
Lightweight Static Analysis for GUI Testing

Stephan Arlt∗, Andreas Podelski∗, Cristiano Bertolini†, Martin Schäf‡, Ishan Banerjee§, Atif M. Memon§

∗Albert-Ludwigs-Universität Freiburg
†Federal University of Pernambuco
‡United Nations University Macau

§University of Maryland

Abstract—GUI testing is an active research area. The
open challenge is the judicious generation of event sequences
(an event sequence encodes a user interaction). A major
advance in this direction is the use of a black-box model to
systematically generate event sequences that are executable
on the GUI. The black-box model can be, e.g., an Event Flow
Graph (EFG) or an Event Sequence Graph (ESG). In this
paper we propose a new approach to select relevant event
sequences among the event sequences generated by a black-
box model. We express the relevance of an event sequence by
a precisely defined dependency between a fixed number of
events in the event sequence. Departing from a pure black-
box approach we apply a static analysis to the bytecode of
the application. This allows us to infer a dependency graph,
which we call Event Dependency Graph (EDG). We use the
EDG together with a black-box model to construct a set of
relevant event sequences among the executable ones. We have
implemented our approach in a new tool. We evaluate the
approach on four open source GUI applications. With the
specific choice of a lightweight static analysis, the approach
scales to large applications and, at the same time, leads to an
informed selection of event sequences. Using our approach
we are able to find previously undetected bugs.

Keywords- GUI Testing; Test Automation; Black-box Test-
ing; Static Analysis;

I. INTRODUCTION

GUI testing is an active research area; see [2], [3], [4],

[5], [9], [12], [18], [19]. Testing a software application

through its graphical user interface (which is a form of

system testing) is difficult because the space of possible

user interactions is unrestricted. A user action, such as

clicking a mouse button, triggers an event in the applica-

tion. An application responds to an event by executing a

piece of code, the event handler for that event. Therefore,

an event sequence is an integral part of a GUI test case.

Given the unrestricted space of possible event sequences,

the open challenge is the judicious generation of event

sequences. The goal is to select a reasonably sized and

effective set of event sequences.

A major advance towards this goal is the use of a black-

box model to systematically generate event sequences;

see [2], [3], [12], [18], [19], [21]. Here, the black-box

model is a graph whose nodes are events and whose paths

represent event sequences; it is called EFG (Event Flow

Graph) in [12] and ESG (Event Sequence Graph) in [2].

The idea is that an event sequence on a path can be used

for a GUI test case.

Another interesting direction is the development of a

white-box approach for GUI testing; see [6], [15], [16].

For example, in [6] symbolic execution is used to generate

input data for GUI test cases. Until now, however, a white-

box approach was not used to generate event sequences

for GUI test cases. The idea would be to use an analysis

of the source code for an informed selection of event

sequences. It is open, however, whether an analysis of the

source code can realistically infer which event sequences

are executable on the GUI.

The question is whether there is an approach to GUI

testing which inherits from the best of the two worlds: the

applicability to realistic GUI applications from a black-

box approach and the informedness to select test cases

from a white-box approach. Put into a slogan, the black-

box tells us what we can test, the white-box tells us what

we should test. Phrasing the slogan negatively, the black-

box may produce irrelevant test cases; the white-box may

produce non-executable test cases.

In this paper we propose a new approach to select rele-

vant event sequences among the event sequences generated

by a black-box model. We express the relevance of an

event sequence by a precisely defined dependency between

a fixed number of events in the event sequence. In a step

that starts from a pure black-box approach and departs

from it, we extract the set of events of the GUI and the

corresponding event handlers. In a step typical for a white-

box approach, we apply a static analysis to the bytecode

of the GUI application and its dependent libraries. This

allows us to infer a dependency relation between events.

The relation gives rise to a graph, which we call Event

Dependency Graph (EDG). The EDG can be used to infer

the relevance of an event sequence; it says nothing about

its executability. In contrast, a black-box model can be

used to infer the executability of an event sequence. In a

step that goes back towards the black-box approach, we

use the EDG together with a black-box model (here, the

EFG) to construct an informed selection of executable test

cases, namely through the set of relevant event sequences

among the executable ones.

We have implemented our approach in a new tool called

Gazoo. We evaluate the approach on four open source

GUI applications. With a specific choice of a lightweight

static analysis, the approach scales to large applications

and, at the same time, leads to an informed selection of

event sequences. Using our approach we are able to find

previously undetected bugs.

Structure of the paper. In the next section we illustrate

the application of our approach using an example of a

GUI application. Then we present the approach and its

implementation. In the Experiments section we formulate

the research questions and evaluate the approach.

II. EXAMPLE

In this section, we illustrate the application of our ap-

proach on an example of a GUI application; see Figure 1.

The example contains an oversimplified version of a bug

which we detected in an existing GUI application; see

Section IV. Note that the GUI application must not be

confused with the GUI toolkit: We here concentrate on

testing the event handlers of the GUI application instead

of testing certain features of the GUI toolkit.

Figure 1. Example GUI. The arrows between the two screenshots of
the GUI indicate the transition between two views. Clicking the button
for the event e3 leads to opening the Dialog window (and hiding the
MainWindow; i.e., the buttons for the events e1, e2, and e3 are no
longer enabled). Clicking the button for the event e4 closes the Dialog
window and leads back to the state in the first view; i.e., the buttons for
the events e1, e2, and e3 are enabled again.

The description of the possible user interactions with

the GUI in Figure 1 reveals its event flow. Namely, each

event can follow any other event except that e4 can follow

only after e3. The event flow (i.e., the can-follow relation

between events) is expressed by the graph depicted in

Figure 2. Such a graph, called EFG (Event Flow Graph),

represents the black-box model that is used to generate test

cases in [12]. The idea is that a path in the EFG encodes

a possible user interaction. The marking of e1, e2, and e3
as initial events encodes how a user interaction can start.

