, v 00 2 Vp; s:t: ððv – v 0Þ^
ðv 0–v 00Þ ^ ððw; p; vÞ 2 fS0 \ e1ðS0ÞgÞ ^ ððw; p; v 0Þ 2 e2ðS0ÞÞ ^ ððw; p;
v 00Þ 2 e2ðe1ðS0ÞÞÞÞ.
Fig. 5. Case 1: e1: Check Fill with color; e2: Check Apply to all.

Fig. 6. Case 2: e1: Click radio button Blue; e2: Check Fill with color.

564 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
An example of Case 2 using the ‘‘GUI Demo” application is given
in Fig. 6, where e1 now represents Click radio button Blue and e2 is
Check Fill with color. The initial state has the rectangle selected
and color is set to white. Individually, in this initial state, event e1

sets the current color to blue; event e2 fills the rectangle with the
white color. However, executing he1; e2i now fills the rectangle
with the color blue. Case 2 applies here as e1 influences e2 execu-
tion; the widget (marked with W) is not modified by e1; it is mod-
ified by e2; however, it is modified differently by the sequence
he1; e2i.

A variation of Case 2 is called Case 2.1, in which the roles of e1

and e2 are exchanged with the combined sequence he1; e2i remain-
ing the same.

Case 3. There is at least one widget w with property p that has an
initial value v, which is modified by individual events e1 and e2;
however, it is modified differently by the sequence he1; e2i.
Formally, 9w2W; p2 Pw; v 2 Vp; v 0 2 Vp; v 00 2 Vp; �v 2 Vp, s:t: ððv –
v 0Þ ^ ðv – v 00Þ ^ ðv 00 – �vÞ ^ ððw;p;vÞ 2 S0Þ ^ ððw;p;v 0Þ 2 e1ðS0ÞÞ ^ ððw;
p;v 00Þ 2 e2ðS0ÞÞ ^ððw;p; �vÞ 2 e2ðe1ðS0ÞÞÞÞ.
Fig. 7. Case 3: e1: Click radio button Blue; e2: Check Fill with pattern.
Fig. 7 shows one example of this case using the ‘‘GUI Demo”
application. In this example, the initial state has Fill with color
checked, white is set to be the current color and the rectangle is se-
lected. Event e1 here is Click radio button Blue and e2 is Check Fill
with pattern that fills the current shape with a pattern. Events e1

and e2 modify the rectangle individually; however, executing
he1; e2i now modifies the rectangle differently. Therefore, e1 influ-
ences e2, i.e., resulting in different modification of the existing wid-
get (marked with W), and Case 3 applies.

3.3. Object creation

The first three cases handle widgets that persist across the three
states being considered, i.e., e1ðS0Þ; e2ðS0Þ, and e2ðe1ðS0ÞÞ. In many
cases, event execution ‘‘creates” new widgets, e.g., by opening me-
nus. According to the terms introduced in Section 3.1, a widget is
‘‘created” by adding all its widget–property–value triples to the
current state. The next cases handle such newly created widgets.

Case 4. There is at least one new widget w with property p and
value v in state e2ðe1ðS0ÞÞ, i.e., it is created by event sequence
he1; e2i; but it does not exist in state S0 and could not be created by
either e1 or e2 individually, i.e., no triple involving widget w exists
in any of the states S0; e1ðS0Þ and e2ðS0Þ. Formally, 9w 2W;

9p 2 Pw; 9v 2 Vp;8�p 2 Pw;8�v 2 Vp, s:t: ðððw;�p; �vÞRS0Þ^ððw;�p; �vÞR
e1ðS0ÞÞ^ððw;�p; �vÞRe2ðS0ÞÞ^ððw;p;vÞ2 e2ðe1ðS0ÞÞÞÞ.

The example using ‘‘GUI Demo 1” for this case is shown in Fig. 8.
In this application, checking Read-only forbids inserting text into
the bottom panel; checking Select All selects all the widgets in
the bottom panel. Clicking button Insert creates a text-field for
inputing text, and clicking button Cut removes the current selec-
tion (either text-field in the panel or text in text-field). To illustrate
Case 4, assume that the initial state has Read-only checked and
an empty bottom panel. Event e1 unchecks Read-only and e2

clicks the button Insert. It is clear that e2 cannot insert the
text-field into the bottom panel with Read-only checked. How-
ever, when executing he1; e2i, e1 first removes the read-only restric-
tion to the panel, and then e2 creates a text-field. Hence, e1

influences e2 by making it create a new widget (marked with W)
previously non-existent in the initial state; Case 4 is applicable
here.

Case 5. There is at least one widget w that does not exist in the
initial state S0; it is created by e1 with property p and value v; e2

does not create w. However, w is created differently when the
Fig. 8. Case 4: e1: Uncheck Read-only; e2: Click button Insert.

Fig. 10. Case 6: e1: Click button Set Row; e2: Click button Set Column.

X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575 565
sequence he1; e2i is executed, i.e., the value of w’s property p is now
v 0 (not v). Formally, 9w 2W; 9p 2 Pw; 9v 2 Vp; 9v 0 2 Vp;

8�p 2 Pw; 8�v 2 Vp, s:t: ððv– v 0Þ ^ ððw;�p; �vÞ R S0Þ^ ððw;p;vÞ 2 e1ðS0ÞÞ
^ððw;�p; �vÞ R e2ðS0ÞÞ ^ ððw;p;v 0Þ 2 e2ðe1ðS0ÞÞÞÞ.

A variation of Case 5 is called Case 5.1 in which the roles of e1

and e2 are exchanged and the combined sequence he1; e2i remains
the same. Fig. 9 shows an example for Case 5.1. The ‘‘GUI Demo 2”
application is used in this example. It is used to create a table with
a given number of rows and columns. One can input the desired
number of rows and columns in the text-fields labeled as # of

Rows and # of Columns. By clicking either the button Set Row

or Set Column, a table with the specified number of rows and col-
umns is created in the bottom panel; or if a table already exists in
the panel, the number of rows and columns are changed to the gi-
ven numbers.

For Case 5.1, the initial state has the row and column number
both set to 2 and an empty bottom panel. In this initial state, event
e1 inputs 1 into the text-field to set the number of rows; e2 clicks
the button Set Row and creates a new table widget with two rows.
However, when executing he1; e2i, a table with only one row is cre-
ated. Therefore, e1 influences e2 and modifies its creation of the
new widget, i.e., the table (marked with W); Case 5.1 is applicable
here.

Case 6. There is at least one new widget w that does not exist in
state S0; but w is created by e1 and e2 individually. However, it is
created by the sequence he1; e2i with a different value v 00 for
property p. Formally, 9w 2W; 9p 2 Pw; 9v 2 Vp; 9v 0 2 Vp; v 00 2
Vp; 8�p 2 Pw; 8�v 2 Vp, s:t: ððv 0 – v 00Þ ^ ððw; �p; �vÞ R S0Þ ^ ððw; p;vÞ 2
e1ðS0ÞÞ ^ ððw; p;v 0Þ 2 e2ðS0ÞÞ ^ ððw; p;v 00Þ 2 e2ðe1ðS0ÞÞÞÞ.

