

Android Apps Consistency Scrutinized

Abstract
The increasingly larger selection of mobile apps has
made it difficult for users to understand what a
particular app does and how it differs from the others.
A user typically learns about an app from the app’s
public information (while deciding whether to install it),
from the app’s UI (while exploring the UI), and from
the app’s actual behaviors (while using it). Users may
become confused or surprised if there are
inconsistencies between (a) the public information and
UI, (b) the UI and the actual behavior, or (c) the public
information and the actual behavior. For example,
turning on the camera (actual behavior) when there is
no button that says SNAP (UI) is a potentially confusing
inconsistency. We present work-in-progress toward a
methodology for automatically detecting inconsistencies
in Android apps with respect to permissions and
similarity. We report our preliminary results on a large
corpus of 178,765 apps.

Author Keywords
UI; data; analysis; mobile; Android; permissions

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

Introduction
There are over a million Android apps available on
various app markets. The Google Play Store, the official

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
CHI 2014, Apr 26 - May 01 2014, Toronto, ON, Canada
ACM 978-1-4503-2474-8/14/04.
http://dx.doi.org/10.1145/2559206.2581352

Khalid Alharbi
Department of Computer Science
University of Colorado Boulder
Boulder, CO, USA
khalid.alharbi@colorado.edu

Sam Blackshear
Department of Computer Science
University of Colorado Boulder
Boulder, CO, USA
samuel.blackshear@colorado.edu

Emily Kowalczyk
Department of Computer Science
University of Maryland
College Park, MD, USA
ekowalcz@umd.edu

Atif Memon
Department of Computer Science
University of Maryland
College Park, MD, USA
atif@cs.umd.edu

Bor-Yuh Evan Chang
Department of Computer Science
University of Colorado Boulder
Boulder, CO, USA
evan.chang@colorado.edu

Tom Yeh
Department of Computer Science
University of Colorado Boulder
Boulder, CO, USA
tom.yeh@colorado.edu

and largest market, has more than a million apps.
Android uses a permission system to protect device’s
resources and user’s data. There are many apps that
ask for unexpected permissions. Why does this app ask
for the camera permission but never mentions a word
about it? Why does this app ask for the camera
permission but never invokes any API method to
operate the camera? Is this a bug, malice, or a feature?
These are potential inconsistencies that often confuse
users.

Within a group of apps, there may exist some apps
significantly different from the rest. As an example,
consider a set of apps grouped together because they
all require camera permissions. After analyzing a large
number of these apps, we may spot a common pattern
exhibited by the majority of these apps. The pattern
may be that an app’s public description tends to contain
words such as capture, take picture, or photo. A user
might be confused when he finds an app that says
nothing publicly about using cameras even though it
explicitly requires camera permissions. Inconsistency
may occur between various levels. Consider an app
whose description includes words like take a picture but
it doesn’t include anything at the UI level. Additionally,
the UI may include “take a picture” button, yet that
button doesn’t trigger the phone’s camera. As a result
of this inconsistency, users may be surprised, annoyed,
confused, or even harmed. We studied two questions
regarding inconsistencies in Android apps:

1. How can we compute a descriptor to provide a
comprehensive and comparable view of an app?

2. How can we apply such a descriptor to discover
inconsistencies between an app’s public features, UI
features, and code features?

To address these questions, we took a data-driven
approach. We collected a corpus of 178,765 Android
apps from the Google Play Store. We computed
descriptors of Android apps by combining features
extracted at three levels. At the public level, we
considered an app’s online description, package name,
category, ratings, install size, and other publicly
available information. At the UI level, we considered an
app’s user interface’s text and layout. At the code level,
we considered the methods declared, invoked and the
connections between event handlers (e.g., onClick) and
library calls (e.g., takePicture), using program analysis.
We present preliminary findings on real cases of
inconsistences discovered by our methodology with
respect to camera permissions and similarity. This
methodology can produce results beneficial to several
stakeholder groups: (a) End users can use the results
to find apps that are consistent with their permissions.
(b) Developers can use these results to resolve the
inconsistency in their apps. (c) Marketplace owners can
use our methodology and add it to their existing vetting
process for submitted apps.

Related Work
Previous research efforts on Android permission system
have studied the effectiveness of the permissions
display interface and users expectations for permissions
[3,4]. While it’s important to inform users about the
application’s security permissions, generally, users pay
less attention to the permissions display and have low
rates of understanding their meanings [2].