An EFG can be constructed automatically using reverse

engineering [13].

We will first explain how a pure black-box approach à

la [12] would work on the example GUI. It would first

construct the EFG in Figure 2. It would then use the EFG

to generate the ten event flow sequences in Figure 3, which

it would transform into the ten test sequences in Figure 4

(and embed those into test cases).

An event flow sequence consists of the events on one of

the paths in the EFG. The length of the paths in the EFG

is fixed as the parameter of the approach; here we set the

parameter to n = 2.

The transformation of an event flow sequence into a test

sequence accounts for the fact that a user interaction must

start in an initial event, namely by a suitable expansion.

Specifically, since the event e4 is not an initial event in

the EFG, a test sequence cannot start with e4. Thus, the

e1

e3

e2

e4

Figure 2. Event Flow Graph (EFG) for the example GUI. Each event
can follow any other event except that e4 can follow only after e3.
A path in the EFG encodes a possible user interaction. The marking of
initial events encodes that a user interaction can start with e1, e2, e3,
but not e4.

transformation expands s8, s9, and s10 by an initial event,

here e3. The transformation does not expand s1, . . . , s7
since they already start with an initial event.

s1 = 〈 e1 , e1 〉 s6 = 〈 e2 , e3 〉
s2 = 〈 e1 , e2 〉 s7 = 〈 e3 , e4 〉
s3 = 〈 e1 , e3 〉 s8 = 〈 e4 , e1 〉
s4 = 〈 e2 , e1 〉 s9 = 〈 e4 , e2 〉
s5 = 〈 e2 , e2 〉 s10 = 〈 e4 , e3 〉

Figure 3. The event flow sequences extracted from the EFG in Figure 2
(i.e., the sequences of events on a path in the EFG of length n = 2).

t1 = 〈 e1 , e1 〉 t6 = 〈 e2 , e3 〉
t2 = 〈 e1 , e2 〉 t7 = 〈 e3 , e4 〉
t3 = 〈 e1 , e3 〉 t8 = 〈 e3 , e4 , e1 〉
t4 = 〈 e2 , e1 〉 t9 = 〈 e3 , e4 , e2 〉
t5 = 〈 e2 , e2 〉 t10 = 〈 e3 , e4 , e3 〉

Figure 4. The test sequences that would be generated in the pure black-
box approach whose parameter is n = 2. They are obtained from the
event flow sequences in Figure 3, possibly by expansion (a test sequence
cannot start with e4).

Our approach. We will now explain how our approach

works on the example GUI; see Figure 9.

In the first step, we extract the event handlers of

the events e1, . . . , e4 from the GUI application and its

bytecode. The Java source code is shown in Figure 5. For

the purpose of this example, we use the source code (and

not, as in real, the bytecode).

In the second step of our approach, we apply a static

analysis to the bytecode and derive a dependency relation

between the four events of the GUI: the event e1 writes the

field text which is read in the event e4; so does the event

e2, and so does the event e4 itself. The dependency relation

between events (“writes-to/reads-from”) is expressed by

the graph depicted in Figure 6. We call it the Event

Dependency Graph (EDG). In this paper we use the

terminology of [23] for the write/read dependency.

In the third step, we first generate the event dependency

sequences shown in Figure 7 from the EDG in Figure 6.

We then transform the event dependency sequences into

1 class MainWindow extends JFrame {

2 String text = new String();

3

4 // handler for event e1

5 void e1() {

6 text = "Hello World";

7 }

8

9 // handler for event e2

10 void e2() {

11 text = null;

12 }

13

14 // handler for event e3

15 void e3() {

16 Dialog d = new Dialog(this);

17 d.setVisible(true);

18 }

19

20 class Dialog extends JDialog {

21 // handler for event e4

22 void e4() {

23 text = text.trim();

24 Dialog.this.setVisible(false);

25 }

26 }

27 }

Figure 5. The event handlers extracted from the example GUI and the
bytecode. The class MainWindow defines the event handlers for e1, e2,
and e3, and the class Dialog for e4. The event handler e1 assigns a
string value to the field text (line 6). The event handler e2 sets the
field text to null (line 11). The event handler e3 opens the dialog
(line 16-17). The event handler e4 assigns the trimmed string value of
the field text to the field text, and closes the dialog (line 23-24).

e1 e2 e3 e4

Figure 6. Event Dependency Graph (EDG) for the example GUI. Each
edge expresses a write/read dependency found by the static analysis
(applied to the source code shown in Figure 5): the event e1 writes
the field text which is read in the event e4; so does the event e2, and
so does the event e4 itself. We observe that a path in the EDG may not
be matched by any user interaction (since e4 can follow only after e3).

the test sequences shown in Figure 8, hereby using the

EFG in Figure 2 in an auxiliary procedure.

An event dependency sequence consists of the events

on a path in the EDG. Now, it is the length of the paths in

the EDG which is fixed by the parameter of our approach;

here we set the parameter to n = 2 (i.e., the same value

as in the pure black-box approach).

s1 = 〈 e1 , e4 〉 s3 = 〈 e4 , e4 〉
s2 = 〈 e2 , e4 〉

Figure 7. The event dependency sequences extracted from the EDG in
Figure 6 (i.e., the sequences of events on a path in the EDG of length
n = 2).

t1 = 〈 e1 , e3 , e4 〉 t3 = 〈 e3 , e4 , e3 , e4 〉
t2 = 〈 e2 , e3 , e4 〉

Figure 8. The test sequences that are generated in our approach when the
parameter is set to n = 2. They are obtained from the event dependency
sequences in Figure 7, using the EFG in Figure 2; the event e4 can
follow only after e3 (and a test sequence cannot start with e4).

