
An Initial Characterization of Industrial Graphical User
Interface Systems

Penelope Brooks, Brian Robinson Atif M. Memon

ABB Corporate Research
Raleigh, NC, USA

University of Maryland
College Park, MD

{penelope.a.brooks,brian.p.robinson}@us.abb.com atif@cs.umd.edu

Abstract

To date we have developed and applied numerous

model-based GUI testing techniques; however, we are
unable to provide definitive improvement schemes to
real-world GUI test planners, as our data was derived
from open source applications, small compared to
industrial systems. This paper presents a study of three
industrial GUI-based software systems developed at
ABB, including data on classified defects detected during
late-phase testing and customer usage, test suites, and
source code change metrics. The results show that
(1) 50% of the defects found through the GUI are
categorized as data access and handling, control flow
and sequencing, correctness, and processing defects,
(2) system crashes exposed defects 12-19% of the time,
and (3) GUI and non-GUI components are constructed
differently, in terms of source code metrics.

1. Introduction

Almost exclusively, software today provides a
Graphical User Interface (GUI) as the only method for
users to access the functionality of the software. Hence
the GUI is an important part of the software; it can
account for as much as 60% of the overall code [19].
Overall system and integration testing of software under
test (SUT) involves testing via the GUI (we’ll call this
type of testing GUI testing).

For GUI testing, the test designer develops test
cases, each modeled as a sequence of user events, and
executes them on the SUT via the GUI, either manually
or automatically. Events include clicking on buttons,
selecting menus and menu items, and interacting with
the functionality of the system provided in the GUI.
Defects are manifested as failures observed through the
GUI. Some of these failures are due to “GUI defects”
(e.g., the text-label is incorrect, the OK button is missing
a caption), or “business logic defects” (e.g., the
computation result values are incorrect). In order to
exhaustively test the GUI, it is necessary to exercise
every combination of sequences of the events present in
the GUI, which would require an exponential number of
tests, based on the test case length (i.e., the number of
GUI events) [28].

Due to its importance, GUI testing has received
considerable attention by researchers in the last decade.
Work on GUI testing has included using capture-replay
tools [15], operational profile- [8] or user profile-based
methods [5], structural testing [27],[28], and n-way event
testing [18].

Several researchers have developed new techniques
and have demonstrated the effectiveness of these
techniques on experimentation subjects, either using toy
examples, larger subjects developed in-house, or open-
source applications. For example, the work by the GUI
testing group at the University of Maryland has also
undergone an evolution in terms of experimentation
subjects. The earliest techniques were demonstrated on a
small word-processor consisting of 1 KLOC of C++
code [16],[17]; no “defect studies” were conducted.
Later, larger subjects (> 25 KLOC) were developed in-
house; a technique known as fault seeding was used to
purposely seed predetermined classes of faults in these
subjects. Although the researchers were careful to create
faults that represent mistakes actually made by
programmers, by carefully selecting portions of the
source code with a considerable amount of test coverage,
it remains unclear whether the seeded faults are relevant
to GUI testing – the fault/defect classifications were
borrowed from non-GUI work. Defining a GUI-fault
classification scheme remains an open area for research.

In order to further reduce threats to external validity,
the experimentation subjects were enhanced yet again;
larger (approx. 100 KLOC) Java applications were taken
from sourceforge.net, and adapted as subjects
[5],[18],[27],[28]. Because of the difficulties associated
with creating test oracles for unfamiliar applications, the
test oracles were restricted to looking for software
crashes only, i.e., a test case failed if it caused the
software to crash; otherwise it passed.

Although the previous work has been extremely
successful at moving forward the state-of-the-art in
model-based GUI testing, it has several weaknesses.
First, there is no classification for defects that are
observable via the GUI. It is important to understand real
GUI failures and create such a classification so that
better test oracles may be designed to detect such
failures; better test-case generation algorithms may be
designed to target the faults that result in these failures;
better models for fault seeding may be developed to

improve experimentation. Second, the GUI testing
techniques have not been applied to large Industry
applications – most have been applied to desktop
applications. It remains unclear whether the existing
algorithms will scale; whether the code written for the
“GUI part” contains serious defects or whether most
defects lie in the “non-GUI part”; whether Industry
programmers write GUI code differently from non-GUI
code; whether testers in Industry write test cases to
specifically test the GUI. Finally, although crashes have
provided a useful test oracle mechanism for academic
experimentation, it is unclear whether such serious
failures occur in well-used Industry applications; even if
they do, then what percentage of actual failures are
crashes?

This paper is our first attempt at making the leap
into developing the next generation of GUI testing
algorithms that are relevant and applicable to large
Industry applications. We first want to enhance our
experiments; in this paper, our goal is to better
understand fielded Industry applications. We attempt to
study the nature of GUI bugs in fielded Industry
programs and understand the nature of GUI/non-GUI
code. This is the first such study to look into GUI
Industry programs.

