
Making GUI Testing Practical: Bridging the Gaps

Pekka Aho
VTT Technical Research Centre of Finland

Oulu, Finland
pekka.aho@vtt.fi

Atif Memon
University of Maryland
College Park, MD, USA

atif@cs.umd.edu

Matias Suarez
F-Secure Ltd

Helsinki, Finland
matias.suarez@f-secure.com

Teemu Kanstrén
VTT Technical Research Centre of Finland

Oulu, Finland
teemu.kanstren@vtt.fi

Abstract—The effort and expertise required for manually

crafting the models for model-based testing (MBT) is a major
obstacle slowing down its industrial adoption. For implemented
and executable systems, there are approaches to automate some
part or even the whole process of creating the models for MBT.
Recently, using extracted models for testing graphical user
interface (GUI) applications has been a popular area of research,
but most of the proposed approaches have limitations and
restrictions on what can be modeled, and the software industry
has not adopted these approaches. In this paper, we try to
identify the gaps between the academic approaches and tools and
industrial requirements hindering the industrial adoption, and
try to suggest practical solutions to the identified gaps.

Keywords—Graphical User Interface; GUI test automation;
reverse engineering; model extraction; model-based testing.

I. INTRODUCTION
A significant part of our daily lives is dependent on the

reliability and quality of software. The software industry is
facing the challenge of constructing more and more
complicated and large systems with lower budget and less time
to deliver. Unfortunately, testing is often the first software
development activity to feel the budget cuts and closer delivery
dates. Practically all end user applications have a graphical user
interface (GUI) and the size and complexity of modern GUIs is
also increasing [1]. The software industry is trying to address
these challenges by increasing the use of test automation.

Model-based testing (MBT) has been a popular area of
research for a long time [2], but its adoption is extremely
dependent on tool support. The tools have only recently
matured to a level comfortable for the industry to adopt MBT
into larger scale use. In addition to the tools, the main
challenges in industrial adoption of MBT are the specialized
expertise and a considerable amount of effort required for
creating the formal models [3] and the mapping between the
model and the actual system required for generating executable
test case [4]. When an implemented and executable system is
being modeled, there are various approaches to automate some
part or even the whole process of creating the models for MBT.
Recently, especially GUI software has been a popular area of

model extraction and testing research. Unfortunately most of
these approaches have limitations and restrictions on the GUI
applications that can be modeled, and the industry adoption has
been very limited.

In this paper, we try to identify the gaps between the
academic methods and tools and industrial requirements that
are hindering the adoption of model extraction for automated
GUI testing. The gaps were collected both from the published
research results and from experiences of industrial companies
during joint research projects on test automation in Europe. We
present the identified gaps and try to suggest practical solutions
to each of them. We identified gaps both in automatically
extracting the GUI models and in utilizing the extracted models
in testing:

� Gap 1 (G1): Scaling up to non-trivial systems while
maintaining sufficient accuracy in extracted models.

� G2: Reaching a sufficient coverage in a reasonable time
for model extraction.

� G3: Validating the correctness and coverage of the
extracted models (e.g., comparing to the expected
behavior).

� G4: General applicability of the provided tools (e.g.,
limitations and restrictions on the systems being
modeled).

� G5: The introduction and adoption effort (e.g., learning
curve, interoperability with existing tools and
processes).

� G6: Minimizing the manual effort in GUI testing.

� G7: Minimizing the maintenance effort (e.g., from GUI
changes).

In our previous work, we have introduced our platform
independent approach for automatically extracting models of
GUI applications [5] and presented our experiences on using
Murphy open source tools [6] for automated modeling and
testing of commercial GUI applications [7]. In this paper, we
analyze the problem domain from a wider perspective, trying to
identify the challenges and generalize possible solutions.

This work was partially supported by grant number CNS-1205501 by the
US National Science Foundation, and a part of ITEA2/ATAC and COIN
projects funded by the Finnish Funding Agency for Technology and
Innovation TEKES.