The transformation of an event dependency sequence s

into a test sequence t consists of expanding the sequence

until it corresponds to a path in the EFG and then further

until it corresponds to an EFG path that starts in an initial

event. For example, we transform s1 into t1 by inserting

e3 between e1 and e4. In the case of the transformation

from s3 into t3, we need to additionally add an initial

event (since a test sequence cannot start in e4). Thus, the

transformation proceeds in two steps where the second

step is analogous to the transformation from the event

flow sequences in Figure 3 into the test sequences in

Figure 4. I.e., in the pure black-box approach one would

take all event flow sequences of the length fixed by the

parameter n = 2. In our approach, we take a few (three)

selected event flow sequences whose length is a priori

unbounded.

Our approach finds a bug in the example. The execu-

tion of one of the three test sequences generated in our ap-

proach, namely t2, causes a NullPointerException.

This is because the field text is set to null in the

event handler e2 and then de-referenced in event handler

e4. The intermediate event e3 in the test sequence t2
is not involved in the causal chain of the bug; it is

needed because without it, the event sequence would not

be executable, i.e., could not be executed on the GUI

application.

Would the pure black-box approach find the bug?

No. In our example, the set of the three test sequences

generated from event dependency sequences of length

n = 2 is disjoint from the set of the ten test sequences

generated from event flow sequences of length n = 2.

Thus, the test sequence t2 cannot be generated from one

of the ten event flow sequences of length n = 2. I.e., the

bug cannot be detected in the pure black-box approach

when the parameter is set to n = 2.

Yes. In our example, the set of the three test sequences

generated from event dependency sequences of length

n = 2 is a subset of the (24) test sequences generated

from event dependency sequences of length n = 3. Thus,

the test sequence t2 could be generated from one of the

event flow sequences of length n = 3. I.e., the bug could

be detected in the pure black-box approach when the

parameter was set to n = 3, at least in this example.

However, setting n = 3 can be considerably expensive in

terms of execution time/number of test sequences.

No. We can modify the example such that the bug

can no longer be detected in the pure black-box approach

even when the parameter is set to n = 3 (the modification

extends to n = 4, n = 5, . . .). Namely, we add an

intermediate dialog box with the event e14 such that the test

sequence t2 becomes non-executable and the bug would

be detected only by the test sequence t′
2

below.

t′
2
= 〈 e2 , e3 , e

1

4 , e4 〉

If the button for e1
4

can only be activated by e3 and

the button for e4 can only be activated by e14, then the

edge (e3, e4) in the EFG of Figure 2 gets replaced by the

two edges (e3, e
1

4
) and (e1

4
, e4). This means that the test

Figure 9. Our approach, with three main steps. (1) The step Event

Handler Extraction extracts a set of event handlers from the bytecode
and the GUI of an application. (2) The step Static Analysis constructs
an EDG from the write/read dependencies which are found by a static
analysis applied to the event handlers and the bytecode. (3) The step
Test Sequence Generation generates a set of test sequences from the
EDG, with the help of the EFG. There are two more steps: the step GUI
Ripper constructs an EFG, and the step Replayer executes the generated
test sequences on the GUI (reporting sets of passed and failed test cases).

sequence t′
2

can no longer be generated from an event flow

sequence of length n = 3. I.e., the bug cannot be detected

in the pure black-box approach even when the parameter

is set to n = 3.

One might argue that one can modify the example

such the bug can no longer be detected in our approach

with the parameter n = 2. This, however, would involve

constructing a more complex bug, namely one whose

causal chain involves more than two events.

III. APPROACH AND IMPLEMENTATION

Our approach consists of three main steps as shown in

Figure 9: (1) the extraction of event handlers; (2) the static

analysis; and (3) the generation of test sequences.

A. Event Handler Extraction

Each event in a GUI (e.g., a click on a button OK)

is encoded as an event handler (e.g., OnClickOK). The

step Event Handler Extraction mixes aspects of black-

box and white-box approaches in order to extract the

GUI’s event handlers. First, as in a black-box approach,

we execute the GUI application and enumerate the GUI’s

widgets (e.g., windows, buttons, and text fields). Then,

leaving a black-box approach, we apply Reflection1 to

1http://java.sun.com/developer/technicalArticles/ALT/Reflection/

obtain the Java object corresponding to each widget (e.g.,

a JButton object). We ask the Java object to invoke the

method getActionListeners. The method invoca-

tion returns the widget’s event handlers (which are called

action listeners in Java). The widget’s ID is used as a

unique identifier for each event. If the Java object does

not provide the method getActionListeners, then

there exists no registered event handler to this widget. In

this case, we can simply discard the corresponding event

for the construction of the EDG; it will still be used for

the construction of the EFG.

B. Static Analysis

The input of the step Static Analysis is the bytecode of

the application and the set of event handlers which has

been extracted by the step Event Handler Extraction. For

each event handler, we infer a sound approximation of

what fields can be written to resp. read from during the

execution of the event handler. The inference is done by

a lightweight static analysis applied to the bytecode. Con-

cretely, for each event handler, the static analysis collects

all fields that are written to resp. read by the event handler

directly or indirectly (indirectly means: by all methods that

it may possibly call, directly or via intermediate method

calls). The static analysis returns two mappings that assign

to each event e a set of fields, namely FieldsWritten(e)
resp. FieldsRead(e). We construct the EDG from the

two mappings. Namely, the edge (e, e′) belongs to the

EDG if the intersection between FieldsWritten(e) and

FieldsRead(e′) is not empty.

The EDG is the output of the step Static Analysis. An

edge (e, e′) in the EDG indicates a dependency between

the events e and e′, meaning: the event handler of e′

possibly reads data written by the event handler of e.

Implementation details. We use the ASM framework2

for the implementation of the static analysis described

above. We apply the static analysis to the bytecode, and

not on the Java source code as shown for the example

discussed in Section II. For concreteness, we show the

bytecode for the event handler e2 and e4 in the example;

see Figure 10. Our earlier implementation efforts, which

used a static analysis on the source code (implemented in

JDT3), failed; we did not succeed to obtain the required

information. For each event handler, the static analysis

collects all fields written by analyzing the instruction

PUTFIELD [10], and all fields read by analyzing the in-

struction GETFIELD. Since an event handler may directly

or indirectly call methods, the static analysis follows all

method calls by analyzing the instruction INVOKE.