The bulk of the work reported in this paper has been
done at ABB, which has a long history of conducting
successful defects studies [22]. These studies have had
practical implications – they have been beneficial to
developers, testers and managers; they have helped to
associate defects with particular phases in the software
development process. Test teams have seen dramatic
increases in the number of defects they are now able to
detect in early phase of testing (within only a few weeks),
which has resulted in significant decreases in low-level
bug fixes, which were previously common in late-phase
test.

The study presented in this paper provides a thorough
analysis of the defects discovered in three applications at
ABB, focusing on those detected in or through the GUI
front-end. In particular, this study was conducted to
characterize GUI systems based on artifacts from testing
and development, including source code measures,
change metrics, and test suite characterization. A
modified version of Beizer’s taxonomy [1][7] is used to
classify the defects.

The contributions of this work include:
• An empirical study of three large, deployed,

industrial applications
• A profile of 1,215 defects detected in these

applications, classified using Beizer’s defect
taxonomy

• A characterization of GUI systems, involving a
study of test cases, faults found, source code
metrics, and source change metrics

This paper is organized as follows: Section 2
describes the research design for this study, including a
description of the systems used, the defect classification
scheme, and the method of defect classification.
Section 3 presents the results, and Section 4 presents
discussion and analysis. Section 5 presents related work
in the areas of GUI testing, defect classification schemes,
and other defect classification studies. Finally, Section 6
concludes with a discussion of future work.

2. Study Design

The goal of this study is to improve the overall
quality of GUI testing by characterizing GUI systems
using data collected from defects, test cases and source
code to assist testers and researchers in developing more
effective test strategies. Using the Goal Question Metric
(GQM) Paradigm [3], the goal for this research is
restated as follows:
Analyze the defects, test cases, and source metrics
for the purpose of understanding
with respect to GUI systems
from the point of view of the tester / researcher
in the context of industry-developed GUI software.

This research goal is broken into four research

questions to be answered by the study:
RQ1: How do defects in the GUI differ as compared

to overall defects in the SUT? What kinds of defects are
commonly found through the GUI?

RQ2: How many defects in GUI applications are
detected through crashes, as compared to observed
program deviations?

RQ3: How do GUI components compare to non-
GUI components with respect to source metrics? How do
source changes in GUI components compare to changes
in non-GUI components?

RQ4: What are the characteristics of the test suites?
How many of the tests are testing the GUI compared to
testing the application through the GUI?

In determining the study setting, several key factors

were decided, such as the defect taxonomy that would be
used, how construction metrics could be used to
characterize GUI systems, and how test results could be
leveraged for the GUI characterization. Each of these
factors is described in the following sections.

2.1. Choosing and Tailoring a Taxonomy

Beizer’s taxonomy [1] divides defects into eight main
categories, each describing a specific set of defects. Each
main category is further refined into three levels of
subcategories. A defect is then assigned a four digit

number with each digit representing the selected category
or subcategory. For example, Processing Bugs would be
32xx, where the 3 designates a structural defect and the 2
places this defect into the processing subcategory. The
last two numbers, shown as x here, refine the defect to
more levels of detail. Beizer’s taxonomy includes four
levels of categories for each defect.

The first category of the taxonomy is for Functional
defects, i.e., errors in the requirements, including defects
caused by incomplete, illogical, unverifiable, or incorrect
requirements. The second category, Functionality as
Implemented, deals with defects where the requirements
are known to be correct but the implementation of these
requirements was incorrect, incomplete, or otherwise
wrong. The next two categories, Structural Defects and
Data Defects, are used for low-level developer defects in
the code, such as problems with control flow predicates,
loop iteration and termination, initialization of variables,
incorrect types, and incorrect manipulation of data
structures. Another category of defects classifies
Implementation errors. These are errors dealing with
simple typographical errors, standards, or documentation.
The next category is for Integration defects, representing
errors in the internal and external interfaces in the
software. Finally, the last two categories of defects deal
with System and Test defects. System defects comprise
errors in the architecture, OS, compiler, and failure
recovery of the system under test. Test defects represent
errors found in the test descriptions, configurations, and
test programs used to validate the system.

 Beizer’s taxonomy was chosen for this study, based
primarily on the categories themselves and the fit within
the ABB environment. Currently, testing at ABB is not
based on a test strategy, and therefore ODC was not
chosen since it relies on a test strategy and process being
in place. Other object oriented taxonomies were not
chosen since the development of these applications is not
strictly object oriented, although the language has the
capability.

After selecting Beizer’s taxonomy, all of the
categories and subcategories were analyzed. A two level
approach was selected, with only the main category and
one subcategory used, due to the needs of ABB. Because
this taxonomy was tailored for initial work with
developers and testers within ABB, a few subcategories
were renamed, giving them names more similar to those
used inside ABB [22].

In addition to the existing categories in the
taxonomy, a few additional subcategories were added for
specific defect types due to their importance to ABB. The
first additional subcategory was named “GUI defects,”
and assigned to the Implementation main category as 53,
to categorize defects that exist either in the graphical
elements of the GUI or in the interaction between the
GUI and the underlying application API. These defects

were given their own defect type since code involved in
the GUI is treated differently than the underlying
application code in many companies, and require different
testing steps to validate.