2015 12th International Conference on Information Technology - New Generations

978-1-4799-8828-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ITNG.2015.77

439

II. BACKGROUND AND RELATED WORK

A. Automating the Construction of GUI Models for Testing
There are various types of models used for model-based

GUI testing (MBGT), the most popular being state-based
models. The key idea is that the behavior of a GUI application
is presented as a state machine, nodes of the model are GUI
states, edges are events and interactions, and each input event
may trigger an abstract state transition in the machine. A path
of nodes and edges in the state machine, i.e., sequence of states
and state transitions in the GUI, represents a test case. The
abstract states of a state machine are used to verify the concrete
states of the corresponding GUI application during the test case
execution [1]. Reverse engineered state-based models are used
for testing GUI applications in various approaches, e.g., GUI
Driver [8] and GuiTam [9] for Java GUI applications, Crawljax
[10] and DynaRIA [11] for rich internet applications (RIAs),
and AndroidRipper [12] for Android applications.

Another popular format for extracted GUI models for
testing is event-based models. Memon’s team has implemented
GUITAR [13], a model-based system for automated GUI
testing, to execute and observe GUI applications for
automatically constructing event-based models that are used
for MBGT. Memon et al. [14] present DART, a framework for
using automatically crafted GUI models for re-testing the
modeled GUI applications, e.g., smoke testing nightly or daily
builds of GUI software. Xie et al. [15] introduces rapid crash
testing and defines a tighter, fully automatic GUI testing cycle
for rapidly evolving GUI applications. The key idea is to test
the GUI each time it is modified, i.e., at each code commit.

State space explosion is a challenge in modeling any non-
trivial system, especially when using state-based models. So far
the other modeling approaches, e.g., event-based models [1],
have not provided solutions for this challenge. Any nontrivial
program has a large number of possible states, depending on
the definition of the state and how to distinguish them. Over
the years, optimizations to the original learning algorithms
have yielded significant improvements in terms of the speed of
model inference and the size of extracted models, making it
possible to infer state space sizes of 100,000 states or more,
which is sufficient to test many kinds of industrial applications
[16]. The challenge is to find the balance between increasing
expressiveness to extract more accurate models and keeping
the computational complexity on feasible level for model
inference and model checking. Abstracting away too much
information from the SUT increases the risk of losing
opportunities to discover faults [16]. In most proposed GUI
model extraction approaches, the modeled applications have
been rather small, not showing that the model extraction
methods scale up to non-trivial GUI applications (Gap 1).

In general, a challenge in any specification mining
approach aiming to use the extracted models for testing is
making the approach cost-effective in terms of its adoption
[17]. For GUI software, there are existing frameworks that
provide the instrumentation for observing the GUI, such as
Jemmy [18] and Microsoft UI Automation [19], and the
technical domain of GUI applications is wide but similar
enough to be cost-effective through re-using the same expertise
and tools on various systems. Nevertheless, most GUI model

extraction approaches and tools have limitations and
restrictions on the systems that can be modeled (Gap 4), e.g.,
modeling only GUIs implemented in a specific programming
language or on a specific platform, such as AJAX [20], Java
[21], [22], [23] or Android [12], [24], [25].

Most of the recent GUI model extraction approaches are
based on dynamic reverse engineering, i.e., executing the
application and observing the runtime behavior of the GUI. A
major challenge in automatically traversing or crawling
through the GUI is providing meaningful input for the input
fields of the GUI, such as providing valid username and
password for a login screen, without predefined instructions
from the user [8]. Usually, some human intervention is
required during the modeling process to achieve a good
coverage with dynamically reverse engineered models [8],
meaning that the modeling is assisted manually by a person
during the reverse engineering process, or the automatically
generated initial model is reviewed, corrected, and extended
manually by a person after the model extraction [26]. The
efficiency of these semi-automatic modeling techniques
depends on the degree of required human intervention [26].
Although semi-automated processes of providing input values
[8] have been proposed, most automated approaches are not
able to reach all parts of the GUI during model extraction (Gap
2).

When extracting models automatically by observing an
existing system, the generated models are based on the
observed implementation. As such, the generated models
include also the undesirable behavior of the system, instead of
capturing the requirements or expectations of the system [27].
This limits the possibilities in utilizing of the models. Most
model extraction approaches have not addressed the challenge
of validating the correctness and sufficient coverage of the
modeled behavior (Gap 3).