WHYPER [6] uses NLP semantic analysis of an app’s
description and finds sentences that describe need for
permissions. Our methodology is comprehensive and
considers a set of public information, UI, and the

source code at large scale. We focus on analyzing the
possible interactions a user might have with an app
with respect to permissions. This includes the user
actions that are supposed to occur before, during, and
after installing a new app.

Android App Descriptor
We begin our analysis of inconsistencies in Android
apps by computing a descriptor for each app. The role
of a descriptor is to give a comprehensive and
comparative view of an app. A descriptor should
comprehensively capture as many aspects about an
app as possible. It should also allow efficient and
effective comparison. We propose a novel descriptor
composed of features extracted at three levels. Table
1 shows an excerpt of the three-level features
extracted to form a descriptor of an app (Note Me).
Next are details on these features:

Public Features: These features are derived from
public information about an app and visible to users
before the app is installed. We extracted public
features about an app from the details published on
the Google Play Store. We used Google-Play-Crawler1,
an unofficial open source API for the Google Play
Store, to download APK files, collect package names,
reviews, permissions, title, creator, and number of
downloads for each application from the Google Play
Store. NOKOGIRI2 was used to gather further info
from each app's Google Play Store web page including:
app description, category, rating, date published, Play
Store URL, price, version, operating system, ratings

1 https://github.com/Akdeniz/google-play-crawler
2 http://nokogiri.org

count, content rating, developer URL, install size, and
downloads count text.

User Interface (UI) Features: These features are
derived from the user interface of an app, including the
text and layout. They are visible only to users who have
installed and are using the app. We extracted two types
of user interface features: text and layout. We
downloaded each app and saved it as an APK file
(Android Package). We used apktool3, an open source
reverse-engineering tool, to unpack the APK file into a
directory tree of program files that make up the app.
To extract layout features, we looked into the
res/layout directory for layout files. We parsed them all
using a custom XML parser and collected all the widgets
we encountered as features. To extract text features,
we parsed three string resources files, (strings.xml,
arrays.xml, and plurals.xml). We extracted strings from
layout files when strings are hardcoded into layout files.

Code Features: These features are derived from the
disassembled and decompiled code of an app. We are
interested in the following code features: (a) an app’s
own methods, (b) the Android library methods an app
invokes, and (c) the connection between a user event
handler (e.g., onlick) and the method triggered by the
event (e.g., takePicture). These features are not visible
to users but can be inspected by an expert program
analyst to examine the app’s actual behavior. We
extracted three types of code features: declared
methods, invoked methods, and pairs. We used apktool
to unpack an app’s APK file. We located the file
classes.dex, which bundles the binary code of all the
classes of an app into a single file. We used smali to

3 https://code.google.com/p/android-apktool

Note Me

Public Features:
Description: Looking for a notes application that

not just takes your notes…
 (208 words)

Permissions: android.permission.VIBRATE,
android.permission.INTERNET …

(6 permissions)
Others Title: Note Me, Creator: Paramvir

Bali, InstallSIze: 559085, Rating:
4.325572, Category: Productivity,
ContentRating: Everyone

User Interface Features:
Text Settings QuickNotesMain Note Me

Search Enter Title Note Text Title
Created On (3411 words)

Layout ScrollView$export_options_view
LinearLayout$note_edit (26 files)

Code Features:
App createNote getSomeTitleForNote

deleteNote (1875 methods)
API activityOnDestroy launchAdActivity

getApplicationContext
(4034 methods)

Points-to Lcom/quicknotes/views/NoteView$
7, onClick à
Landroid/database/sqlite/SQLiteDa
tabase,query (4912 pairs)

Table 1: Example of features
extracted at three levels to form
a descriptor for an app (Note Me).

disassemble classes.dex into individual files, one per
class, in a human-readable assembly-like format. To
extract declared method features, we looked for the
pattern .method [declared name] in every smali file
and collected all occurrences. To extract invoke method
features, we looked for the pattern .invoke-virtual and
.invoke-public. To extract method pair features, we
built a call graph [7] for each app using the WALA4
program analysis framework. WALA takes Java
classes.dex into Java bytecode. Our call graphs are 1-
object-sensitive with unlimited context sensitivity for
container classes.