Table 1. Beizer’s Taxonomy (Modified)

The next change to the taxonomy involved splitting
the documentation subcategory into two categories, one
for classifying in-software documentation errors and one
for user documentation errors. These were labeled 54 and
55, respectively. In-software documentation defects cover
missing or incorrect developer documents, such as design

1xxx Functional Bugs: Requirements and
Features
11xx Requirements Incorrect
12xx Logic
13xx Completeness
14xx Verifiability
15xx Presentation
16xx Requirements Changes

2xxx Functionality As Implemented
21xx Correctness
22xx Completeness – Features
23xx Completeness – Cases
24xx Domains
25xx User Messages and Diagnostics
26xx Exception Conditions Mishandled

3xxx Structural Defect
31xx Control Flow and Sequencing
32xx Processing

4xxx Data Defect
41xx Data Definition, Struc, Declaration
42xx Data Access and Handling

5xxx Implementation Defect
51xx Coding and Typrgraphical
52xx Standards Violations
53xx GUI Defects
54xx Software Documentation
55xx User Documentation

6xxx Integration Defect
61xx Internal Interfaces
62xx External Interfaces
63xx Configuration Interfaces

7xxx System and Software Architecture Defect
71xx OS
72xx Software Architecture
73xx Recovery and Accountability
74xx Performance
75xx Incorrect diagnostic
76xx Partitions and overlays
77xx Environment
78xx 3rd Party Software

8xxx Test Definition or Execution Bugs
81xx System Setup
82xx Test Design
83xx Test Execution
84xx Test Documentation
85xx Test Case Completeness

documents, i.e., software models like UML, or internal
code documentation, i.e., comments in the code. User
documentation deals purely with defects that exist in
documents that are released to the customer with the
software, such as product installation and user manuals.

The taxonomy was further modified to include a
subcategory to classify defects in system setup. This
category allows classification of defects dealing with
configuring the system correctly for its intended use.
Since all of ABB’s systems are highly configurable, these
defects are important enough to track separately. This
subcategory was added to the Test Definition or
Execution Bugs category, and labeled as 81.

Finally, a subcategory was added to categorize
defects in the configuration interfaces that are available in
the system. Since these systems have so many possible
executable configurations, each of which highly impact
how the system executes, the interfaces which allow this
configuration to occur require their own classification.
This new defect type was added to the taxonomy as 63.
The modified version of Beizer’s taxonomy is shown in
Table 1.

2.2. Gathering Construction Metrics

In order to compare the construction of GUI and non-
GUI components of the system, the source code files for
one system were split into two groups: files implementing
the interface of the system and files implementing the
remaining functionality of the system. To aid in
characterizing the systems, each of these groups was
analyzed separately. Files were determined to be part of
the GUI if they contained code that implemented a GUI
action, i.e., a button click, menu click, window open or
window hide event.

Source code metrics were collected using Source
Monitor1 for one SUT, and the results were divided into
the GUI and non-GUI groups, based on the label of the
corresponding file or class. Five source metrics were
selected to represent measures of size, complexity,
coupling, and developer documentation. These include
lines of code (LOC), LOC per method, percentage of
lines with comments, cyclomatic complexity (CC), and
call depth. In addition to source code metrics, source code
changes were derived by computing the difference for
each metric between versions of the system. Although
source code was only available for one SUT, it is the
largest in the study, containing over ~1.6 million lines of
code.

1 http://www.campwoodsw.com/sourcemonitor.html

2.3. Collecting Test Suite Data

The ABB product group defect repositories that were
mined for this study do not uniformly contain information
on whether or not the defect was detected through a crash.
Therefore, to gather information on whether the system
crashed to expose each defect, natural language queries
were run on the text fields of the repositories, such as
Title, Description, Evaluation, and Implementation Notes.
These queries were stored in Perl and shell scripts to
support repeatability. Words used in the query include
“access violation,” “ACCESS_VIOLATION,” “crash,”
“hang,” “freeze,” and “froze.” This natural language
query was reinforced by human data checking of the
defect reports. Determining how many of the reported
defects were detected through crashes will greatly assist
in the characterization of GUI systems.

Metrics pertaining to the test suites were also
collected to determine characteristics of industrial test
suites used for GUI systems. All three systems studied
use manually executed tests, and one product augments
this manual testing with a large suite of automated GUI
tests. The manual test suite was only available for one of
the SUTs and the automated tests were not available to
include in this study. From the manual test suite and its
results, metrics were gathered for the size of the test suite,
the number of test cases used for crash testing, the
method used to generate the test suite (functional, logical,
or state), and the number of tests with validation points.
Validation points, points between test steps where the
state of the application is checked, are often implied in
manual testing, as the human tester can visually check the
state of the system. For this study, validation points were
determined from the test case and the results of the test
case execution.