B. Utilizing Generated Models in GUI Testing
Extracted models are based on observed behavior of an

implemented system, instead of requirement specifications or
expected behavior. Therefore, without elaboration, the
extracted models are not well suited for generating test cases
and test oracles, as in traditional MBT. Conformance testing,
i.e., testing the implemented system against its specifications,
requires a link to the requirements before using the extracted
models for test case or test oracle generation [27].

The challenge in automated GUI testing, especially when
using automatically extracted GUI models for testing, is to
provide meaningful test oracle information to determine
whether a test case passes or fails [28]. With conventional
software, a test case usually consists of a single set of inputs,
and the expected result is the output that results from
completely processing that input, and the oracle is invoked
when the actual observed output is compared with the oracle’s
expected output after executing the test case [28].

With GUI testing, the input may consist of a long sequence
of actions, and there is no specific output as each executed
action may affect the state of the GUI. In MBGT, the oracle
information consists of a set of observed properties of all the
windows and widgets of the GUI [29]. The execution outcome

440

may depend on the internal state of the GUI application, the
state of other entities (objects, event handlers) and the external
environment, and may lead to a change in the state of the GUI
or other entities. Moreover, the outcome of an event’s
execution may vary based on the sequence of preceding events
or interactions seen thus far [30].

An incorrect GUI state during a test sequence can lead to an
unexpected screen, making further test case execution useless
or impossible [28]. Therefore, the correct state of the GUI has
to be verified after each execution step during a test case,
interleaving the oracle invocation with the GUI test case
execution [28]. Otherwise detecting the actual cause of an error
can become difficult, especially when the final output is correct
but the intermediate outputs have been incorrect [28].

The oracle information for automated GUI testing may be
selected or created either automatically or manually [31] based
on requirements or other formal specifications of the GUI or
observed behavior of an earlier, presumably correct version of
the software [32]. By varying the level of detail of oracle
information and changing the oracle procedure, a test designer
can create different types of test oracles, depending on the
goals of the specific testing process used [32]. The different
types of test oracles have a significant effect on test
effectiveness and cost of testing [32].

In most approaches that use extracted GUI models for
testing, the test oracles are based on the observed behavior of
an earlier version of the GUI application. Using this kind of
test oracles, in literature often called reference testing, changes
and inconsistent behavior of the GUI can be detected and the
models can be used for automated regression testing, but
conformance testing is problematic [26]. However, some
defects, such as crashes and unhandled exceptions, can be
detected without the use of application specific test oracles
[33], making it possible to begin the testing of the GUI
application already during the dynamic reverse engineering
process, as in [8].

Most of these academic approaches and tools have been
validated by modeling and testing open source applications and
simple proof of concepts, and the adoption by the industry has
been very limited. In [7] we shared our experiences from a long
term industrial evaluation of Murphy tools, showing that model
extraction techniques can be utilized on non-trivial commercial
GUI applications and the extracted models can be successfully
used to automate and support various GUI testing activities in
software industry.

III. BRIDGING THE GAPS IN GUI TESTING
In this Section, we present the gaps we have identified to

hinder the industrial adoption of the state-of-the-art academic
approaches on automated modeling and testing of GUI
applications. The gaps were collected both from the published
research results and from experiences of industrial companies
during joint research projects on test automation in Europe. We
propose practical solutions to each of the identified gaps. Gaps
G1 - G4 are related to automatically extracting GUI models for
testing and G5 - G7 are related to using the extracted models to
automate and support GUI testing.

A. G1: Scaling Up to Non-Trivial Systems While Maintaining
Sufficient Accuracy in Extracted Models
Despite of the evolvement of hardware and algorithms used

in model extraction, state space explosion remains as a
challenge in creating state-based models of any non-trivial
system. The challenge is to find the balance between increasing
expressiveness to extract more accurate models and keeping
the computational complexity on feasible level for model
inference and model checking. Abstracting away too much
information from the SUT increases the risk of losing
opportunities to discover faults [16].