Preliminary Dataset
We collected our own corpus of Android apps. This
corpus consists of 178,765 apps published on the
Google Play Store. We extracted the public features of
all 178,765 apps to perform our analysis. Among these
apps, 153,294 were free. We took a sample of 84,405
apps (about 50%). We downloaded, unpacked,
disassembled, and decompiled them. Each app yielded
about 1,000 program files we must process. From these
files, we extracted user interface and code features. We
stored all extracted features using MongoDB, a NoSQL
database optimized for big data analysis. The total size
of raw data is about 4TB.

Camera Permission Inconsistencies
In our corpus of 178,765 apps, we found 17,739
(9.9%) apps requiring camera permissions. At the
public level, we used all these apps as positive
examples. We randomly selected the same number of
apps that do not require camera permissions as
negative examples. We trained a model for positive

4 http://wala.sourceforge.net

camera permission apps based on Maximum entropy
[1]. The training accuracy was 98.7%. We then applied
the classifier to the 17,739 apps that require camera
permissions. Among these apps, 307 were classified as
not requiring camera permissions. These apps present
inconsistency that could not fit the model. At the user
interface level, we analyzed a subset of 7,816 apps
requiring camera permissions. We repeated a similar
training process. The training accuracy was 92.9%. 498
were classified as inconsistent. Next discusses three
types of camera inconsistencies we discovered.

Inconsistency between Public (P) and Interface (I)
An app is inconsistent between its public information
and interface if the interface presents certain sensitive
features that are not disclosed on the app’s public page
in the app market. TinkerBell Puzzle (Figure 1) is an
example we discovered that exhibits this type of
inconsistency. It is a puzzle game. The app’s public
description mentions “photos” but it does not suggest
the photo is being taken or shot by cameras. At the
interface level, the combination of the word “photos”
and the phrase “Take a Picture” provides strong
evidence to the camera use. In this case, users may be
confused since the app’s description does not clearly
describe the camera feature. Consequently, they may
avoid installing the app to explore the UI.

Inconsistency between Interface (U) and Code (C)
An app is inconsistent between its user interface and
code if the label of an interface component (e.g.,
“New”) does not match the code this component
invokes (e.g., takePicture). Animals Game for Kids
(Figure 2) is an example we discovered that exhibits
this type of inconsistency. It is a game for kids. There
is no indication on the user interface that the camera is

TinkerBell Puzzle
Public:
Fun & Addicting Puzzle Game Create Puzzles
from TinkerBell Photos Challenge & Compete
with your friends ...
User Interface:
Tinkerbell Puzzle All photos are collected from
the search engines … Take Picture … New
Game High Scores Settings New Best Time …

Figure 1: Example of
Public/Interface Inconsistency.

Animals Game for Kids
User Interface:
Balloon Animals for Kids Menu button to resume
NEW GAME RESUME G … (71 words)
Code:
org/anddev/andengine/engine/camera/Camera;-
>onUpdate
org/anddev/andengine/engine/camera/Camera;-
><init>

Figure 2: Example of
Interface/Code Inconsistency.

used. But at the code level, camera API calls are found.
There is no logical connection between any interface
component and these API calls. In this case, users
would be confused because it is not clear what UI
component triggers the camera function.

Inconsistency between Public (P) and Code (C)
An app is inconsistent between the public and the code
levels when there is a mismatch between its public
description and its actual behavior as revealed by code.
Figure 3 shows an actual example of this type of
inconsistency we discovered. This app appears to be a
glossary app. The app’s code contains calls to take
pictures. A user would be very surprised when a picture
is taken while he/she is using the app to look up math
terms.

Similarity Inconsistencies
A classic example of similarity inconsistency is when
two apps appear to be different at the public level but
have very similar user interfaces. We further analyze
our dataset to identify this type of inconsistency. We
used the classic term frequency-inverse document
frequency (tf-idf) model to calculate the similarity
among apps. We used 95% as the threshold. If two
apps are more than 95% similar, they are considered
as near identical. We treat them as inconsistent apps
because most apps have no near identical apps. At the
public level, we analyzed 11,880 apps and focused on
just the app’s description. We found 630 apps (5.3%)
with near identical apps in terms of their description.
Let’s denote the set of these apps as P. At the interface
level, we analyzed a sample of 72,993 apps and found
1,339 apps (1.83%) with near identical apps. Let’s
denote this set as I. Having found P and I, we can
compute the difference between the two, which will tell

us which apps are similar at one level but not at the
other.