2.4. Applications

The three applications chosen for this study were
developed by ABB and are all Human Machine Interfaces
(HMI) for large industrial control systems. They allow the
user to monitor, configure, and control various aspects of
the running system. These systems are developed in C++
and run on the Windows operating system. The GUI
objects, such as forms, buttons, and menus, are developed
visually through Visual Studio templates. The glue code
connecting the GUI objects to the underlying application
is developed by hand and is the only portion of the GUI
studied here. These applications were selected because
they are large, deployed applications that have been
running in the field for over 10 years by hundreds of
customers around the world.

2.5. Collecting GUI System Data

Defect data is contained in several ABB data
repositories containing Software Problem Reports
(SPRs). Specifically, the defects of interest are those
found in late-phase testing and by customers after release.
Each SUT has a separate repository and one of the
systems in this study implemented their repository in a
completely different method than the other two systems.
However, all three repositories contain roughly the same
data items, and all of the data needed for this study was
available for all of the systems.

Each SPR indicates when the defect was found, what
version of the software was running, and the severity of
the defect. Defect severity is assigned on a 5-point ordinal
scale ranging from Low to Project Stopper. For this
study, defects in the top three points of the severity scale
were classified, since the management team has
determined that the cost of discovering lower severity
defects in the field can be tolerated.

Due to limited data query support in these
repositories, the SPRs were saved in text files and parsed
using a combination of manual effort (i.e., members of
the research team read the documents) and Perl scripts.
After gathering the data into a format that could be
reasoned about, the analysis was conducted. The SPR
data used for this study represents three years of
development and two major versions of the products.

2.6. Threats to Validity

The defect classification was performed by several
people over the course of one year. Due to this, it is
possible that the same type of defect was categorized
differently by different people. However, to mitigate this
risk, the team classifying the defects met each week and
selected random groups to reclassify together. If issues
were found, others with similar classifications were also
discussed.

Crash data was mined from the defect repositories
using natural language queries (see Section 2.3). These
queries pose a risk of missing data due to the imprecise
nature of natural language. To decrease the number of
missed crashes, the queries included the synonyms and
several misspellings of each search term. In addition, a set
of random groups of defects were selected and one of the
authors manually determined if the defect was a crash or
not. If an uncaught crash was detected, additional
keywords were added to the query and it was rerun. The
crash results were also checked for false positives, but
none were found.

The defects analyzed for this study are from large,
currently deployed production systems. While they are
applicable to a variety of domains, they are primarily
control and monitoring systems and therefore the results

may not be directly transferrable to systems in other
domains, such as desktop or productivity applications.

3. Results

From the original goal presented in Section 1, a set
of research questions was developed for this study. Each
research question has an associated set of metrics that
were collected to provide insight into the problem.
These metrics, and their values, are presented here, along
with the research question to which they apply.

3.1. Overall Defects

RQ1: How do defects in the GUI differ as compared
to overall defects in the SUT? What kinds of defects are
commonly found through the GUI?

Metrics: Defect classification by type, software

lifecycle phase of defect detection

Overall, 1,215 defects from three different GUI

systems were studied and classified into the taxonomy.
This list only includes defects with a severity of High,
Critical, and Project Stopper (on a 5-point scale) that
were found in late testing phases or by customers in the
field. These represent the defects that are most often
fixed and included in later releases. Table 2 shows the
number of the GUI and non-GUI defects found in the
systems. The combined classification data for these
defects is shown in Table 3, ordered by defect rank. The
most common defects were in data access and handling
(15.47%) and control flow and sequencing (12.67%).
Out of the 27 defect classes, the top 4 classes accounted
for approximately 50% of the defects. GUI defects
ranked fifth overall.

Table 2. GUI and Non-GUI Defects per SUT

 Number of Defects Found
System GUI Non-GUI
SUT1 7 154
SUT2 11 727
SUT3 90 226

RQ2: How many defects in the GUI applications

were detected through crashes, as compared to observed
program deviations?

Metrics: Number of defects detected by software

crash, number of defects detected by observed program
deviations

Due to our ability to use a primarily automated

method for determining crashes, rather than the manually

intensive method used for classifying defects in RQ1, we
analyzed a total of 3,869 defects, encompassing all five
severity types and all three systems under test.
Processing the natural language query described in
Section 2.3 produced the following crash results: SUT1
had 248 crashes out of 1,661 defect reports; SUT2 had
372 crashes out of 1,892 defect reports; and SUT3 had
37 crashes out of 316 defect reports. Therefore, crashes
accounted for 15%, 19% and 12%, respectively, of the
defects detected.

Table 3. Defect type across all systems

Defect
Class Fault Type % Defects

42 Data Access, Handling 15.47%
31 Control Flow, Sequencing 12.67%
21 Correctness 11.69%
32 Processing 10.37%
53 GUI 8.89%
81 System Setup 5.76%
23 Part. Implemented Features 4.77%
41 Data Def., Struc, Decl. 4.53%
72 Software Architecture 3.95%
22 Unimplemented Features 3.62%
26 Error Handl., Missing, Incorr. 3.37%
25 User Messages and Errors 2.63%
61 Internal Interfaces 2.63%
55 User Documentation 1.98%
75 Third Party Software 1.48%
71 OS and Compiler 1.23%
54 In-Software Documentation 0.82%
74 Performance 0.82%
62 External Interfaces 0.74%
24 Domains 0.66%
51 Coding and Typological 0.58%
83 Test Execution 0.33%
63 Configuration Interfaces 0.25%
73 Recovery 0.25%
82 Test Design 0.25%
16 Requirements Changes 0.16%
52 Standards Violation 0.08%

3.2. Construction

RQ3: How do GUI components compare to non-
GUI components with respect to source metrics? How do
source changes in GUI components compare to changes
in non-GUI components?