A GUI state comprises of a set of objects and their property
values and any difference in number of objects or property
values may mean a different state. Some property values may
have huge or even infinite number of possible values, which in
turn makes the number of GUI states huge or infinite. Without
a proper method to limit the explosion of GUI states, it is
infeasible to utilize model-based GUI testing methods [33].
The challenge is to find the balance between increasing
expressiveness to extract more accurate models and keeping
the models small enough to be computationally feasible for
model inference and model checking [16]. Abstracting away
too much information from the system under test increases the
risk of losing opportunities to discover faults [16] and losing
context information of the events and interactions, i.e., having
ambiguous states or state transitions in the model.

The solution for reducing the states of the model is, of
course, abstracting or ignoring some of the properties or values
of the GUI when distinguishing the states of the model, but the
challenge is how to find the right level of abstraction and
automatically choose the important properties and values. An
efficient solution for reducing the number of GUI states is
ignoring the data values, such as text on input fields, and
concentrating on the interactions that are available for the end
user in each GUI state. To capture the context of executed
interactions, the data values can be saved into the properties of
the state transitions, as in [8]. The downside is that the
reduction in states will result increased amount of possible
transitions.

Murphy tools [7] use parameterized screenshots of the GUI
in a similar way to abstract away the data values from the GUI
states. The proposed level of abstraction performed well
against the state space explosion. The size of the modeled GUI
applications was of the order of magnitude of hundreds of
thousands to millions lines of code, and the size of the
extracted models was between 81 – 178 nodes (GUI states),
which is still at a computationally feasible level. Even though
the graphical presentation of the extracted state model does not
show all the captured information, internally Murphy captures
also the preceding actions as context information of the GUI
states and transitions. In case of ambiguous state transitions,
Murphy adds another transition with the same action into the
graphical presentation, for example there could be transitions
‘Ok-button’ and ‘Ok-button (1)’ leading to two different states,
depending on the data values of the GUI, and the context
would be captured in the internal model.

Another important aspect in state reduction, and more
generally in model extraction, is filtering out the external

441

changes that might affect the detailed behavior of the system,
but are not relevant for the modeling purposes. A practical
solution is to use virtual machines to stabilize the model
extraction environment. A new, clean virtual machine can be
launched automatically each time the GUI application has to be
started or restarted.

B. G2: Reaching a Sufficient Coverage in a Reasonable Time
for Model Extraction
When using some sort of GUI automation for automatically

exploring or crawling through the GUI during automated
model extraction, the challenge is how to access all parts of the
GUI to have a good coverage in the extracted models. For
example, it is very improbable to find matching username and
password to get beyond a login screen with random generation
algorithms, if the user has not provided any predefined set of
test data []. Random input generation can be used to improve
the coverage of extracted models, but finding specific values
with random methods requires too much time, slowing down
the model extraction process. When using extracted models for
testing, the parts of the GUI that are missing from the models
will not be covered with the test cases automatically derived
from the models. Usually, the user, e.g., test engineer, has to
provide valid combinations of input before or during the model
extraction process. The amount of manual effort should be
minimized by providing practical tool support for the user.
Another option could be using static analysis of the source
code to generate meaningful input, but for example
authentication data, such as usernames and passwords, are
usually stored in databases instead of the source code of the
system.

If the user has to provide the valid input combinations
during the model extraction process, a practical way is to use
the actual GUI of the modeled application, as in [8]. However,
it might be easier to provide input for multiple states of the
GUI by using a visual presentation of the extracted model, so
that the user can select the state and then the widgets for the
input. That way, the user does not have to monitor the progress
of the model extraction process as often, but preserving the
manually provided data when re-generating the models remains
challenging. With Murphy tools [7] all the application specific
data and instructions for model extraction are stored in a script
that is used to start the automated model extraction process. In
practice, an iterative process is used to define and improve the
scripts to extract models with sufficient coverage.

With unlimited time for model extraction, even the random
methods will cover all parts of the GUI. In practice, the
development and testing process will dictate the maximum
time available for model extraction. It might be for example 10
hours if once per day model extraction executed over-night is
sufficient, or a few hours if new model is automatically
extracted 3 times a day, as in [7]. There are various ways to
reduce the time required for model extraction. A common goal
is to maximize the coverage, e.g., the number of GUI states
covered, while minimizing the extraction time, e.g., the number
of transitions required. One proposed solution is to use various
extraction strategies based on classification of GUI widgets, as
in [34], to select the interactions with highest probability to
result new GUI states.