C. Test Sequence Generation

The input to the step Test Sequence Generation is

the EDG, which has been constructed in the step Static

Analysis, and the EFG, which has been constructed in

an auxiliary step which we will describe later. As we

have described above, the EDG encodes the dependency

2http://asm.ow2.org/
3http://www.eclipse.org/jdt/

http://java.sun.com/developer/technicalArticles/ALT/Reflection/
http://asm.ow2.org/
http://www.eclipse.org/jdt/

1 void e2()V

2 ICONST_0

3 PUTFIELD MainWindow.text : Z

4

5 void e4()V

6 GETFIELD MainWindow.text : Ljava/lang/String;

7 INVOKEVIRTUAL java/lang/String.trim()Ljava/

lang/String;

8 PUTFIELD MainWindow.text : Ljava/lang/String;

Figure 10. Bytecode for the event handlers for e2 and e4 in the example
of Section II. The static analysis adds the text field of MainWindow
to the set of fields written by e2, and it adds it to the set of fields
read by e4. It thus infers the write/read dependency from e2 to e4.
Thus, we add the edge (e2, e4) to the EDG. In bytecode, fields are
read by the instruction GETFIELD; they are written by PUTFIELD.
Methods are called using the INVOKE instruction (INVOKEVIRTUAL,
INVOKESTATIC, INVOKESPECIAL). Line 2: the constant value 0 is
pushed to the stack. Line 3: the constant value 0 is assigned to the field
text. Line 6: the field text is read and pushed to the stack. Line 7:
the method trim is called and the return value is pushed to the stack.
Line 8: the return value is pop-ed from the stack and written to the field
text.

relation between events, and the EFG encodes the flow

relation between events. A path in the EDG, which we call

event dependency sequence, is in general not executable,

i.e., does not encode a user interaction that can be executed

on the GUI. In contrast, a path in the EFG that starts in an

initial event, which we call test sequence, is executable.

Therefore, in order to obtain a test sequence from an event

dependency sequence, we need to transform it until it

forms a path in the EFG that starts with an initial event.

The length of the event dependency sequences is fixed

by the parameter n of the overall approach. It is the step

Test Sequence Generation, and only this step in the overall

approach, that depends on the parameter n. In the example

of Section II and in the experiments which we will discuss

in Section IV, the parameter is set to n = 2.

The step Test Sequence Generation consists of two sub-

steps: (1) the extraction of all event dependency sequences

from the EDG, and (2) the transformation of event de-

pendency sequences to test sequences. The transformation

consists of finding a path in the EFG that contains all

events of the given event dependency sequence, in the

same order but not necessarily consecutive.

For two events in an event dependency sequence, say e

and e′, we compute the shortest path in the EFG from e to

an initial event, and the shortest path from e to e′. We then

concatenate both computed paths (i.e., the prefix of e and

the suffix starting in e) in order to obtain an executable

test sequence. In particular, we apply a breadth-first search

on the EFG to find the shortest path between events. The

search for the shortest path is motivated by the idea of

having compact test cases (in terms of numbers of events

in a test sequence).

There are two cases when an event dependency se-

quence cannot be transformed into a test sequence: (a)

there exists no path in the EFG from an initial event to

the first event of the event dependency sequence (we then

discard the event dependency sequence); and (b) for two

events in the event dependency sequence, say e and e′,

there exists no path in the EFG leading from e to e′. In

this case, we first split the event dependency sequence into

two test sequences, i.e., we compute the shortest path to an

initial event for e and for e′. Then, we concatenate these

two test sequences with a restart of the GUI application

in between.

The need of a restart arises from the following observa-

tion: GUI applications tend to store user settings, e.g., the

recently opened files in the File menu. For example, an

event e writes a user setting which is read by an event e′,

but there exists no event flow between these two events.

In order to test (e, e′), we generate two test sequences and

concatenate them with a restart in between.

Auxiliary Steps

The step GUI Ripper constructs an EFG by executing

the GUI application [13]. For completeness we describe it

briefly; see [13] for details. The execution is directed to

explore the hierarchical structure of the GUI in a depth-

first manner. For each widget found during the execution,

say a button OK, the GUI ripper triggers the assigned event,

i.e., a button click. By recording the history of triggered

events, the GUI Ripper detects the event flow (i.e., which

pairs of events can be consecutive) and stores it in the

EFG. The GUI Ripper uses a widget ID as a unique

identifier for each event, just as the step Event Handler

Extraction. In our implementation, the steps Event Handler

Extraction and GUI Ripper are combined.

The step Replayer takes as input a set of test sequences

and embeds each test sequence into a test case. A GUI

test case consists of four components: (1) a precondition

that must hold before executing a test sequence; (2) the

test sequence to be executed; (3) possible input data to

the GUI; and (4) a postcondition that must hold after

executing the test sequence. The step Replayer executes

all test cases obtained from the test sequences. That is,

it ensures the precondition, executes the test sequence on

the GUI application, inserts input data where necessary,

and checks if the postcondition holds. If it holds, the step

Replayer reports the test case as passed, and if not, as

failed.

We have implemented our approach in a new tool called

Gazoo. Our implementation uses an adaptation of the GUI

Ripper and the Replayer of GUITAR4. In the next section

we report the experiments conducted with the new tool.

IV. EXPERIMENTS

In this section we evaluate our approach by a compar-

ison with the pure black-box approach in [12]. We first

present the setup of the experiments. Then we discuss the

results of the experiments. We define the following five

research questions:

• Q1: Does our approach scale to realistic GUI ap-

plications? A priori, this is not clear. The question

is critical for a particular reason. In the pure black-

box approach, one can bound the cost by fixing the

parameter to, say, n = 2 (the approach will then

generate at most k2 test sequences where k is the

4http://guitar.sourceforge.net/

http://guitar.sourceforge.net/

number of events). In our approach, the parameter

fixes the complexity of the bug to be found (the

approach guarantees to find all bugs whose causal

chain involves n = 2 events); a priori, there is no

bound on the number of the generated test sequences

(nor on their length).