Metrics: File changes, average statements per
method, number of statements changed, number of lines
changed, percentage of commented lines, average
complexity, average block depth

Construction was investigated for one of the SUTs,

due to the availability of its code. After dividing the
source code into two groups, the GUI and non-GUI
portions of the system (Section 2.2), their source metrics
were calculated. The two groups of measures were
compared using a two sample student t-test assuming
unequal variances to compare the means of the two
groups. The hypothesized difference in means was zero.
This test was selected since the number of observations
to compare was ~15000. The results of the source
metrics analysis shows that there are statistically
significant differences (at α=0.05) between the GUI and
non-GUI components for all five of the metrics selected
(p < 0.05). Table 4 contains the computed metrics for the
system used in this part of the study.

Table 4. Source code metrics

Metric

GUI Non-GUI
Mean StdDev Mean StdDev

LOC 388.27 516.49 248.33 14542.59
LOC / Method 13.10 6.77 3.57 8.93
% Comments 11.54 11.92 20.40 17.09
Complexity 3.58 1.63 2.05 5.01
Call Tree Depth 1.47 0.45 0.82 0.72

Table 5 shows the code changes in the GUI and non-

GUI portions for five versions of one SUT. The table
shows that the mean of the number of statement changes
between versions for GUI and non-GUI are similar, but
the standard deviation is significantly larger for the non-
GUI parts of the system.

Table 5. Statement changes

Version

GUI Non-GUI
Mean StdDev Mean StdDev

V1 - V2 77.17 119.27 67.32 1016.74
V2 - V3 77.92 150.01 94.70 2251.50
V3 - V4 38.88 76.54 61.57 948.73
V4 - V5 15.36 73.33 16.28 170.40

Figure 1 shows the percentage of change to the GUI

and non-GUI portions of the SUT for the five versions
studied. On average, 8% of the changes were to GUI
portions and 92% were to non-GUI portions of the
system. The overall size of the system is ~1.6 MLOC, of
which the GUI portion of the system contains ~200
KLOC (14%) and the non-GUI portion contains ~1.4
MLOC (86%).

Figure 1. Changes to GUI and non-GUI code

3.3. Test Suite

RQ4: What are the characteristics of the test suites?
How many of the tests are testing the GUI compared to
testing the application through the GUI?

Metrics: Number of test cases with validation points,

number of test cases used for crash testing, size of test
suite, method used to generate test suite (functional,
logical, state)

For this study, the current product testing suite for

one of the SUTs was analyzed. This suite is executed
manually and takes approximately three man weeks to
complete. It contains 800 test cases in total. Of these,
42% contain specific verification points, 50% are only
looking for crashes, and the remaining 8% contain
general statements of what the correct behavior should be.
20% of the tests were designed to test the GUI itself and
the remaining 80% were designed to test the application
through the GUI. The main testing methods used in the
suite include creating tests for the general cases (80%),
error cases (8%), boundary values (10%), and state or
combinatorial testing (2%).

4. Discussion and Analysis

This section presents further analysis of the metrics
data presented in Section 3, providing some insight into
the data gathered to answer the research questions.

4.1. Overall defects

The defect data presented in Section 3.1 provides an
industry defect profile of three large deployed GUI
applications. Table 2 provides a distribution of defect
types that were found through the GUI during late phase
testing and after deployment. A large portion of the
defects found were categorized as data access and

handling, control flow and sequencing, correctness, and
processing, representing 50% of the total defects.

Defects in the GUI itself represented only ~6% of the
total defects found across the three systems. Looking at
the individual systems, Table 2 shows that less than 5%
of the defects for two systems were GUI defects, while
the third system had almost 30%. Due to the fact that all
of these defects were detected through the GUI, it is
surprising that more of the defects are not related to the
GUI. Many of the problem reports studied during data
collection described incorrect system behavior that was
observed through the GUI. However, the actual defect
often resided in the underlying system components rather
than the GUI itself. The assumption that the problem
would be rooted in the GUI was primarily due to the
limited observability into the system that the GUI
provides.

Upon examination of the defects detected in the
systems, most required observability of program
deviations and a knowledge of the expected behavior of
the systems. Conversely, few defects resulted in a crash
of the running systems. This also highlights the need for
good observability into the system when it is tested
through its GUI.