Another factor to consider is the manual effort required for
reaching the automated model extraction. For example, to
define a model extraction script for Murphy tools [7] covering
all the possible states and transitions of a complex GUI
application would require a lot of time and effort, even though
the model extraction after that would not require any manual
assistance or guidance. Some of the GUI flows are difficult to
explore, for example dialogs shown only when the network
connection is lost, and would provide only a little added value
for the automated testing. Therefore, it is up to the test
engineers to decide when a sufficient coverage, e.g., 80% of all
the possible GUI flows, has been reached and the iterative
process of improving the invocation scripts is finished. Of
course, the duration of model extraction process also depends
on the size and complexity of the GUI being modeled.

C. G3: Validating the Correctness and Coverage of the
Extracted Models
With dynamic reverse engineering approaches, the

extracted models are based on the observed behavior of the
implemented system, rather than the expected behavior defined
in requirements or other specifications. Therefore it is
challenging to use them for automatically generating
meaningful test oracles without manual elaboration [8]. Some
approaches use extracted “as is” models for automating various
testing activities, but usually the generated models have to be
manually inspected or elaborated, validating the correctness or
adding the expectations and requirements into the
automatically extracted models. Generally, the goal of test
automation is to reduce and avoid manual steps, and model
extraction approaches should provide practical means to
manually validate the correctness of the models, or to manually
elaborate the generated models and preserve the manual
changes when re-generating the models. If the behavior
captured in the extracted models is validated against the
specifications, it is possible to use the models for conformance
testing, in addition to reference or regression testing.

The most practical solution to validate the extracted GUI
models seems to be visual inspection [7]. The extracted models
are illustrated in a high level of abstraction and the states and
transitions of the model are visualized with screenshots of the
actual GUI, so that the correctness of the model and the
behavior of the modeled GUI application can be visually
inspected and validated by the user, e.g., test engineer or UI
designer, based on requirements, design, or other
specifications. If the extracted model does not include all the
parts or behavior of the GUI, the model extraction has to be
improved (related to G2) by instructing the extraction tool to
include the missing parts. If the model includes parts that are
not in the specifications, and the model extraction worked
correctly, the problem is either in the modeled GUI application
or the specifications. Either the incorrect behavior of the
application has to be fixed or the specifications have to be
updated by discussing with the stakeholders.

If the UI design would be available in a standard machine-
readable format, the validation of the extracted model could be
done automatically, showing only the deviations in behavior
for the user. Although such a format would be technically fairly

442

easy to construct, the challenge would be getting all the UI
designers to use this standard format.

D. G4: General Applicability of the Provided Tools
The problem with most model extraction approaches for

GUI applications is that they limit the applications that can be
modeled to specific programming languages or platforms,
usually based on the instrumentation framework used for
observing the GUI. It is challenging to provide platform
independent GUI reverse engineering techniques and usually
implementing support for each programming language and
platform requires too much effort.

As the instrumentation provided by the GUI frameworks
usually allows more detailed analysis of the GUI, we
recommend using them to provide support for the most
common GUI platforms. For the platform independent GUI
analysis, automatically capturing and comparing screenshot
images before and after each interaction for locating and
analyzing the changes in the screen to determine the elements
and behavior of the GUI seems to be the most efficient
approach [5]. Comparing the images before and after launching
the GUI application can be used to find the right GUI window
to analyze. GUI elements that can be interacted with can be
automatically detected and located for example by automating
the use of 'tab' key to cycle through the focusable elements and
comparing the automatically taken screenshots to find the
changing areas, such as the bounding rectangle of the selected
element that has the focus on the screen. The structure and
behavior of the GUI can be analyzed from the screenshot
images based on the clues that the GUI application or the
platform (operating system) offers for the end user, such as the
shape of the mouse cursor. The correct instrumentation
framework to be used in the model extraction can be
automatically selected or combined with platform independent
analysis, or manually selected.