This case is also demonstrated using the ‘‘GUI Demo 2” applica-
tion in Fig. 10. In this example, the initial state has row and column
number set to 2 and an empty bottom panel. Event e1 clicks the
button Set Row and e2 clicks the button Set Column. Event e1 indi-
vidually creates a new table with one column and two rows; event
e2 creates a one-row and two-column table. Executing he1; e2i cre-
ates a table with two rows and two columns. Hence, e1 influence e2,
i.e., resulting in different creation of a new widget (marked with
W), and Case 6 is applicable here.

3.4. Object destruction

Event execution may also ‘‘remove” existing widgets from a
GUI, e.g., by cutting selected components. According to the terms
Fig. 9. Case 5.1: e1: Input row number; e2: Click button Set Row.
introduced in Section 3.1, a widget is ‘‘deleted” by removing all
its widget–property–value triples from the current state. The next
three cases handle removed widgets.

Case 7. There is at least one widget w that exists in the initial state
S0 with property p and value v; it is not removed by e1 and e2

individually. However, it is removed when the sequence he1; e2i is
executed. Formally, 9w 2W ; 9p 2 Pw; 9v 2 Vp; 9v 0 2 Vp; v 00 2 Vp,
8�p 2 Pw; 8�v 2 Vp, s:t: ðððw; p;vÞ 2 S0Þ ^ ððw; p; v 0Þ 2 e1ðS0ÞÞ ^ ððw;
p;v 00Þ 2 e2ðS0ÞÞ ^ ððw; �p; �vÞ R e2ðe1ðS0ÞÞÞÞ.

Case 7 is illustrated via an example using ‘‘GUI Demo 1” applica-
tion in Fig. 11. In this example, the initial state has all check-boxes
unchecked and a text-field with text Hello World in the bottom
panel. Event e1 checks Select All and selects the text in the
text-field; e2 clicks the button Cut. They individually do not re-
move the text-field in the bottom panel. However, executing
he1; e2i results in an empty bottom panel. Therefore, e1’s selection
of widgets influences e2 and enables it to remove an existing wid-
get (marked with W); Case 7 is applicable here.

Case 8. There is at least one widget w that does not exist in the
initial state S0; it is created by e1 with property p and value v; e2

does not create w individually. However, it is removed when the
sequence he1; e2i is executed. Formally, 9w 2W; 9p 2
Fig. 11. Case 7: e1: Check Select All; e2: Click button Cut.

Fig. 12. Case 8: e1: Click button Insert; e2: Click button Cut.

566 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
Pw; 9v 2 Vp; 8�p 2 Pw; 8�v 2 Vp, s:t: ðððw;�p; �vÞ R S0Þ ^ ððw;p;vÞ 2
e1ðS0ÞÞ^ððw;�p; �vÞ R e2ðS0ÞÞ ^ððw;�p; �vÞ R e2ðe1ðS0ÞÞÞÞ.

Case 8 is demonstrated using ‘‘GUI Demo 1” in Fig. 12. The initial
state in this example has all check-boxes unchecked and an empty
bottom panel. Event e1 is Click button Insert; e2 is Click button
Cut. Event e1 inserts a text-field into the bottom panel; e2 removes
selected items in the panel if there are any. However, executing
he1; e2i first inserts the text-field (selected at the time of creation)
by e1, then e2 removes the text-field. Therefore, e1 influences e2,
i.e., e2 removes widget (marked with W) newly created by e1,
and Case 8 is applicable here.

A variation of Case 8 is called Case 8.1 in which the roles of e1

and e2 are exchanged and the combined sequence he1; e2i remains
the same. Fig. 13 shows an example illustrating Case 8.1. In this
example, the initial state has unchecked check-boxs and an empty
panel. Event e1 is Check Read-only and e2 is Click button Insert.
Event e2 creates a text-field widget in the panel. However, execut-
ing he1; e2i does nothing to the panel because e1 first sets the panel
to read-only; e2 cannot create a new text-field. Hence, e1 influences
e2’s creation of the new widget (marked with W; Case 8.1 is appli-
cable here.

Case 9. There is at least one new widget w that does not exist in
state S0; but it is created by e1 with property p and value v, and by
Fig. 13. Case 8.1: e1: Check Read-only; e2: Click button Insert.
e2 with property p and value v 0 individually. However, it is
removed by the sequence he1; e2i, i.e., no triple involving widget w
is in state e2ðe1ðS0ÞÞ. Formally, 9w 2W ; 9p 2 Pw; 9v 2 Vp;

9v 0 2 Vp; 8�p 2 Pw; 8�v 2 Vp, s:t: ðððw;�p; �vÞ R S0Þ^ ððw;p;vÞ 2 e1ðS0ÞÞ
^ððw;p;v 0Þ 2 e2ðS0ÞÞ ^ ððw;�p; �vÞ R e2ðe1ðS0ÞÞÞÞ.
3.5. Object destruction followed by creation

The next two cases describe interactions in which existing wid-
gets are removed by individual events (all its widget–property–va-
lue triples are removed from the current state) but are re-created
(its widget–property–value triples are added to the current state)
by the sequence he1; e2i.

Case 10. There is at least one widget w that exists in the initial
state S0 with property p and value v; it is removed by e2; it is
modified by e1 with property p and value v 0. However, it is re-
created when the sequence he1; e2i is executed, i.e., the triple
ðw; p;v 00Þ is in state e2ðe1ðS0ÞÞ. Formally, 9w 2W ; 9p 2 Pw; 9v 2
Vp; 9v 0 2 Vp; 9v 00 2 Vp; 8�p 2 Pw; 8�v 2 Vp, s:t: ðððw; p;vÞ 2 S0Þ^
ððw; �p; �vÞ R e2ðS0ÞÞ ^ ððw; p;v 0Þ 2 e1ðS0ÞÞ ^ ððw; p;v 00Þ 2 e2ðe1ðS0ÞÞÞÞ.

The example shown in Fig. 14 demonstrates Case 10. The appli-
cation used here is ‘‘GUI Demo 3.” In this application, clicking but-
ton New Layer creates a radio button labeled with a layer number
in the bottom panel. Clicking button Remove Layer removes the
radio button labeled with the highest layer number. The example
has the initial state with a created Layer 1 in the panel. Event e1

clicks button New Layer and creates Layer 2; e2 clicks button Re-

move Layer and removes the existing Layer 1. However, when
executing he1; e2i; e2 now removes the newly created Layer 2 in-
stead of the original Layer 1. Hence, e1 influences e2, i.e., keeping
the widget (marked with W) that would have been removed. Case
10 captures this scenario.

A variation of Case 10 is called Case 10.1 in which the roles of e1

and e2 are exchanged and the combined sequence he1; e2i remains
the same.

Case 11. There is at least one widget w that exists in the initial
state S0 with property p and value v; it is removed by e1 and e2

individually. However, it is re-created when the sequence he1; e2i is
executed, i.e., the triple ðw; p;v 0Þ is in state e2ðe1ðS0ÞÞ. Formally,
9w 2W ; 9p 2 Pw; 9v 2 Vp; 9v 0 2 Vp, 8�p 2 Pw; 8�v 2 Vp, s:t: ðððw; p;
vÞ 2 S0Þ ^ ððw; �p; �vÞ R e1ðS0ÞÞ ^ ððw; �p; �vÞ R e2ðS0ÞÞ ^ ððw; p;v 0Þ 2 e2

ðe1ðS0ÞÞÞÞ.
Fig. 14. Case 10: e1: Click button New Layer; e2: Click button Remove Layer.