4.2. Construction

The results shown in Section 3.2 indicate that there is
a significant difference in the source code metrics when
the GUI and non-GUI components of the system are
compared. On average, GUI components are larger than
their non-GUI counterparts. The percentage of the code
that is commented in the GUI components of the system
is much lower than that of the non-GUI components. The
GUI code is nearly two times more complex than the non-
GUI code. Finally, the depth of the call tree is much
larger in the GUI portions of the code.

These four measures, taken together, may indicate
that developers do not create GUI components with the
same discipline that they use when creating the rest of the
system. GUI components also contain glue code which
links the GUI events to their respective API calls in the
underlying system. This extra step may cause some of the
extra size, complexity, and call depth.

Section 3.2 also investigates the difference in source
code changes between the GUI and non-GUI portions of
the system. The results show that the average number of
changes is similar between GUI and non-GUI
components. However, there are significantly more non-
GUI components, leading to a much larger overall
number of changes to the non-GUI portion of the system,
as shown in Figure 1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V1 - V2 V2 - V3 V3 - V4 V4 - V5

Non-GUI
GUI

4.3. Test Suites

The data presented in Section 3.3 shows that the
majority of the test cases (80%) are intended to test the
application through the GUI, while the remaining 20%
are intended to test the GUI itself. Characterizing the test
suite based on how often verification points are included
in test cases, 50% of the written tests only involve
verification that the system doesn’t crash when the test
case is executed. 42% of the tests contained specific
criteria for the tester to verify through the GUI that the
system performed as expected. Finally, upon examining
characteristics of the test suite, it was determined that
most of the test suite was executing test cases solely
based on the general case of the system (80%), seldom
applying additional test methodologies such as boundary
checking (10%), state-based testing (2%) and checking
error conditions (8%), methods seen as good testing
practices.

These findings could be due to employing the
strategy of testing the application through the GUI rather
than testing the business logic of the application
separately from the GUI. As testers are focused on the
GUI, and the observability into the system that it
provides, the ability to understand and verify the behavior
of the underlying system is compromised. This lack of
observability into the system often inhibits the testers
from using additional test design methodologies, such as
testing boundary conditions and checking error
conditions, since that level of observability is not
available.

5. Related Work

We have been unable to find any research papers
specifically characterizing industrial GUI applications
through studying their defect profiles and source code
metrics. There are, however, several other areas of
research related to the classification of GUI defects,
including research on GUI testing, defect classification
schemes, and case studies of defect classification.

5.1. GUI Testing

Research in GUI testing has focused on structural
and model-based methods [5],[27],[28]. Research related
to structural methods has focused on testing the GUI
based on interactions between events. Test cases were
generated based on knowledge of neighboring GUI events
that could create a legal event sequence [27],[28]. Initial
research involved determining how to glean the structure
of the GUI from an existing application [15], which then
allowed later work to test the system based on known
relationships between events. First, test cases based on

the structure of the GUI, called smoke tests, were
exhaustively generated of length n, with n from 1 to 5,
and they detected some faults [27]. This work also
showed that as test case length increased, so did fault
detection. Next, intervening events in the structure of the
GUI were hidden for test case generation, and test cases
were generated using n neighboring events, with n from 1
to 3. The hidden events were replaced after the test cases
were generated, resulting in longer test cases which
detected more faults than the smoke tests [28]. However,
the problem of the rapid increase in the number of test
cases generated as the length increases was still a
problem.

Model-based methods for GUI testing have been
based on operational models [7],[30], behavioral
models [9], and graph models [5],[26]. Operational
models provide insight into how the SUT will be used in
the field, and guide testers in developing test cases that
mimic actual usage and in determining criteria for test
completeness [30]. Graph models can be traversed in a
variety of ways to generate test cases, but cannot be
traversed exhaustively. Therefore, most test suites
generated from graph models build test cases by
traversing paths of a particular length or combining
several paths through the graph [26]. Finally, a study was
performed to synthesize several approaches and assist in
determining the most appropriate testing strategy based
on the type of faults detected [25].

Because previous research has shown that GUI
testing can reveal faults in the underlying code [18], the
research presented here is focused on studying artifacts
from GUI system development and testing to facilitate a
characterization of GUI systems leading to better testing
schemes.

5.2. Defect Classification Schemes

Several taxonomies exist for classifying software
defects, including those described in [10], [21] and [23].
One of the best known taxonomies is presented by Boris
Beizer [1]. Beizer’s taxonomy has eight categories of
defects: requirements, implemented functionality,
structural, data, implementation, integration, system and
software architecture, and setup and test. Each defect
category is further refined into three levels of
subcategories, allowing defect classification to be very
precise.

While these taxonomies are designed to be generally
applicable, other taxonomies are more specialized.
Binder [2] describes one that has been specifically
tailored for object-oriented programs, whereas
Vijayaraghavan and Kaner [29] focus on eCommerce
applications. Knuth describes a more course-grained
schema based on the errors found in the TEX typesetting
system [12]. Another taxonomy was developed for faults

in user requirements documents [23], and still others
discuss hierarchies of faults present in Boolean
specifications [11], [14].