E. G5: The Introduction and Adoption Effort
A major obstacle hindering the adoption of new software

engineering methods and tools is the effort required for
introducing and adopting them into practical use. Small
development organizations might be willing to change their
whole development and testing environment to adopt new more
efficient methods and tools into use, but most of the industrial
companies require that the new tools can be integrated into the
existing processes and tools. Therefore, when selecting or
developing the methods and tools for automated model
extraction and testing of GUI applications, integration into the
existing development and testing environment should be taken
into account. Another important factor is the learning curve,
e.g., if using the method or tool requires a lot of training.

To give some guidelines to help in the integration, the
generated models could be transformed into a format used by
the existing MBT tools, and the generated test cases and test
scripts should be automatically executable with the existing test
automation tools and test environments, considering also
virtualization, continuous integration, test reporting and bug
tracking. When using continuous integration, a good regression
testing practice is to automatically run the model extraction and

model comparison scripts several times a day, and send
warnings when changes in the GUI behavior are detected.

F. G6: Minimizing the Manual Effort in GUI Testing
Usually, it is not possible or feasible to automate all GUI

testing. There are proposed approaches to automate even
usability testing, but in practice, at least some test cases have to
be executed manually or supervised to validate the user
experience. The challenge is how to support manual GUI
testing and minimize the amount of manual effort during
activities that are too expensive or difficult to automate.

With an automated virtualization of the test environment, it
is possible to provide model-based support for manual GUI
testing. By providing a user interface with a graphical
presentation of the extracted GUI model and letting the user to
select a path through the model, it is possible to automatically
execute the selected path while the user is watching and
evaluating the user experience. Another option is to let the user
to select a path or a state from the GUI model, and
automatically launch the application and execute it into the
selected state, so that the user can start the manual testing
without the initialization effort, i.e., manually executing the test
steps that are not interesting in the test case.

Using the Murphy tools [7] to support the execution of
manual GUI test cases significantly reduced the time required
for GUI testing. Although the reduction varied depending on
the application being tested and the particular test cases,
generally the results were very promising. For example, the
manual execution of a GUI test case required over 30 minutes,
and less than 10 minutes was required to test the same test
cases with the help of the extracted models and the Murphy
tools. The main advantage was that the Murphy tool executed
automatically the tedious and repetitive steps and the steps that
required waiting time, leaving only the steps that required
manual analysis and verification of the results for the user.

G. G7: Minimizing the Maintenance Effort
The observed behavior of an earlier version can be used as

a test oracle to detect changes in the GUI during regression
testing. Finding the changes between the versions is fairly easy,
for example by comparing the structural models of the same
GUI state of the two versions, as in [22]. Usually, the behavior
of the GUI changes often during the development of the
application due to the new features or improvements to the user
experience. With automated regression testing, the test
engineer has to go through the detected changes and decide if
they were new features or incorrect behavior. In the case of
new features the failed test cases have to be updated. Again, the
challenge for test automation is how to support the user and
minimize the manual effort.

To reduce the maintenance effort of regression testing, we
propose using model comparison instead of test cases derived
from the model. If the model is extracted automatically for
each new version and there are no test cases, the maintenance
effort is minimized. The test engineer still has to decide if the
detected changes are new features or bugs, but that can be
supported with tools. To help the user to decide if the change
was intentional or incorrect behavior, an efficient way is to

443

show the screenshot images of each state with detected changes
and visualize the differences between the old and new version.

If the changes are detected by comparing automatically
captured screenshot images, to reduce false positives, the
image comparison algorithms can be made more tolerant to
minor, irrelevant changes for example by transforming the
screenshots into grayscale images and tolerating a small
percentage of changes between the images.

IV. DISCUSSION AND CONCLUSION
In this paper we identified and presented several gaps

between the academic state-of-the-art approaches and the
requirements and practices of the industry on automated
extraction of GUI models for testing. We tried to propose
practical solutions to each of the presented challenges, but a lot
of work remains in making the adoption of the methods and
tools easier for the industry. We hope this paper will encourage
the industry to evaluate and adopt techniques to automatically
extract GUI models and utilize them in testing.

REFERENCES
[1] A. M. Memon, “An event-flow model of GUI-based applications for

testing”, Software Testing, Verification & Reliability, Volume 17, No. 3,
Sep 2007, pp. 137-157, John Wiley and Sons Ltd. Chichester, UK.