X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575 567
3.6. Enabling and disabling objects

Finally, a common occurrence of event interaction in GUIs are
enabling and disabling widgets, which may be modeled as the wid-
get’s ENABLED property being set to TRUE or FALSE.

Case 12. There exists at least one widget w that was disabled in S0

but enabled by e1. Event e2 is performed on w, represented by a
predicate EXECðe2;wÞ. Formally, 9w 2W; ENABLED 2 Pw; TRUE 2
VENABLED;FALSE 2 VENABLED, s:t: ðððw;ENABLED;FALSEÞ 2 S0Þ^ ððw;
ENABLED;TRUEÞ 2 e1ðS0ÞÞ ^ EXECðe2;wÞÞ.
3.7. Additional contexts

Modal windows create special situations for Cases 1–12 due to
the presence of termination events

(e.g., Ok, Cancel). User actions in these windows do not cause
immediate state changes; they typically take effect after a termina-
tion event has been executed, leading to contexts 1–4.

Context 1. If both e1 and e2 are associated with widgets that are
contained in one modal window with termination event TERM, then
the definitions of e1ðS0Þ; e2ðS0Þ, and e2ðe1ðS0ÞÞ are modified as
follows: e1ðS0Þ is the state of the GUI after the execution of the event
sequence he1;TERMi; e2ðS0Þ is the state of the GUI after the
execution of the event sequence he2;TERMi, and e2ðe1ðS0ÞÞ is the
state of the GUI after the execution of the event sequence
he1; e2;TERMi. All the predicates defined in Cases 1–12 apply, using
these modified definitions, for e1 and e2 in the same modal window.

Context 2. If e1 is associated with a widget contained in a modal
window with termination event TERM, and e2 is associated with a
widget contained in the modal window’s parent window (i.e., the
window that was used to open the modal window) then e1ðS0Þ is
the state of the GUI after the execution of the event sequence
he1;TERMi; e2ðS0Þ is the state of the GUI after the execution of the
event e2, and e2ðe1ðS0ÞÞ is the state of the GUI after the execution
of the event sequence he1;TERM; e2i. All the predicates defined in
Cases 1–12 apply.

Context 3. If e1 is associated with a widget contained in a modal
window with termination event TERM 1, and e2 is associated with
a widget contained in another modal window with termination
event TERM 2 (i.e., the window that is derived through another path
from the main window) then e1ðS0Þ is the state of the GUI after the
execution of the event sequence he1;TERM 1i; e2ðS0Þ is the state of
the GUI after the execution of the event sequence he2;TERM 2i, and
e2ðe1ðS0ÞÞ is the state of the GUI after the execution of the event
sequence he1;TERM 1;R; e2;TERM 2i, where R is the sequence of
events needed to open the modal window containing e2. All the
predicates defined in Cases 1–12 apply.

The 12 cases described in this section are not exhaustive and
new cases may be added, as needed, in the future. Our implemen-
tation of the predicates allow users to add new predicates by
implementing a Java method for each new predicate. The method
is invoked, whereby the predicate is evaluated. Our future research
will involve consolidating some of the cases into fewer abstract
cases; instantiations of widgets, properties, values, and states will
help to define specific situations. However, we feel that this will
also make the implementation of individual predicates more com-
plex and less self-contained.

3.8. ESI defined

There is an Event Semantic Interaction (ESI) relationship between
two events e1 and e2 if and only if at least one of the predicates in
Cases 1–12 evaluates to TRUE; this relationship is written as
e1 !
nðmÞ

e2, where the number n is one of the case numbers 1–12;
m is the context number. If multiple cases apply, then one of the
case numbers is used. Due to the specific ordering of the events
in the sequence he1; e2i, the ESI relationship is not symmetric.
4. The ALT process

We now present the steps of the ALT process via the example
application of Fig. 1.

1. Obtain the event-interaction graph (EIG). As mentioned in
Section 2, this is done via automated reverse engineering
techniques [18]. Because of current limitations of the reverse
engineering process, it is unable to automatically infer the
(enable) relationship between e3 and e5; hence the EIG is a fully
connected directed graph with seven nodes, corresponding to
the seven events.

2. Generate and execute the 2-way covering test suite. This suite con-
sists of all 2-way covering event sequences, which are obtained
by simply enumerating the edges of the EIG. Each of these
sequences is executed in the software’s start state. As expected,
none of the sequences starting with e5 executed. However, the
sequence he3; e5i executed successfully, indicating that e3

enables e5.
Also, the entire state of the GUI is captured after each event for
each test case. This includes all the properties of all the GUI’s
widgets. However, we will restrict our discussion to the state
of interest for this example, which includes the state of each
radio button, i.e., selected or not-selected and the contents of
Rendered Shape area. This part of the state will be used to
compute the ESI relationships.

3. Compute ESI relationships. Our ESI relationships between two
events are based on the ability of an event to influence another
event’s execution, as captured in the GUI’s state. Our current
implementation computes these relationships automatically;
the predicates (implemented as Java methods in a queue) are
invoked one-by-one to determine if they are TRUE, We saw in
the previous section that e2 influences e6. Event e6 alone from
the start state renders a circle in the Rendered Shape area.
However, executing e2 before e6 changes the behavior of e6,
yielding a square instead. This ‘‘interaction” is captured by our
ESI predicate number 5.1 and represented as e2 !

5:1ð1Þ
e6.

Another interesting relation in this example is e6 !
5ð1Þ

e2, i.e., e6 is
ESI related to e2. In the default start state, e6 creates a circle. How-
ever, the sequence he6; e2i yields a square because e2 changes the
shape. The predicate (number 5 in our set) used to compute this
relation is described in Section 3.4. This interaction is due to the
created variable shared between the code of e6 and e2.
Another ESI relationship is e3 !

12ð1Þ
e5. The predicate used to obtain

it is number 12 in our set. This predicate applies because widget
w5 is disabled in the start state but enabled by e3. In e3’s code this
is done by colorText.setEditable (true).
The three relations found in this step are: e2 !

5:1ð1Þ
e6; e6 !

5ð1Þ
e2, and

e3 !
12ð1Þ

e5. The first two are used to extend two of the 2-way cov-
ering test cases he2; e6i and he6; e2i to he2; e6; e2i and he6; e2; e6i,
respectively.
The third relation is used to augment all the 2-way covering test
cases that started with e5 but remained unexecutable earlier.
Because e3 enables e5, the new 3-way test cases are obtained
by prefixing e3 to all the 2-way covering test cases that start with
e5, thereby yielding: he3; e5; e1i; he3; e5; e2i; he3; e5; e3i;
he3; e5; e4i; he3; e5; e5i; he3; e5; e6i, and he3; e5; e7i. These test

cases will give us an opportunity to observe the effect of e5,
previously unexecuted, on other all events that can potentially
follow e5.