The IEEE Standard Classification for Software
Anomalies [10] presents a process for handling and
resolving software defects as well as a taxonomy for
classifying them. This classifies both the source of the
defect (i.e. Specifications, Code, etc.) and the type of
defect (e.g. Logic Problem). However, it is not as detailed
as the taxonomies mentioned above.

In contrast to the taxonomies described above,
Orthogonal Defect Classification (ODC) [7] allows
practitioners to categorize defects according to their type
and tie each one to a phase in the software development
cycle where the defect could have been caught, generally
with less impact on the software product. ODC has eight
defect types: function, interface, checking, assignment,
timing/serialization, build/package/merge, documentation
and algorithm. These are associated with nine stages of
software development: design, low-level design, code,
high-level design inspection, low-level design inspection,
code inspection, unit test, functional test, and system test.
ODC uses fewer, more general defect categories than
other schemes and is primarily focused on process
improvement, rather than statistical defect modeling.

5.3. Defect Classification Studies

This study is not the first to classify defects. Three
case studies were presented by IBM in 2002, which
illustrated the success of characterizing defects in
improving software testing strategies for large, deployed
projects [6]. As part of the case studies, periodic
assessments became part of the software process, which
allowed the organizations to better see the cause of
defects, thereby allowing them to change their processes
early and prevent late-phase defects.

Other research has involved manual examination of
code post-development. Using code inspections and the
associated change history on software developed for an
undergraduate course in high performance computing,
another study relied on manual efforts to document
defects, classify the defects based on a six-category
classification scheme, and then develop hypotheses on
how each defect type could be avoided [19].

None of the previous studies have examined and
classified only defects found in or through the GUI, nor
have they classified defects on user-driven applications
with a GUI front-end. Therefore, by performing this
study in which the focus is GUI applications, more
knowledge can be attained for this particular class of
systems.

6. Conclusions and Future Work

This paper presented the results of a study into
characterizing GUI systems and their test suites to add to
the knowledge base for testers and researchers alike as
they determine better methods to test GUI systems.
Traditionally, GUI testing has relied on crash testing, due
to several factors, including difficulty in developing test
suites that adequately cover the breadth and depth of the
system as well as the need to observe the underlying
system’s behavior [27]. The results of this study further
show the correlation between the test suite design and the
defects detected by crashes. The study also reinforced the
idea that the underlying code is often tested through the
GUI due to the window it provides into the system’s
behavior. However, the results of this study also show
that more visibility is needed so that more of the defects
currently detected only by user observation can be
detected before the system is released to the field.

The results also suggest that developers treat GUI
components differently than other code, applying less
formal software engineering practices to the development
of GUI code. Stemming from this difference, GUI
components are often larger, contain more methods, and
contain less comments than the non-GUI components of
the systems. Despite the best efforts of researchers to
stress the importance of well-developed and well-tested
GUI components, it seems developers do not apply the
same rules to their development.

Possibly the most interesting finding in this study is
the high percentage of defects found through the GUI that
are actually defects in the underlying business logic of the
system. While this has been shown in open source
systems in past research [5],[18],[27],[28], it is interesting
that this finding holds in testing industry systems as well.
It is another indication that it is important to perform GUI
testing – both to test the system through the GUI and to
test the GUI itself.

This study is an initial characterization of GUI
systems, and several steps succeed it. First, this study
looked at three systems driven by system events. In
future work, another class of systems could be studied,
such as those driven by user interactions. After further
characterizing GUI systems based on the same criteria
presented here, it may then be possible to develop a
methodology for generating test strategies based on the
characterization. Additionally, the findings presented here
can be applied to the software development process for
each of the product groups to determine the impact of
GUI system characterization on the effectiveness of
testing for future releases.

Acknowledgements

Two graduate students from NC State University,
JeeHyun Hwang and Dright Ho, assisted with mining and
classifying the defects used for this study. ABB product
teams provided access to defects, source code, and test
suites.

This work was partially supported by the US
National Science Foundation under NSF grant CCF-
0447864 and the Office of Naval Research grant N00014-
05-1-0421.