• Q2: Is the test sequence generation in our approach

effectively selective; i.e., does it discard an interesting

number of irrelevant event flow sequences?

• Q3: How much would we have to increase the

parameter n for the pure black-box approach in order

to generate all the test sequences that are generated

by our approach with the parameter set to n = 2?

• Q4: Does our approach achieve the same coverage

even in the cases when the number of generated

test sequences is smaller than in the pure black-box

approach?

• Q5: Is our approach effective for finding bugs?

A. Setup of the Experiments

We evaluate our approach using four Java-based open

source applications: JabRef 2.7 manages bibliographic

references, FreeMind 0.9 creates mind maps, TerpWord 4.0

is a word processor, and Rachota 2.3 is a time recording

system. For Rachota, we used the artifacts from Com-

munity Event-based Testing (COMET)5. We choose these

applications to consider both small and large applications

(in terms of # of classes), and to cover different code

styles. Figure 11 shows some relevant statistics of the

AUTs (Applications Under Test).

JabRef FreeMind Rachota TerpWord

LOC 68,468 40,922 13,750 6,842

Classes 4,027 1,362 468 215

Events 776 959 154 159

EDG edges 10,034 25,248 2,172 4,100

EFG edges 100,211 105,986 1,493 4,229

Figure 11. Comparison between AUTs: number of lines of code (LOC),
classes, events, and edges in the EDG and the EFG that are computed in
the experiments. For Rachota, the size of the EDG is almost 50% higher
than the size of the EFG.

Our experiments consist of two configurations. The

configuration EFG-2 stands for the pure black-box ap-

proach [12] where the parameter is set to n = 2; this

limits the length of the considered paths in the EFG to

n = 2. The configuration EDG-2 stands for our approach

where the parameter is set to n = 2 as well; this limits the

length of the considered paths in the EDG to n = 2. The

choice of the parameter n = 2 is motivated by previous

empirical studies on bugs in GUI applications [20].

As mentioned in Section III, each test sequence is em-

bedded into one test case consisting of (1) a precondition;

(2) a test sequence; (3) input data; (4) a postcondition. For

(1), as a precondition we define that all user settings of an

AUT have to be deleted before executing the test sequence.

For (3), we generate random data, i.e., random strings

5http://comet.unl.edu/

for text boxes. The computation of suitable input data

(see [6], [7], [17]) for widgets represents an orthogonal

problem and is not in the scope of this paper. For (4),

we use a crash monitor as an oracle; this is a simple but

reasonable oracle. In particular, we record any exception

occurred during test case execution, and we automatically

observe whether a test case is executable on a GUI. For a

discussion of alternative oracles we refer to [14].

The test cases are executed on 10 virtual Linux ma-

chines with 2.0 GHz CPU, 2 GB RAM, 500 GB HDD.

In order to mitigate the effect of randomness, the config-

urations EFG-2 and EDG-2 are executed three times. The

total number of executed test cases amounts to 236,808.

B. Results of the Experiments

Figures 12, 13, 14 and 15 and part of Figure 11 show

the results of the experiments.

AUT EFG-2 EDG-2

JabRef

test sequences 43,017 5,860

generation time (m) 93 21

generation time per test sequence (s) 0.13 0.22

execution time (h) 358 49

line coverage (%) 54 54

branch coverage (%) 26 26

detected bugs

FreeMind

test sequences 11,396 9,944

generation time (m) 25 34

generation time per test sequence (s) 0.13 0.21

execution time (h) 98 88

line coverage (%) 53 53

branch coverage (%) 37 37

detected bugs - -

Rachota

test sequences 1,310 1,407

generation time (m) 3 4

generation time per test sequence (s) 0.14 0.17

execution time (h) 6 6

line coverage (%) 61 62

branch coverage (%) 34 36

detected bugs -

TerpWord

test sequences 3,307 2,695

generation time (m) 7 8

generation time per test sequence (s) 0.13 0.18

execution time (h) 12 10

line coverage (%) 55 55

branch coverage (%) 36 36

detected bugs - -

Figure 12. The configuration EFG-2 stands for the pure black-box
approach [12] where the parameter is set to n = 2; this limits the length
of the considered paths in the EFG to n = 2. The configuration EDG-2

stands for our approach where the parameter is set to n = 2 as well;
this limits the length of the considered paths in the EDG to n = 2.

http://comet.unl.edu/

(a) JabRef (b) FreeMind (c) Rachota (d) TerpWord

Figure 13. In each Venn diagram, the set marked EFG-2 consists of the test sequences generated with configuration EFG-2, i.e., by the pure black-box
approach. The set marked EDG-2 consists of the test sequences generated with configuration EDG-2, i.e., by our approach. Among the test sequences
in EFG-2 our approach discards all those that are not in the intersection (they are not relevant test sequences).

(a) JabRef

607

1045

5387

2010

450

281

117

46

1

0 2000 4000 6000

2

3

4

5

6

7

8

9

10

(b) FreeMind (c) Rachota

92

171

1383

908

141

0 500 1000 1500

2

3

4

5

6

7

8

9

10

(d) TerpWord

Figure 14. The distribution of the test sequences obtained from the event dependency sequences of length 2. The y-axis stands for the parameter
which is required for the pure black-box approach in order to generate the test sequence. For example, 2,656 test sequences out of the (5,860) test
sequences generated by our approach with parameter n = 2 are generated by the pure black-box approach only if the parameter is increased to n = 5.