568 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
4. Execute the new 3-way test cases, obtain new ESI relations, and
generate 4-way test cases. All the GUI states after each event
are recorded. This step computes new ESI relations by splitting
each 3-way covering test case hex; ey; ezi into two parts: hex; eyi
and ez; the former is conceptually treated as a single macro
event EX and used as input to our existing predicates; the result-
ing ESI relation is now between EX (which is really the event
sequence hex; eyi) and event ez. We have designed the ‘‘splitting”
of the test case in the above fashion very carefully so that the EX

part would already have been executed in the earlier batch,
thereby requiring no more execution to obtain the new ESI rela-
tions.
Consider the event sequence he3; e5; e6i. This is rewritten as
hEX ; e6i, with EX being he3; e5i; the semantics of EX can be imag-
ined as ‘‘enter a custom color in an enabled text-field w5”; the
ESI predicates are applied. We see that EX influences e6. Event
e6 alone from the start state renders an empty circle in the
Fig. 15. Test coverage of the source code for
Rendered Shape area. However, executing EX before e6

changes its behavior, yielding a filled circle instead. Hence,

predicate 5.1 applies; he3; e5i !
5:1ð1Þ

e6.

Because he3; e5i !
5:1ð1Þ

e6 and e6 !
5ð1Þ

e2 (as computed earlier), we
extend he3; e5; e6i to the 4-way test case he3; e5; e6; e2i.
None of the other 3-way test cases are extended because the
predicates do not apply.

5. Execute the new 4-way test cases, obtain new ESI relations, and
generate 5-way test cases. The sole 4-way test case he3; e5; e6; e2i
is rewritten as hEX ; e2i; hence the semantics of EX are now ‘‘enter
a custom fill color and create the shape”. Note that due to the
nature of the splitting, EX has already been executed earlier;
hence its resulting state is already available for analysis.

We determine that he3; e5; e6i !
5ð1Þ

e2. And we already know that
e2 !

5:1ð1Þ
e6. Hence, only one 5-way covering test case is generated

he3; e5; e6; e2; e6i.
the ‘‘Radio Button Demo” GUI – part 1.

X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575 569
6. Execute the new 5-way test case, obtain new ESI relations, and
generate 6-way covering test cases. We do not find any new ESI
relations; hence ALT terminates.
In all, 37 two-way, 9 three-way, 1 four-way, and 1 five-way test
cases were generated in this example. The total number, 48, is
much smaller than the all possible sequences numbers presented
earlier.

We now informally examine how our 48 test cases executed the
code of the simple application. Figs. 15 and 16 shows the
event-handler code as well as some helper methods. The statement
Fig. 16. Test coverage of the source code for
coverage is summarized as a vector of 4 check-boxes associ-
ated with each statement. The first box is checked if any of the 2-
way test cases executed the corresponding line of code; similarly,
the second box is for 3-way test cases; third for 4-way, and fourth
for 5-way test cases. For example, in the ImagePanel class code,
Lines 16 and 17 were executed only by 4- and 5-way test cases.

There are several points to note about the code and statement
coverage. First, each event has a programmer-defined event handler
(w5, which requires no custom functionality, is the exception).
Second, the code is implemented in two classes RBExample

and ImagePanel – any code-based analysis must account for
the ‘‘Radio Button Demo” GUI – part 2.

Fig. 17. The ALT algorithm.

570 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
interactions across classes. In Section 6, we will see several failures
are due to incorrect interactions across classes. Third, event handlers
interact either directly or indirectly by using shared variables (e.g.,
currentShape, created, currentColor) or via method calls
(e.g., setFillColor ()). Detecting such interactions at the code
level, especially across classes, is non-trivial. Fourth, while many
statements are covered by all types of test cases (e.g., Lines 2–4 in
the ImagePanel class are executed by 2-, 3-, 4-, and 5-way test
cases), a few statements that are guarded by a series of conditional
statements are executed by very few test cases (e.g., Lines 16 and
17 in the ImagePanel class are executed by the sole 4-way and
5-way test case but was missed by the other 46 test cases). Fifth,
some event handlers (i.e., CircleAction (), NoneAction (),
and ResetAction ()) were executed only by the 2-way test cases.
Because their corresponding events were not involved in any ESI
relationships, they were never used in any of the 3-, 4-, and 5-way
test cases. Examining their code reveals that these event handlers
are fairly simple with very little branching; all of their code is com-
pletely covered by the 2-way test cases. Finally, although not evident
by statement coverage, the 4- and 5-way test cases are able to
exercise several combinations of control-flow that are only partially
covered by the 2- and 3-way tests.

The above discussion of code coverage is in no way meant to be
a formal analysis of the code-covering ability of the ALT test cases.
However, it helps to highlight an important aspect of GUI testing
that will be investigated in future research. More specifically, we
need to understand the subtle nature of the ESI relationship that
helps to improve the reachability of critical fault-revealing code.
We hypothesize that this improvement is caused by the linking
of events that, in some sense, are functionally related; executing
them together causes the revelation of problems due to shared
objects.
5. The ALT algorithm

Having presented an overview of ALT, we now formalize its
steps by presenting an algorithm. Intuitively, the algorithm takes
an i-way covering test suite as input, in which each test case is fully
executable, splits each of its i-way covering test cases he1; e2; . . . ; eii
into two parts: (1) a macro event EX = he1; e2; . . . ; ei�1i and (2) the
last event ei. If EX and ei are related via an ESI relationship, then
for each event ex that ei is ESI related to, a new (i + 1)-way covering
test case he1; e2; . . . ; ei; exi is added to the suite. An extra step han-
dles previously unexecuted events. This approach preserves the
property of our earlier ESIG-based test cases that each pair of adja-
cent events are related via an ESI relation. It imposes a stronger
condition that each preceding sequence starting from the first
event is also ESI-related to its subsequent event. Moreover, the
alternating approach allows us to detect new ESI relations between
newly generated sequences and newly enabled events.

We will assume the availability of several helper functions: (1)
FindStateðS0; EiÞ that returns the state of the GUI after event se-
quence Ei has been executed on it, starting in state S0, (2) isRelat-
edðS0; S1; S2; S3Þ that returns TRUE if at least one of the ESI
predicates evaluates to TRUE, (3) pairESIðeiÞ that returns the set
of all events that are ESI-related to ei, (4) pairEIGðeiÞ that returns
the set of all events that have an incoming edge from ei in the
EIG, (5) LastðtcÞ that returns the last event in test case tc, (6)
SubSequenceðtc; first; lastÞ returns a subsequence of tc starting at
first and ending at last, (7) LengthðtcÞ returns the number of events
in tc, and (8) UnionðTi; tcÞ adds tc to Ti. Also, an array wasNeverEx-
ecuted, indexed by each event, is set to TRUE if the event was dis-
abled in the GUI’s start state S0; otherwise it is set to FALSE.

All these helper functions have been implemented in Java and
are invoked by an algorithm that generates test cases fully auto-
matically. The algorithm is shown in Fig. 17. It takes the i-way test
suite ðTiÞ as input and returns the (i + 1)-way test suite. Each test
case is broken into two parts (Lines 3 and 4). If the first
‘‘LengthðtestcaseÞ � 1” events ðEXÞ of the test case yield a state that
is related via the ESI relationship (determined by the isRelated
predicate), to its last event ðejÞ (Line 8), then this test case is a good
candidate for extension by a new event with all events to which it
is ESI related (Lines 9–11). If the last event ðejÞ has never been exe-
cuted before but is made executable by EX , then it is re-executed to
compute new ESI relations (Lines 12–15). The output is the new
i + 1-way covering test suite.