[2] M. Utting and B. Legeard, "Practical model-based testing: a tools
approach", Morgan Kaufmann Publishers, San Francisco, USA, 2006.

[3] Holzmann, G. Z. and Smith, M. H. 2002. An Automated Verification
Method for Distributed Systems Software Based on Model Extraction.
IEEE Trans. on Software Engineering. 28, 4 (Apr. 2002), 364-377.

[4] A.M.P. Grilo, A.C.R. Paiva, and J.P. Faria, “Reverse engineering of GUI
models for testing”, 2010 5th Iberian Conf. on Information Systems and
Tech. (CISTI), 16-19 Jun 2010, Santiago de Compostela, Spain, pp. 1-6.

[5] P. Aho, M. Suarez, T. Kanstren, and A.M. Memon, “Industrial adoption
of automatically extracted GUI models for testing”, Int. Workshop on
Experiences and Empirical Studies in Software Modelling (EESSMod),
1 Oct 2013, Miami, Florida, USA, pp. 49-54.

[6] Murphy, open source tools for automated modeling and testing of GUI
applications, https://github.com/F-Secure/murphy

[7] P. Aho, M. Suarez, T. Kanstren, and A.M. Memon, “Murphy Tools:
Utilizing Extracted GUI Models for Industrial Software Testing”,
Testing: Academic & Industrial Conference - Practice and Research
Techniques (TAIC PART), 4 Apr 2014, Cleveland, OH, USA.

[8] P. Aho, N. Menz, and T. Räty, “Enhancing generated Java GUI models
with valid test data”, IEEE Conf. on Open Systems (ICOS), 25-28 Sep
2011, Langawi, Malaysia, pp. 310-315.

[9] Y. Miao and X. Yang, “An FSM based GUI test automation model”,
11th Int. Conf. on Control, Automation, Robotics & Vision (ICARCV),
7-10 Dec 2010, Singapore, pp. 120-126.

[10] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-Based Automatic
Testing of Modern Web Applications”, IEEE Trans. on Software Eng.,
Vol. 38, No. 1 (Jan-Feb 2012), pp. 35-53, IEEE Computer Society.

[11] D. Amalfitano, A. R. Fasolino, A. Polcaro, and P. Tramontana, “The
DynaRIA tool for the comprehension of Ajax web applications by
dynamic analysis”, Innovations in Systems and Software Eng., Apr
2013, Springer-Verlag.

[12] D. Amalfitano, A.R. Fasolino, P. Tramontana, S. Carmine, and G.
Imparato, “A Toolset for GUI Testing of Android Applications”, 28th
IEEE Int. Conf. on Software Maintenance (ICSM), 23-28 Sep 2012,
Trento, Italy, pp. 650-653.

[13] B. Nguyen, B. Robbins, I. Banerjee, and A.M. Memon, “GUITAR: an
innovative tool for automated testing of GUI-driven software”,
Automated Software Eng., Vol. 21, No. 1 (Mar 2013), pp. 65-105,
Springer US.

[14] A.M. Memon and Q. Xie, “Studying the fault-detection effectiveness of
GUI test cases for rapidly evolving software”, IEEE Trans. Software
Eng., Vol. 31, No. 10 (Oct 2005), pp. 884-896, IEEE Press, NJ, USA.

[15] Q. Xie and A. M. Memon, “Rapid crash testing for continuously
evolving GUI-based software applications”, Proc. 21st IEEE Int. Conf.
on Software Maintenance (ICSM'05), 25-30 Sep 2005, Budapest,
Hungary, pp. 473-482.

[16] K. Meinke and N. Walkinshaw, “Model-Based Testing and Model
Inference”, 5th Int. Symp. on Leveraging Applications of Formal
Methods (ISOLA), 15-18 Oct 2012, Heraklion, Greece, pp. 440-443.

[17] T. Kanstrén, "Towards Trace Based Model Synthesis for Program
Understanding and Test Automation”, Proc. Int. Conf. on Software Eng.
Advances (ICSEA), 25-31 Aug 2007, Cap Esterel, France, pp. 46-55.