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000

%
 l
in

e
 c

o
v
e

ra
g

e

test sequences

(a) JabRef

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000

%
 l
in

e
 c

o
v
e

ra
g

e

test sequences

(b) FreeMind

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

%
 l
in

e
 c

o
v
e

ra
g

e

test sequences

(c) Rachota

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500

%
 l
in

e
 c

o
v
e

ra
g

e

test sequences

(d) TerpWord

Figure 15. The trend of the achieved coverage. The x-axis indicates the number of executed test sequences. The y-axis indicates the line coverage.
The black line represents the coverage of EDG-2 test sequences; the grey line represents the coverage of EFG-2 test sequences. We observe that the
configuration EDG-2 does not loose coverage. Moreover, the configuration EDG-2 can achieve coverage of EFG-2 significantly faster.

Regarding research question Q1, we refer to Figure 12.

Contrary to our initial worries, the number of test

sequences does not explode. In the middle-sized

application Rachota, it is slightly larger. In the somewhat

larger application JabRef, it is significantly smaller. A

potential explanation is that while our approach selects a

test sequence for every pair of events with a write/read

dependency, it selects only one. Another major worry

of ours (based on earlier experience) concerned the

scalability of the static analysis which is an essential

ingredient of our approach. It seems that with our choice

of a lightweight static analysis, we have identified a

sweetspot in the precision/cost tradeoffs. Looking at the

generation time and the generation time per test sequence,

we conclude that the overhead incurred by the static

analysis is acceptable. In summary, the answer to the

research question Q1 is Yes: our approach does scale to

realistic GUI applications.

Regarding research question Q2, we refer to Figure 13.

In each Venn diagram, the set marked EFG-2 consists of

the test sequences generated with configuration EFG-2,

i.e., by the pure black-box approach. The set marked

EDG-2 consists of the test sequences generated with

configuration EDG-2, i.e., by our approach. Among the

test sequences in EFG-2 our approach discards all those

that are not in the intersection. Among all test sequences

in EFG-2, only the ones that are also in EDG-2 (i.e., in

the intersection) are justifiably relevant (because they are

known to contain a pair of two events with a write/read

dependency). All other test sequences in EFG-2 are

irrelevant, i.e., their selection is not based on the formal

criterion of relevance and, hence, they are discarded

by our approach. In JabRef only 540 out of the 43,017

event flow sequences in EFG-2 are relevant, i.e., 99%

of the event flow sequences in EFG-2 are irrelevant and

discarded by our approach. For the other AUTs, the

numbers are similar: 95% of the event flow sequences

in FreeMind; 92% for Rachota; 97% for TerpWord. In

summary, the answer to the research question Q2 is Yes:

our approach discards an interesting number of irrelevant

event flow sequences.

Regarding research question Q3, we refer to Figure 14.

The y-axis stands for the parameter which is required for

the pure black-box approach in order to generate the test

sequence. For example, 2,656 test sequences out of the

(5,860) test sequences generated by our approach with

parameter n = 2 are generated by the pure black-box

approach only if the parameter is increased to n = 5. A

similar fact holds true for each of the applications: for a

rather large fraction of the test sequences generated by

our approach, one has to increase the parameter to n = 4
or n = 5. To answer the research question Q3, one has to

increase the parameter to n = 7 (for JabRef), to n = 10
(for FreeMind), to n = 6 (for Rachota and TerpWord) for

the pure black-box approach in order to generate all the

test sequences that are generated by our approach with

the parameter set to n = 2.

Regarding research question Q4, we refer to Figure 15.

The x-axis indicates the number of executed test

sequences. The y-axis indicates the line coverage. The

black line represents the coverage of the EDG-2 test

sequences, the grey line represents the coverage of

the EFG-2 test sequences. Since our static analysis

recognizes event dependencies in depending libraries, we

consider coverage as the sum of the coverage of the GUI

application itself and its depending libraries. In order

to plot a fair coverage trend (the order of the executed

test sequences matters) we followed this procedure:

First, we executed each test sequence and measured its

achieved coverage. Second, we put the coverage results

in a so-called coverage sequence. Third, we randomly

modified the order in the coverage sequence k times

using different seeds, where k is the number of all test

sequences. Furthermore, we calculated the coverage

trend of each modified coverage sequence. Fourth, in

Figure 15 we reported the average of all coverage trends.

We observe that the configuration EDG-2 does not

loose coverage comparing to the configuration EFG-2.

Moreover, we observe that EDG-2 can achieve the

same coverage of EFG-2 significantly faster (in terms

of the number of executed test sequences). For JabRef,

the EDG-2 needs 5,860 test sequences to achieve the

coverage of EFG-2, which needs 43,017 test sequences.

Rachota makes an exception: EDG-2 achieves a slightly

higher coverage with a slightly higher number of test

sequences than EFG-2. Note that the EDG is larger than

the EFG; see Figure 11. In summary, the answer to the

research question Q4 is Yes: our approach does achieve

the same coverage even in the cases when the number

of generated test sequences is smaller than in the pure

black-box approach.

The answer to the research question Q5 is Yes. Our

approach is able to find bugs. In JabRef we detected two

bugs only with the configuration EDG-2, and one bug

with the configuration EFG-2 and EDG-2. In Rachota we

detected one bug only with the configuration EDG-2. In

the following we sketch one bug detected in JabRef using

our approach. For a detailed exposition we have set up a

website containing supporting material of this paper; see

Section VIII. In JabRef the following test sequence causes

an ArrayOutOfBoundsException: (1) In the main

window, click Manage content selectors , which

opens a new dialog; (2) switch to the main window

and choose Close database ; (3) switch back to the

dialog and click OK . The error occurs, because the

newly opened dialog starts modeless which allows the

user to close the database, although the dialog still allows

the user to modify the database. Note that JabRef does

not show an error message. Instead, the stack trace of

the ArrayOutOfBoundsException is printed on the

standard output (stdout). We reported all detected bugs

to the corresponding developers. Furthermore, all bugs

have been fixed in the following version of the applica-

tions.