The algorithm is invoked for T2, which is obtained from the EIG.
Each subsequent invocation with an i-way covering test suite ðTiÞ
as input will yield the (i + 1)-way covering suite ðTiþ1Þ. Testing
can be stopped once the testing goals have been met (or the testing
team runs out of resources) or ALT returns an empty test suite. This
can be if BOTH of the following happen:

1. No new ESI relations are found (i.e., isRelatedðS0; S1; S2; S3Þ
returns FALSE on Line 8) or ej is not ESI-related to any other
event (i.e., pairESIðejÞ returns an empty set in Line 9).

2. ej has already been executed in an earlier batch or was enabled
in S0.

We observe that this algorithm is fairly conservative in the
number of test cases that it generates. Lines 8 and 9 provide a strict
condition to test-case extension, i.e., not only must EX be ESI-re-
lated to ej, event ej must also be ESI-related to at least one or more
events, i.e., pairESIðejÞ returns a non-empty set. Moreover, we have
observed in our experiments that most events have been executed
by the second iteration of the algorithm; hence, Lines 12–15 are
rarely executed beyond T3. Because ALT is intended to be one of
many algorithms that a tester should have in the ‘‘testing tool-

X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575 571
box”, we feel that having fewer test cases from ALT would help a
test designer to conserve resources that may be redirected to other
testing techniques, thereby yielding a ‘‘diverse” mix of test cases
from several techniques.

One final point to note is our use of the function FindStateðS0; EiÞ.
This function maintains a lookup-table to return its output; the ta-
ble is populated during test-case execution; it is important that all
entries exist. Entries corresponding to the three invocations of this
function on Lines 5–7 are guaranteed to exist – for the invocation
on Line 5, EX was executed in a previous batch, for Line 6, ej is a sin-
gle event, whose resulting state was stored during the execution of
the 2-way test cases, for Line 7, tc was executed in the current
batch. We examine the space requirements for this table in our
empirical study, presented next.
6. Empirical study

The test cases obtained from the ALT algorithm may be gener-
ated and executed automatically on the GUI. The only unavailable
part is the test oracle, a mechanism that determines whether an
application under test executed correctly for a test case. In this re-
search, an application is considered to have passed a test case if it
did not ‘‘crash” (terminate unexpectedly or throw an uncaught
exception) during the test case’s execution; otherwise it failed.
Such crashes may be detected automatically by the script used to
execute the test cases. The EIG, ESI, and test cases may also be ob-
tained automatically. Hence, the entire end-to-end feedback-based
GUI testing process for ‘‘crash testing” could be executed without
human intervention.

Implementation of the crash testing process included setting up
a database for text-field values. Since the overall process needed to
be fully automatic, a database containing one instance for each of
the text types in the set {negative number, real number, long file
name, empty string, special characters, zero, existing file name, non-
existent file name} was used. Note that if a text field is encountered
in the GUI, one instance for each text type is tried in succession.

This process provided a starting point for a feasibility study to
evaluate the ALT test cases and compare them to the ESIG-
generated test cases. The following questions needed to be an-
swered to determine the usefulness of the overall feedback-based
process:

Q1: How many test cases does ALT generate? How does this
number compare to the EIG- and ESIG-based approaches?

Q2: How many faults are detected by ALT? Of the faults detected
in this study, which are detected by ALT and which by the
ESIG-based approach? Why does one approach detect a par-
ticular fault whereas the other one misses it?
5 http://sourceforge.net/projects/freemind.
6 http://en.wikipedia.org/wiki/Mind_map.
7 This measure is useful for users interested in knowing which of the projects on

SourceForge.net are the most popular historically. The software from projects with a
high all-time activity has been downloaded by thousands of people and are most
frequently mature and stable applications which can be of immediate benefit to their
users.

8 http://sourceforge.net/projects/ganttproject.
9 http://sourceforge.net/projects/jedit.

10 http://sourceforge.net/projects/omegaT.
11 http://guitar.sourceforge.net/.
12 http://metrics.sourceforge.net/.
6.1. Study procedure

This study was conducted using four popular GUI-based open-
source software (OSS) applications downloaded from SourceForge.
The fully-automatic crash testing process was executed on them
and the cause (i.e., the fault) of each crash in the source code was
determined. More specifically, the following process was used for
this study:

1. Choose software subjects with GUI front-ends.
2. Generate and execute the 2-way covering test suite. Obtain the

ESI relationships.
3. Generate new test suite using the algorithm of Fig. 17.
4. If the newly proposed test suite is empty then stop; else execute

it and report crashes.
5. Repeat the last two steps until ALT returns an empty test suite.
To allow comparison, the ESIGs and corresponding test cases
were also obtained for all applications.

Step 1: Selection of subject applications. We downloaded four
popular GUI-based OSS (FreeMind 0.8.0, GanttProject
2.0.1, jEdit 4.2, OmegaT 1.7.3) from SourceForge. Free-
Mind and GanttProject have been used in our previous
experiments [17].

1. FreeMind,5 which is a mind-mapping6 software written in
Java. It has an all-time activity7 of 99.72%.

2. GanttProject,8 which is a project scheduling application
written in Java and featuring Gantt chart, resource man-
agement, calendaring, import and export (MS Project,
HTML, PDF, spreadsheets). It has an all-time activity of
98.12%.

3. jEdit,9 which is a programmer’s text editor written in
Java. It uses the Swing toolkit for the GUI and can be con-
figured as a powerful IDE. When tested, it had an all-time
activity of 99.95%.

4. OmegaT,10 which is a multi-platform Computer Assisted
Translation tool with fuzzy matching, translation mem-
ory, keyword search and glossaries. It has an all-time
activity of 99.80%.

The characteristics of these OSS are shown in Table 2. The
entries show that the applications have non-trivial sizes in terms
of GUIs elements, containing more than a dozen windows (Win-
dows) and hundreds of widgets (Widgets), as reported by the GUI-
TAR11 tool. They also have large code-bases, reported by the
Metrics12 software, in terms of non-comment lines of code (LOC),
number of classes (Classes) and methods (Methods). All of the above
applications have an active community of developers and a high all-
time-activity percentile on SourceForge. Due to their popularity,
these applications have undergone quality assurance before release.
To further eliminate ‘‘obvious” bugs, a static analysis tool called Find-
Bugs [10] was executed on all the applications; after the study, we
verified that none of our reported bugs were detected by FindBugs.

Step 2: Generation of EIGs and seed test suites; execution of seed
suite; computation of ESI relations: We used the GUITAR
tool to generate, using automated reverse engineering,
the EIGs of all subject applications. The seed suite was
also generated automatically and executed without any
human intervention. The GUI’s run-time state was
recorded during test execution. We fixed all the detected
faults in the applications. The feedback was used to
obtain the ESIs for each application.