NetCounter Network Traffic Monitor

P NetCounter is a simple network traffic

counter for EDGE/3G …
Creator: Cyril Jaquier
Category: Tools
Permissions: 5

Network Traffic Monitor" is a featured
network traffic tracing tool…
Creator: AndroidDev Team
Category: Business
Permissions: 28

≠

I NetCounter Network traffic counter by
Cyril Jaquier Loading Refresh What s new
Yes No Ok Cancel Close Help Close

NetCounter Network traffic counter by
Cyril Jaquier Loading Refresh What s
new Yes No Ok Cancel Close Help Close

=

As an example, NetCounter and Network Traffic Monitor
are a pair of apps we discovered that exhibit similarity
not at the public level and only at the user interface
level. By reading the public information, users would
see them described differently, made by separate
creators, and filed under distinct categories. But our UI
similarity analysis reveals that the interfaces of the two
apps are almost identical, suggesting that one app may
be a knockoff of the other. An unsuspecting user would
have no way to tell until after installing the app. A more
cautious user may compare the two apps and notice
that one requires as many as 28 permissions while the
other requires only five. Also, one has more than 20K
user ratings with an average of 4.5 star while the other
has only 177 ratings with an average of 2.5 stars.
Based on this comparison, one may deduce that the
one that receives weaker ratings and requires more
permissions is probably a knockoff. Unfortunately,
Google Play’s similarity calculation does not take into

MathTerms mathterms.com.andyfelong
Public:
MathTerms is an illustrated glossary of
mathematics terms in English and Spanish….
Code:
invoke-static {},
Lti/modules/titanium/media/TiCameraActivity;-
>takePicture()V

Figure 3: Example of Public/Code
Inconsistency.

account the user interface or the code. These two apps
are not listed as similar apps to allow users to compare.

Conclusion and Future Work
In this paper, we presented a work-in-progress toward
a new approach to identifying inconsistencies in Android
apps. Our preliminary results show the promise of
applying comprehensive and automated analysis
techniques on Android apps. Our preliminary findings of
inconsistency are only related to camera permissions
and similarities. We are currently extending this
methodology to other types of inconsistences, such as

• Other types of permissions (e.g., location, network)
• Statistics (e.g., Number of Requested Permissions,

Install Size, User Ratings)
• Content ratings (e.g., general, mature)
• Advertisement (e.g., free, ad-supported)
• Category labels (e.g., tools, references, games)

In addition, we are aware of a number of limitations we
must address as future work, including:

• Approach: Our code features extraction has some
inherent limitations to static analysis tools.
Although we only used dex2jar to decompile apps
to Java bytecode for the pair of methods analysis,
previous work has shown that dex2jar fails in
certain cases [5]. We need to assess to what
degree this affects the accuracy of our approach.

• Evaluation: We need to systematically evaluate our
approach on two key metrics: accuracy and success
rate at the code feature extraction level.

• Image elements are not analyzed. An app may use
graphics to provide visual cues to users (e.g.,
camera icon to start the camera), which are not

included in our analysis. We need to explore
solutions using computer vision.

Acknowledgement
This material is based on research sponsored by DARPA
under agreement number FA8750-14-2-0039. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding
any copyright notation thereon.

References
1. Berger, A.L., Pietra, V.J.D., and Pietra, S.A.D. A

Maximum Entropy Approach to Natural Language
Processing. Comput. Linguist. 22, 1 (1996), 39–71.

2. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E.,
and Wagner, D. Android Permissions: User
Attention, Comprehension, and Behavior. In SOUPS,
2012.

3. Kelley, P.G., Cranor, L.F., and Sadeh, N. Privacy As
Part of the App Decision-making Process. In CHI,
2013.

4. Lin, J., Amini, S., Hong, J.I., Sadeh, N., Lindqvist, J.,
and Zhang, J. Expectation and Purpose:
Understanding Users’ Mental Models of Mobile App
Privacy Through Crowdsourcing. In Ubicomp, 2012.

5. Octeau, D., Jha, S., and McDaniel, P. Retargeting
Android Applications to Java Bytecode. In SIGSOFT,
2012.

6. Pandita, R., Xiao, X., Yang, W., Enck, W., and Xie, T.
WHYPER: towards automating risk assessment of
mobile applications. In USENIX Security, 2013.

7. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., and
Yahav, E. Alias Analysis for Object-Oriented
Programs. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification.
Springer, 2013, 196–232.