Manage

content selectors
OK

Close Database

(a) EFG

Manage

content selectors
OK

Close Database

(b) EDG

Figure 16. Snippets of the EFG and EDG of JabRef. The edges marked
in red in the EFG and in the EDG are used to generate the test sequence
that detects the bug.

Figure 16 shows a snippet of the EFG and the EDG

of JabRef that corresponds to the detected bug. In the

test sequence generation for event Close database

our approach detects the write/read dependency to event
OK . This dependency consists of a field for JabRef’s

metadata, which is written in Close database and

read in OK . Thus, the event dependency sequence

〈 Close database , OK 〉 is generated. This event de-

pendency sequence is transformed into a test sequence,

since there exists no corresponding path in the EFG. The

shortest path from an initial event to Close database ,

and from Close database to OK is computed and

inserted to the sequence. The resulting test sequence is:

〈 Manage content selectors , Close database ,
Manage content selectors , OK 〉. The EFG-2 ap-

proach does not detect this bug.

V. THREATS TO VALIDITY

The first threat to internal validity is the step GUI

Ripper. Since this step represents a dynamic approach (i.e.,

the application is executed in order to extract events), it

cannot be guaranteed to find all widgets of the application.

For instance, the application itself might be hostile or

even faulty, e.g., if the GUI opens a new window in the

background, the GUI ripper is not able to find it, and

thus, it cannot be considered during EFG construction.

Furthermore, the fact if a widget is enabled or disabled

during ripping may strongly depend on the environment

(e.g., user settings). These problems tend to be of technical

nature and their severity might differ depending on the

used platform. Hence, the EFG obtained from the GUI

ripper represents an approximation of the application’s

event flow. It cannot be guaranteed that a path in the

constructed EFG is executable on the GUI; the events in

the EFG are yet pairwise executable.

The second threat to internal validity is the replication of

the experiments. All applications store user settings to the

hard disk, e.g., enabled and disabled toolbars, and recently

opened files. In order to ensure the precondition (i.e., the

system’s state) for each run of a test case it is important

that those user settings have to be deleted. Otherwise test

cases may mistakenly fail, e.g., a widget is not found due

to an existing user setting.

The third threat to internal validity is that the appli-

cations are strongly connected to the date and time in

the moment of their execution. When replaying the test

cases, some of them may fail, because widgets are not

recognized anymore (while replaying a calendar control

shows a different date as the calendar control was ripped).

In order to decrease the threats to internal validity we ran

the experiments three times.

One threat to external validity is the portability of

our approach. We evaluated four Java applications which

incorporate the Swing toolkit6 for building the user inter-

face. Alternative toolkits, e.g., the Standard Widget Toolkit

(SWT)7, follow different paradigms of building a user

interface, i.e., using native widgets written in C, instead

of pure Java widgets. Thus, the construction of the black-

box model and the implementation of the static analysis

must be adapted to the corresponding environment. Under

the assumption that this adaption is possible, our approach

can be extended to those platforms.

VI. DISCUSSION

In this section we discuss the steps Event Handler

Extraction, Static Analysis, and Test Sequence Generation

of our approach.

A. Event Handler Extraction

The step Event Handler Extraction represents a dynamic

approach (i.e., it executes a GUI application in order to

extract event handlers). In principle, it would be possible

to extract these event handlers in a static approach, e.g.,

by analyzing the source code. However, since Java code

is written in so many ways, a static analysis technique

must be tailored to comprehend how a GUI is built. For

example, event handlers might also be registered using

callbacks, virtual function calls, or even external resource

files.

B. Static Analysis

When constructing the EDG, the step Static Analysis

does not consider potential aliasing of fields or potentially

infeasible control-flow. Furthermore, Java distinguishes

between instance fields and class fields, which are treated

the same way in our bytecode analysis. That is, both class

fields and instance fields are mapped to their correspond-

ing class. Moreover, instance fields are not mapped to their

objects. The static analysis does not distinguish between

calls of instance methods and class methods and thus, is

not reliable regarding polymorphism. Hence, the resulting

6http://docs.oracle.com/javase/tutorial/uiswing/index.html
7http://www.eclipse.org/swt/

EDG is an approximation of the dependencies between

fields. However, we are interested in prioritizing events,

so a lightweight static analysis is sufficient while leaving

room for further in-depth analyses.

C. Test Sequence Generation

The step Test Sequence Generation transforms each

event dependency sequence into a test sequence by finding

the shortest paths in the EFG as explained in Section III.

Thus, for a set of test sequences, the same prefix and suffix

path in the EFG could be used several times. However,

this does not present a drawback for two reasons: (1) If

the prefix or the suffix path consists of a relevant event

sequence, then this sequence will be separately considered

as an event dependency sequence (and later on as a test

sequence). (2) If the prefix or the suffix path consists of

an irrelevant event sequence, then this sequence simply

serves for the purposes of making an event dependency

sequence executable. However, a possible extension to the

step Test Sequence Generation is to consider unused pre-

and suffix paths.

VII. RELATED WORK

In a broad sense, our approach is related to the gen-

eration of sequences of method calls. The work that

comes closest to our work, described in [23], uses a

call sequence and a static analysis in order to generate

relevant sequences of method calls for Java objects. Our

work on event sequence generation differs in two main

aspects. First, we consider dependencies of method calls

across unit boundaries (for the goal of system testing, as

opposed to unit testing as in [23]); for example, we analyze

the dependent libraries of a GUI application. Second, we

accommodate the requirement of executability (and not

just the requirement of relevance, as in [23]), namely by

incorporating the use of a black-box model.

In [21], the GUI run-time feedback is obtained from

the execution of a “seed test suite”. The feedback is used

to iteratively generate new improved test cases. However,

a test suite with events of reasonable length has to be

generated and executed before building new improved

event sequences based on a pure black-box model. Our ap-

proach does not need a “training set” since it immediately

selects relevant event sequences using a static analysis

once a black-box model is provided. AutoBlackTest [11]

executes an AUT and uses reinforcement learning to obtain

relevant event sequences. EXSYST [8] observes which

events correspond to a certain behavior in the source code.