Step 3: Execution of ALT algorithm: Our tool used the initial set
of ESI relations to obtain the 3-way test cases. The num-
ber of test cases is shown in Table 3. These test cases
were executed automatically and the algorithm was
invoked again. This process continued until ALT returned
an empty test suite. Table 4 shows the number of ESI
relations obtained from each of the i-way suites, for
i ¼ 2; . . . ;6. For example, only one ESI relation was
obtained from the 6-way suite of GanttProject. A ‘‘–”

http://sourceforge.net/projects/freemind
http://en.wikipedia.org/wiki/Mind_map
http://sourceforge.net/projects/ganttproject
http://sourceforge.net/projects/jedit
http://sourceforge.net/projects/omegaT
http://guitar.sourceforge.net/
http://metrics.sourceforge.net/

Table 3
Test cases generation.

i-Way suites

3 4 5 6 7

FreeMind
EIG 1:72e8 9:56e10 5:31e13 2:95e16 1:64e19
ESIG 10208 (122426) (1690861) ((21857767) (353090927)
ALT 10208 2821 11 2 –

GanttProject
EIG 4:94e6 7:17e9 2:09e12 6:07e14 1:77e17
ESIG 3070 14742 27933 (63994) (125362)
ALT 3070 2229 226 34 4

jEdit
EIG 9:17e7 4:14e10 1:87e13 8:42e15 3:80e18
ESIG 7572 84488 (1024424) (10225602) (105931205)
ALT 7572 1258 738 171 –

OmegaT
EIG 7:65e6 1:51e9 2:97e11 5:85e13 1:15e16
ESIG 2335 8935 42859 (219415) (1135743)
ALT 2335 1440 – – –

Table 2
Subject applications for study 1.

Subjects Windows Widgets LOC Classes Methods

FreeMind 30 611 13,463 765 3114
GanttProject 18 326 22,711 840 5189
jEdit 27 498 48,444 829 5582
OmegaT 18 228 22,708 274 1522

Total 93 1663 107,326 2798 15,407

Table 4
ESI relationships.

Subject application i-Way suites

2 3 4 5 6

FreeMind 614 204 86 3 –
GanttProject 710 617 109 63 1
jEdit 591 419 54 38 –
OmegaT 469 310 11 – –

Table 5
Number of entries in the FindStateðÞ table.

Subjects 1-way 2-way 3-way 4-way 5-way 6-way 7-way

FreeMind 256 309,136 10,208 2821 11 2 –
GanttProject 291 84,681 3070 2229 226 34 4
jEdit 452 204,304 7572 1258 738 171 –
OmegaT 197 38,809 2335 1440 – – –

Table 6
Fault detection.

Subject application Technique i-Way test suite

3 4 5

FreeMind ESIG – –
ALT – –

GanttProject ESIG h – h

ALT –

jEdit ESIG h –
ALT –

OmegaT ESIG – – –
ALT – – –

Table 7
Time (in hours) required to execute 1- and 2-way, and ALT test cases.

Subjects 1-way 2-way 3-way 4-way 5-way 6-way 7-way

FreeMind 1.85 1,293.53 58.78 19.30 0.08 0.02 –
GanttProject 0.81 291.68 12.86 15.02 1.40 0.17 0.02
jEdit 1.13 662.52 32.67 5.04 3.79 0.92 –
OmegaT 0.49 143.32 9.16 5.97 – – –

572 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
indicates that we did not have an entry. As the numbers
show, the ESI relations decrease with each iteration,
thereby helping to terminate the ALT algorithm. This dif-
fered across applications: we went as high as 7-way cov-
ering test cases for GanttProject and 4-way covering test
cases for OmegaT. From these results, we see that the
total number of EIG-generated test cases is simply too
large (so large that we had to represent them using the
‘‘exponent” notation to fit in the table). The 3-way
ESIG-generated test suites are manageable; 4-way and
beyond becomes quite large. The parenthesized ESIG
entries are shown for comparison only – we could not
execute such large numbers of test cases; the others
were generated and executed. On the other hand, the
ALT approach generates a reasonable number of test
cases that goes down with each test suite iteration. This
helps to answer Q1.
The space requirement of the FindStateðS0; EiÞ function used by
ALT were quite low. Table 5 shows the number of entries needed.
As expected, the number of entries is largest for 2-way tests and
goes down with higher way test case. This is simply because of
the smaller number of higher-way tests.

Both ALT and the ESIG-approach were successful at detecting
faults in the applications, except OmegaT (only 2 faults were de-
tected by the 2-way covering test cases for this application). We
show these results in Table 6. Each detected fault is shown as a
check-box , which is checked if the fault was detected; other-
wise it is unchecked. A ‘‘–” indicates that no fault was detected.
To allow easy comparison, we show the check-box vector (for
the same faults in the same order) for both ALT and ESIG. For
example, faults 1–3 in GanntProject were detected by both ESIG
and ALT. Faults 4 and 5 were not detected by ESIG; they were
however detected by ALT, Fault 4 by the 3-way test suite and
Fault 5 by a 5-way covering suite. We see that ALT detected all
the faults that ESIG detected and some more using much fewer
test cases that executed in very little time (Table 7). This helps
to partly answer Q2.

6.2. Discussion

We now provide more details of faults 4 and 5 of GanttProject,
and Fault 3 of jEdit. These faults were not detected by ESIG because
several events required a complex chain of enabling events, which
could only be determined by alternating between test execution
and generation.

Fault 4 in GanttProject results in a NumberFormatException. It
is detected by a 3-way test case he1: Create new task; e2: Set general
task property; e3: Set non-integer value in task durationi. We now
examine the source code and explain why ALT was able to success-
fully generate a test case that resulted in a crash.

Let’s examine the code for e1’s event handler, which creates a
new task and sets the selected index (using setSelectedIndex)
to UIFacade.GANTT_INDEX:

public Task newTask () {
getTabs().setSelectedIndex(UIFacade.GANTT_INDEX);
. . .

}

Software Technology 52 (2010) 559–575 573
Event e2 is associated with a ‘‘tab” widget bProperties; this
widget is registered to a listener that handles state changes in

the following method:

X. Yuan, A.M. Memon / Information and
public void stateChanged (ChangeEvent e) {
. . .

bProperties.setEnabled (

getTabs ().getSelectedIndex () ==

UIFacade.GANTT_INDEX||
getTabs ().getSelectedIndex () ==

UIFacade.RESOURCES_INDEX);
. . .

}

Note that e1’s execution sets the selected index (using setS-
electedIndex) to UIFacade.GAN- TT_INDEX and the above lis-
tener uses this value in a conditional statement to enable the
bProperties tab. Hence, in the GUI, event e1 enables e2; event
e2 is disabled otherwise. In the first iteration of ALT, all 2-way cov-
ering test cases that started with e2 remained unexecuted. How-
ever, the test case he1; e2i executed, indicating that e1 enables e2.
Lines 12–14 of the algorithm used this information to extend all
2-way covering test cases that contained e2 by prefixing e1 to
them; one important test case was he1; e2; e3i.

Once enabled, event e2 shows the general task property, using
the code:
public TaskPropertiesAction (IGanttProject

project, TaskSelectionManager selectionManager,

UIFacade uiFacade) {
GanttTask [] tasks = new GanttTask [] (GanttTask)

selection.get(0);
GanttDialogProperties pd = new

GanttDialogProperties (tasks);
// show different task properties tab

pd.show (getTaskManager (), myHumanManager,

myRoleManager, getUIFacade ());
. . .

}

Event e3 is the action of entering text in the JTextField dura-
tionField1 contained in the JPanel named TaskPropertiesBean
which is the GUI for task properties setting dialog. Hence, event
e3 remains unavailable until event e2, which brings up the dialog
containing e3, is executed. Because e3 is disabled during the first
iteration, as for the case with e2, none of the 2-way test cases that
started with e3 executed.