References

[1] Beizer, B. Software Testing Techniques. Van Nostrand
Reinhold Co., 1990.
[2] Binder, R. 2000. Testing Object-Oriented Systems:
Models, Patterns, and Tools. Addison-Wesley, Reading, MA.
[3] Basili, V. R. 1992 Software Modeling and Measurement:
the Goal/Question/Metric Paradigm. Technical Report.
University of Maryland at College Park.
[4] Broeckers, A., Differding, C., Threin, G., and Bosch, R.
1996. The Role of Software Process Modeling in Planning
Industrial Measurement Programs. In Proc. of the 3rd Int’l
Symposium on Software Metrics: From Measurement To
Empirical Results (March 25 - 26, 1996). METRICS. IEEE
Computer Society, Washington, DC, 31.
[5] Brooks, P. A. and Memon, A. M. 2007. Automated GUI
Testing Guided By Usage Profiles. In Proc. of the Twenty-
Second IEEE/ACM Int’l Conference on Automated Software
Engineering (Atlanta, Georgia, USA, Nov 5-9, 2007), 333-342.
[6] Butcher, M. Munro, H. and Kratschmer, T. “Improving
Software Testing via ODC: Three Case Studies,” IBM Systems
Journal, 41(1):31-44, 2002.
[7] Chillarege, R. 1996. Orthogonal defect classification. In
Handbook of Software Reliability and System Reliability, M. R.
Lyu, Ed. McGraw-Hill, Hightstown, NJ, 359-400.
[8] Clarke, J. M. Automated test generation from a behavioral
model. In Proc. of 11th Int’l Software Quality Week, May
1998.
[9] Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J. M., Lott,
C. M., Patton, G. C., Horowitz, B. M.. Model-based testing in
practice. In Proc. of 21st Int’l Conf on Software Engineering,
1999, 285-294.
[10] IEEE. IEEE standard classification for software
anomalies. IEEE Std 1044-1993. 2 Jun 1994.
[11] Kaner, C., Falk, J. and Nguyen, H.Q. 1993. Testing
Computer Software (2nd Ed.). Van Nostrand Reinhold.
[12] Knuth, D. E. 1989. The errors of TEX. Software-Practice
and Experience. (19)7:607-685, 1989.
[13] Kuhn, D. R. 1999. Fault classes and error detection
capability of specification-based testing. ACM Trans. Software
Engineering Methodology (8)4:411-424, 1999.
[14] Lau, M. F. and Yu, Y. T. 2005. An extended fault class
hierarchy for specification-based testing. ACM Trans. Software
Engineering Methodology 14(3):247-276, 2005.

[15] Memon, A. M., Banerjee, I., and Nagarajan, A. GUI
Ripping: Reverse Engineering of Graphical User Interfaces for
Testing. In Proc of 10th Working Conf. on Reverse Eng, 2003,
260-269.
[16] Memon, A. M., Pollack, M. E., and Soffa, M. L. “Using a
goal-driven approach to generate test cases for GUIs” In ICSE
'99: Proceedings of the 21st Int’l Conf. on Software
engineering, 1999, pp. 257-266.
[17] Memon, A. M., Soffa M. L., and Pollack, M. E.
“Coverage criteria for GUI testing” In ESEC/FSE-9: Proc. of
the 8th European Software Engineering Conf. held jointly with
9th ACM SIGSOFT Int’l Symposium on Foundations of
Software Engineering, 2001, pp. 256-267.
[18] Memon, A. M. and Xie, Q. Studying the fault-detection
Effectiveness of GUI Test Cases for Rapidly Evolving Software.
IEEE Transactions on Software Engineering, 31(10):884–896,
2005.
[19] Myers, B.A. User interface software tools. ACM Trans.
on Comput.-Hum. Interact., 2(1):64–103, 1995.
[20] Nakamura, T., Hochstein, L., and Basili, V. R. 2006.
Identifying domain-specific defect classes using inspections
and change history. In Proc. of the 2006 Int’l Symposium on
Empirical Software Eng., Rio de Janeiro, Brazil, 346-355.
[21] Ostrand, T. J. and Weyuker, E. J. 1984. Collecting and
categorizing Software error data in an industrial environment.
Journal of Sys. Software. (4)4: 289-300, 1984.
[22] Robinson, B., Francis, P., Ekdahl, F. A Defect-Driven
Process for Software Quality Improvement. In Proc. of the 2nd
Int’l Symposium on Empirical Software Eng and Measurement,
Kaiserslautern, Germany, October 9-10, 2008, 333-335.
[23] Schneider, G. M., Martin, J., and Tsai, W. T. An
experimental study of fault detection in user requirements
documents. ACM Trans. on Software Engineering
Methodology (1)2:188-204, 1992.
[24] Schneidewind, N. F. and Hoffmann, H. An Experiment in
Software Error Data Collection and Analysis. IEEE Trans. on
Software Engineering (5,)3:276-286, 1979.
[25] Strecker, J. and Memon, A. Relationships between Test
Suites, Faults, and Fault Detection in GUI Testing. In Proc. of
2008 Int’l Conf on Software Testing, Verification, and
Validation, 12-21.
[26] Whittaker, J.A. and Thomason, M.G. A Markov chain
model for statistical Software testing. IEEE Transactions on
Software Engineering, 20(10):812–824, 1994.
[27] Xie, Q. and Memon, A. M. Designing and comparing
automated test oracles for GUI-based Software applications.
ACM Transactions on Software Engineering Methodology,
16(1):4, 2007.
[28] Yuan, X. and Memon, A. M. Using GUI run-time state as
feedback to generate test cases. In ICSE’07, Proc. of the 29th
Int’l Conf on Software Eng, May 23–25, 2007, 396-405.
[29] Vijayaraghavan, G. and Kaner, C. “Bugs In Your
Shopping Cart”. http://www.testingeducation.org/a/bsct.pdf
[30] Weyuker, E. J. 2003. Using operational distributions to
judge testing progress. In Proc. of the 2003 ACM Symposium
on Applied Computing (Melbourne, Florida, March 9-12,
2003), 1118-1122.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