In contrast with the three previously cited approaches,

our approach executes the AUT only for constructing the

black-box model of the GUI, and not for generating event

sequences.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have proposed a new approach to

select relevant event sequences among the event sequences

generated by a black-box model. We express the relevance

of an event sequence by a precisely defined dependency

between a fixed number of events in the event sequence.

http://docs.oracle.com/javase/tutorial/uiswing/index.html
http://www.eclipse.org/swt/

We have implemented the approach. Our experiments have

the following findings.

• Our approach scales to realistic GUI applications.

• Our approach discards an interesting number of irrel-

evant event sequences.

• Our approach generates test sequences that would be

generated in the pure black-box approach only with

very high values for the parameter (and thus with

very high cost).

• Our approach achieves the same coverage as the

pure black-box approach, even in the cases when the

number of test cases is smaller.

• Our approach detects previously undetected bugs.

An interesting line of research for future work is to

explore whether a dynamic approach such as [1] or [6],

which may help with the generation of ‘relevant’ input

data for test cases, can be integrated with our approach to

select relevant test sequences.

Instead of generating and replaying all test sequences at

once, we plan to integrate an iterative approach such as [8]

or [11]. The benefit is that one can additionally bound the

cost of the testing process by defining a specific timeout.

We plan to incorporate an approach such as [22] to gen-

erate event sequences for multi-threaded GUI applications.

For example, in e-Mail applications a user interaction

may initiate several threads (e.g., fetching e-mails from

different accounts) that could lead to invalid thread access

errors.

We have set up a website containing supporting

material for this paper:

http://www.informatik.uni-freiburg.de/˜arlt/issre2012

ACKNOWLEDGMENTS

This work is partially supported by the research projects

EVGUI, ARV, and SAFEHR (funded by the Macau Sci-

ence and Technology Development Fund and the Chinese

NSFC No. 61103013), and the US National Science

Foundation under grant CNS-1205501 and CNS-0855055.

Cristiano Bertolini was partially supported by CAPES-

PNPD/2011.

REFERENCES

[1] S. Arlt, P. Borromeo, M. Schäf, and A. Podelski. Parame-
terized GUI Tests. In ICTSS, 2012.

[2] F. Belli. Finite-State Testing and Analysis of Graphical
User Interfaces. In ISSRE, pages 34–43, 2001.

[3] F. Belli, M. Linschulte, C. J. Budnik, and H. A. Stieber.
Fault Detection Likelihood of Test Sequence Length. In
ICST, pages 402–411, 2010.

[4] C. Bertolini, A. Mota, and E. Aranha. Calibrating Prob-
abilistic GUI Testing Models Based on Experiments and
Survival Analysis. In ISSRE, pages 319–328, 2010.

[5] C. Bertolini, A. Mota, E. Aranha, and C. Ferraz. GUI
Testing Techniques Evaluation by Designed Experiments.
In ICST, pages 235–244, 2010.

[6] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry.
Event Listener Analysis and Symbolic Execution for Test-
ing GUI Applications. In ICFEM, pages 69–87, 2009.

[7] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, pages 213–223, 2005.

[8] F. Gross, G. Fraser, and A. Zeller. Search-based system
testing: high coverage, no false alarms. In ISSTA, pages
67–77, 2012.

[9] S. Huang, M. B. Cohen, and A. M. Memon. Repairing GUI
Test Suites Using a Genetic Algorithm. In ICST, pages
245–254, 2010.

[10] T. Lindholm and F. Yellin. Java Virtual Machine Speci-
fication. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 1999.

[11] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. Au-
toBlackTest: Automatic Black-Box Testing of Interactive
Applications. In ICST, pages 81–90, 2012.

[12] A. M. Memon. An event-flow model of GUI-based applica-
tions for testing. Softw. Test., Verif. Reliab., 17(3):137–157,
2007.

[13] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI
Ripping: Reverse Engineering of Graphical User Interfaces
for Testing. In WCRE, pages 260–269, 2003.

[14] A. M. Memon, I. Banerjee, and A. Nagarajan. What Test
Oracle Should I Use for Effective GUI Testing? In ASE,
pages 164–173, 2003.

[15] A. C. R. Paiva, J. C. P. Faria, and P. M. C. Mendes. Reverse
Engineered Formal Models for GUI Testing. In FMICS,
pages 218–233, 2007.

[16] J. C. Silva, C. E. Silva, R. D. Gonçalo, J. Saraiva, and
J. C. Campos. The GUISurfer tool: towards a language
independent approach to reverse engineering GUI code. In
EICS, pages 181–186, 2010.

[17] T. Tuglular, C. A. Muftuoglu, F. Belli, and M. Linschulte.
Event-Based Input Validation Using Design-by-Contract
Patterns. In ISSRE, pages 195–204, 2009.

[18] L. J. White and H. Almezen. Generating Test Cases for GUI
Responsibilities Using Complete Interaction Sequences. In
ISSRE, pages 110–123, 2000.

[19] L. J. White, H. Almezen, and N. Alzeidi. User-Based
Testing of GUI Sequences and Their Interactions. In ISSRE,
pages 54–65, 2001.

[20] X. Yuan, M. B. Cohen, and A. M. Memon. Covering
array sampling of input event sequences for automated gui
testing. In ASE, pages 405–408, 2007.

[21] X. Yuan and A. M. Memon. Using GUI Run-Time State as
Feedback to Generate Test Cases. In ICSE, pages 396–405,
2007.

[22] S. Zhang, H. Lü, and M. D. Ernst. Finding errors in
multithreaded GUI applications. In ISSTA, pages 243–253,
2012.

[23] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static
and dynamic automated test generation. In ISSTA, pages
353–363, 2011.

http://www.informatik.uni-freiburg.de/~arlt/issre2012