[18] Jemmy, an open source Java library for GUI automation,
http://jemmy.java.net

[19] Microsoft UI Automation, http://msdn.microsoft.com/en-
us/library/ms747327(v=vs.110).aspx

[20] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based
Web Applications through Dynamic Analysis of User Interface State
Changes”, ACM Trans. on the Web (TWEB), Vol. 6, No. 1 (Mar 2012),
article no. 3, ACM New York, NY, USA.

[21] A.M. Memon, I. Banerjee, B. Nguyen, and B. Robbins, “The First
Decade of GUI Ripping: Extensions, Applications, and Broader
Impacts”, Proc. 20th Working Conf. on Reverse Engineering (WCRE),
14-17 Oct 2013, Koblenz, Germany, pp. 11-20.

[22] P. Aho, N. Menz, T. Räty, and I. Schieferdecker, “Automated Java GUI
modeling for model-based testing purposes”, 8th Int. Conf. on
Information Technology : New Generations (ITNG), 11-13 Apr 2011,
Las Vegas, Nevada, USA, pp. 268-273.

[23] F. Gross, G. Fraser, and A. Zeller, “EXSYST: Search-Based GUI
Testing”, 2012 34th Int. Conf. on Software Engineering (ICSE 2012), 2-
9 Jun 2012, Zurich, Switzerland, pp. 1423-1426.

[24] W. Yang, M.R. Prasad, and T. Xie, “A grey-box approach for automated
GUI-model generation of mobile applications”, Proc. 16th Int. Conf. on
Fundamental Approaches to Software Engineering (FASE’13), 16-24
Mar 2013, Rome, Italy, pp. 250-265.

[25] T. Azim and I. Neamtiu, “Targeted and Depth-first Exploration for
Systematic Testing of Android Apps”, 2013 ACM SIGPLAN Int. Conf.
on Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA), 26-31 Oct 2013, Indianapolis, USA, pp. 641-660.

[26] A. Kull, “Automatic GUI Model Generation: State of the Art“, Proc.
2012 IEEE 23rd Int. Symposium on Software Reliability Engineering
Workshops (ISSREW), 27-30 Nov 2012, Dallas, TX, USA, pp. 207-212.

[27] P.Aho, T. Kanstrén, T. Räty, and J. Röning, “Automated Extraction of
GUI Models for Testing”, Advances in Computers, Vol. 95, Elsevier
Inc, 2014, pp. 49-112.

[28] A. M. Memon, “GUI Testing: Pitfalls and Process”, Computer, Vol. 35,
No. 8 (Aug 2002), pp. 87-88, IEEE Computer Society.

[29] J. Strecker and A.M. Memon, “Accounting for Defect Characteristics in
Evaluations of Testing Techniques”, ACM Trans. on Software
Engineering and Methodology (TOSEM), Vol. 21, No. 3 (Jun 2012),
article no. 17, ACM New York, NY, USA.

[30] X. Yuan, M. Cohen, and A.M. Memon, “GUI Interaction Testing:
Incorporating Event Context”, IEEE Trans. on Software Engineering,
Vol. 37, No. 4 (Jul-Aug 2011), pp. 559-574, IEEE Computer Society.

[31] A.M. Memon and Q. Xie, “Using Transient/Persistent Errors to Develop
Automated Test Oracles for Event-Driven Software”, Proc. 19th IEEE
Int. Conf. on Automated Software Engineering (ASE), 20-24 Sep 2004,
Linz, Austria, pp. 186-195.

[32] A. M. Memon, I. Banerjee, and A. Nagarajan, “What Test Oracle Should
I Use for Effective GUI Testing?”, 18th IEEE Int. Conf. on Automated
Software Eng. (ASE), 6-10 Oct 2003, Montreal, Canada, pp. 164-173.

[33] X. Yang, “Graphic User Interface Modelling and Testing Automation”,
PhD thesis, Victoria University, Melbourne, Australia, May 2011.

[34] P. Aho, N. Menz, and T. Räty, "Dynamic Reverse Engineering of GUI
Models for Testing", Proc. 2013 Int. Conf. on Control, Decision and
Information Technologies (CoDIT'13), 6-8 May 2013, Hammamet,
Tunisia, pp. 441-447.

444