In the first iteration of ALT, all 2-way covering test cases that
started with e3 remained unexecuted. Moreover, he2; e3i was also
unexecuted. Hence, by this iteration, ALT did not know how to exe-
cute e3. In the second iteration, once the above-generated 3-way
covering test case he1; e2; e3i was executed, it was used to deter-
mine that he1; e2i enables e3. Lines 12–14 used this information
to obtain new test cases for the third iteration.

Once e3 is executed, i.e., text is entered, the test case closes the
dialog via an Ok button, which causes the execution of the follow-
ing code:
new OkAction () {
public void actionPerformed (ActionEvent arg0) {
uiFacade.getUndoManager ().undoableEdit

(‘‘Properties changed’’,
new Runnable () {
public void run () {
Task [] returnTask =

taskPropertiesBean.getReturnTask ();
}

});
}

}

The invocation taskPropertiesBean.getReturnTask ()
above in turn invokes getLength ():
public Task [] getReturnTask () {
. . .

if (getLength () > 0) {
mutator.setDuration (returnTask [i].getManager

().createLength (getLength ())

);
}
. . .

}

And the code for getLength () is:

public int getLength () {
length = Integer.parseInt (durationField1.getText

().trim ());
return length;

}

Event e causes GanttProject to crash because it expects an inte-
3

ger to be entered for the duration text-field in the task property
window. However, if a non-integer value is set, GanttProject re-
draws the task shown in its schedule panel; the method get-

Length () invokes Integer.parseInt (duration- Field1.

getText ().trim ()) which throws a NumberFormatException.
The above 3-way test case was the shortest and only sequence

needed to reveal this fault starting in state S0; none of the 2-, and
other 3-way test case could have detected it.

Fault 5 in GanttProject results in a NullPointerException. It is
detected by a 5-way covering test case he1: Create new task; e4: Cus-
tom columns; e5: Add columns (with a name); e6: Select newly created
column in column table; e7: Delete columni. Once again, the enabling
relationship is complex – e1 enables e5; he1; e4i enabled e5; he1;

e4; e5i enables e6 and e7. We note that it cannot be detected by
any other 5-way or lower test case.

Fault 3 in jEdit results in a NullPointerException. It is detected
by the 4-way covering test case h e1: Download QuickNotepad plu-
gin; e2: Select QuickNotepad plugin; e3: Install QuickNotepad plugin;
e4: Choose QuickNotePad filei. After installing the QuickNotepad
plugin, jEdit allows the user to open a file by entering its path in
a text-field. The user is free to enter any string in this text-field,
including an incorrect path or the name of a non-existing file.
Hence, when opening a non-existing file in QuickNodePad ðe4Þ,
the NullPointerException is thrown. In this test case, e1 enables
e2; he1; e2i enabled e3; hence the he1; e2; e3i part of the test case
was generated by Lines 12–14 of the ALT algorithm. Finally,
he1; e2; e3i !

5ð2Þ
e4; Lines 8–11 of the ALT algorithm add the event

e4. In this example, we see that the combination of the enabling
and ESI parts of ALT was important to obtain the test case.

7. Summary

This study demonstrated that ALT tests are able to detect all the
ESIG-detected faults, as well as some additional faults, using fewer
test cases. Among the three faults that we discussed, we note that
the test cases that detected them were the shortest sequences
needed to reveal the faults. Moreover, the ESIG-based approach
could not detect them because of its inability to handle disabled
events. An alternative algorithm, based on a random walk of
the EIG, would have a very low probability of generating the

574 X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575
fault-revealing test cases. For example, 1
4:94e6 probability for Fault 4

of GanttProject. (Recall that the total number of 3-way sequences
from the EIG is 4.94e6 for GanttProject.)

The event handlers in the fault-revealing test cases were dis-
tributed across multiple classes. For example, for GanttProject, e1

was in the NewTaskAction class; fe2; e3; e4g were in GanttDial-

ogPro-perties; fe5; e6; e7g were in GanttTreeTable. Similarly,
for jEdit, e1 was in the PluginMana-ger class, fe2; e3g in Plugin-

List, and e4 in BeanShell. As mentioned earlier, interactions
across classes are difficult to infer statically; our run-time state
based techniques are agnostic to how the event handlers are
distributed.

As always, results of studies should be interpreted with threats
to validity in mind. Several such threats are identified in this study.
In terms of threats to external validity, four Java applications have
been used as subject programs. Although they have different types
of GUIs, this does not reflect the wide spectrum of possible GUIs
that are available today. Moreover, the applications are extremely
GUI-intensive, i.e., most of the code is written for the GUI. The re-
sults will be different for other GUI applications that have complex
underlying business logic and a fairly simple GUI. Also, all the sub-
ject applications are open-source, typically developed by volunteer
developers and might be more bug-prone than software imple-
mented by paid developers. In terms of threats to internal validity,
the instruments used for run-time state collection of GUI widgets
was based on Java Swing API. These widgets may have additional
properties that are not exposed by the API. Hence the set of ESI
relationships may be incomplete.
8. Conclusions and future work

This paper presented a new alternating technique to generate n-
way covering test cases. The key contributions of the paper are (1)
the formal definition of the ESI relationship with examples and (2)
the iterative refinement of test cases by generating them in
batches. Analysis of the run-time state of GUI widgets obtained
from a previous test batch are used to obtain a new batch; the pro-
cess cycles through test-case generation, execution, and analysis.
Our existing 2-way covering test cases are used as a starting point
for GUI state collection. Subsequently generated test cases are exe-
cuted; their results are used for analysis and further test-case gen-
eration; this process is repeated, iteratively yields test cases. The
technique was demonstrated via an empirical study on four fielded
software applications. The results of the study showed that the test
cases generated using the GUI state were useful at detecting seri-
ous faults in the applications; the alternating nature of the tech-
nique helped to detect complex enabling relationships between
events.

The results of the empirical study afforded two high-priority
tasks for future research. First, as discussed in Section 4, we will
examine aspects of the ESI relationship that helps to improve the
reachability of fault-revealing code. Second, several events are
ESI-related because of multiple predicates. We currently do not
‘‘count” the predicates per relation; in the future, we will explore
assigning ‘‘strengths” to ESI relations based on how many predi-
cates are TRUE for each pair of events.

In the medium term, we will leverage other researchers’ work
to further study GUI faults and failures. Most faults that we con-
tinue to find in our work on GUI testing are triggered only when
certain interactions between event handlers occur, e.g., one event
handler passes incorrect data to another. As observed by Marsi
et al. [13], these interactions may also be modeled by information
flows, program dependences, and program slices. We will explore
the use of these models in our work. From a GUI development
point of view, with the increasing flexibility of new user interfaces,
programmers must take steps to ensure that their software works
correctly for a large input space. They should check the validity of
objects whenever possible before use; text fields in particular
should be restricted to the smallest input domains possible. We
will also explore the application of a checking sequence for GUI test-
ing; a checking sequence is a test sequence that, under certain con-
ditions, is guaranteed to lead to a failure [9]. Although traditionally
used for finite-state machines, we feel that it may be extended to
our flow-graphs for GUI.

In the long term, we will extend this work to non-GUI domains.
Some of our earlier work based on the ESIs has already been ex-
tended to testing Ajax-based web applications [1]. The Document
Object Model (DOM) of the page manipulated by the Ajax code is
abstracted into a state model. Test cases are derived from the state
model based on the notion of semantically interacting events. We
expect that our alternating approach will also be applicable in the
Ajax domain.
Acknowledgments

This work was partially supported by the US National Science
Foundation under NSF Grant CCF-0447864 and the Office of Naval
Research Grant N00014-05-1-0421.
References

[1] P.T. Alessandro Marchetto, F. Ricca, State-based testing of Ajax web
applications, in: Proceedings of the 1st International Conference on Software
Testing, Verification, and Validation, April 9–11, 2008, pp. 121–130.

[2] C. Boyapati, S. Khurshid, D. Marinov, Korat: automated testing based on Java
predicates, in: Proceedings of International Symposium on Software Testing
and Analysis (ISSTA ’02), 2002, pp. 123–133.

[3] M.B. Dwyer, V. Carr, L. Hines, Model checking graphical user interfaces using
abstractions, in: M. Jazayeri, H. Schauer (Eds.), Proceedings of the ACM
SIGSOFT 6th International Symposium on the Foundations of Software
Engineering: ESEC/FSE ’97, Lecture Notes in Computer Science, vol. 1301,
Springer/ACM Press, 1997, pp. 244–261.

[4] R. Ferguson, B. Korel, The chaining approach for software test data generation,
ACM Transactions on Software Engineering and Methodology 5 (1) (1996) 63–
86.

[5] M. Finsterwalder, Automating acceptance tests for GUI applications in an
extreme programming environment, in: Proceedings of the 2nd International
Conference on Extreme Programming and Flexible Processes in Software
Engineering, May 2001, pp. 114–117.

[6] M.J. Gallagher, V.L. Narasimhan, Adtest: a test data generation suite for Ada
software systems, IEEE Transactions on Software Engineering 23 (8) (1997)
473–484.

[7] N. Gupta, A.P. Mathur, M.L. Soffa, Automated test data generation using an
iterative relaxation method, in: Proceedings of the ACM SIGSOFT 6th
International Symposium on the Foundations of Software Engineering: FSE-6,
1998, pp. 231–244.

[8] J.H. Hicinbothom, W.W. Zachary, A tool for automatically generating
transcripts of human–computer interaction, in: Proceedings of the Human
Factors and Ergonomics Society 37th Annual Meeting, Special Sessions:
Demonstrations, vol. 2, 1993, p. 1042.

[9] R.M. Hierons, H. Ural, Optimizing the length of checking sequences, IEEE
Transactions on Computers 55 (5) (2006) 618–629.

[10] D. Hovemeyer, W. Pugh, Finding bugs is easy, ACM SIGPLAN Notices 39 (12)
(2004) 92–106.

[11] JUnit, Testing Resources for Extreme Programming. <http://junit.org/news/
extension/gui/index.htm>.

[12] B. Korel, Automated software test data generation, IEEE Transactions on
Software Engineering 16 (8) (1990) 870–879.

[13] W. Masri, A. Podgurski, D. Leon, An empirical study of test case filtering
techniques based on exercising information flows, IEEE Transactions on
Software Engineering 33 (7) (2007) 454–477.

[14] P. McMinn, Search-based software test data generation: a survey: research
articles, Software Testing, Verification and Reliability 14 (2) (2004) 105–156.

[15] P. McMinn, M. Harman, D. Binkley, P. Tonella, The species per path approach to
search-based test data generation, in: Proceedings of International Symposium
on Software Testing and Analysis (ISSTA ’06), 2006, pp. 13–24.

[16] A.M. Memon, A Comprehensive Framework for Testing Graphical User
Interfaces, Ph.D. Thesis, Department of Computer Science, University of
Pittsburgh, July 2001.

[17] A.M. Memon, Automatically repairing event sequence-based GUI test suites for
regression testing, ACM Transactions on Software Engineering and
Methodology 18 (2) (2008) 1–36.

http://junit.org/news/extension/gui/index.htm
http://junit.org/news/extension/gui/index.htm

X. Yuan, A.M. Memon / Information and Software Technology 52 (2010) 559–575 575
[18] A.M. Memon, I. Banerjee, A. Nagarajan, GUI ripping: reverse engineering of
graphical user interfaces for testing, in: Proceedings of The 10th Working
Conference on Reverse Engineering, November 2003.

[19] A.M. Memon, M.E. Pollack, M.L. Soffa, Hierarchical GUI test case generation
using automated planning, IEEE Transactions on Software Engineering 27 (2)
(2001) 144–155.

[20] A.M. Memon, Q. Xie, Studying the fault-detection effectiveness of GUI test
cases for rapidly evolving software, IEEE Transactions on Software Engineering
31 (10) (2005) 884–896.

[21] C.C. Michael, G. McGraw, M. Schatz, Generating software test data by evolu-
tion, IEEE Transactions on Software Engineering 27 (12) (2001) 1085–1110.

[22] W. Miller, D.L. Spooner, Automatic generation of floating-point test data, IEEE
Transactions on Software Engineering 2 (3) (1976) 223–226.

[23] C. Pacheco, S.K. Lahiri, M.D. Ernst, T. Ball, Feedback-directed random test
generation, in: Proceedings of the 29th International Conference on Software
Engineering (ICSE ’07), May 23–25, 2007, pp. 396–405.

[24] A. Rountev, S. Kagan, M. Gibas, Evaluating the imprecision of static analysis, in:
Workshop on Program Analysis for Software Tools and Engineering, 2004, pp.
14–16.

[25] R.K. Shehady, D.P. Siewiorek, A method to automate user interface testing
using variable finite state machines, in: Proceedings of The Twenty-Seventh
Annual International Symposium on Fault-Tolerant Computing (FTCS’97),
Washington/Brussels/Tokyo, June 1997, IEEE Press, pp. 80–88.

[26] L. White, H. Almezen, Generating test cases for GUI responsibilities
using complete interaction sequences, in: Proceedings of the Interna-
tional Symposium on Software Reliability Engineering, October 2000, pp.
110–121.

[27] L. White, H. AlMezen, N. Alzeidi, User-based testing of GUI sequences and their
interactions, in: Proceedings of the 12th International Symposium Software
Reliability Engineering, 2001, pp. 54–63.

[28] L. White, H. Almezen, S. Sastry, Firewall regression testing of GUI sequences
and their interactions, in: Proceedings of the International Conference on
Software Maintenance, The Netherlands, September 22–26, 2003, pp. 398–
409.

[29] T. Xie, D. Notkin, Mutually enhancing test generation and specification
inference, in: A. Petrenko, A. Ulrich (Eds.), Formal Approaches to Software
Testing, Third International Workshop on Formal Approaches to Testing of
Software, FATES 2003, Lecture Notes in Computer Science, vol. 2931, Springer,
2003, pp. 60–69.

[30] X. Yuan, A.M. Memon, Using GUI run-time state as feedback to generate test
cases, in: Proceedings of the 29th International Conference on Software
Engineering (ICSE ’07), May 23–25, 2007, pp. 396–405.

	Iterative execution-feedback model-directed GUI testing
	Introduction
	Related work
	Branch predicate evaluations
	Object properties
	Method-call sequences
	Code coverage
	GUI testing

	Modeling the ESI relationship
	Preliminaries
	The ESI relationship
	Object creation
	Object destruction
	Object destruction followed by creation
	Enabling and disabling objects
	Additional contexts
	ESI defined

	The ALT process
	The ALT algorithm
	Empirical study
	Study procedure
	Discussion

	Summary
	Conclusions and future work
	Acknowledgments
	References

