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Abstract—Although there has been much work on automated
GUI regression testing of software, full automation continues
to elude us. There are two significant impediments to full
automation: obtaining (1) test inputs and (2) test oracle. We now
push the envelope on full automation of GUI regression testing by
fully automatically generating test cases as well as the test oracle,
completely eliminating manual work. This allows us to study
issues of false positives/negatives in test failure; we provide ways
to minimize these. The results of our empirical studies suggest
that our approach of using workflow-based test cases, derived
from the software under test, may help empower the end user to
perform regression testing before applying software updates.

PROLOGUE

System administrator Bob receives a patch p for a heavily
used software package A. Bob has neither source code nor test
cases for p or A. Before “signing off” on p and installing it,
Bob needs to ensure that p indeed does what it claims to do
(e.g., fix a bug) without breaking existing functionality. Current
techniques—in the absence of source code—are extremely
slow, ad hoc, and incomplete, relying mostly on human testers
to manually craft and execute test cases that verify a limited
number of critical functions; after verification, certain parts of
the patched A may still break when used by end-users.

Speed is of the essence when deciding to install patches. An
unpatched system contains at least a known bug, which may
be encountered by end users. Bob must act quickly, however,
he is afraid that premature patching without adequate testing
may break the system, or worse, introduce new, more serious
bugs. Bob’s fears are not unfounded. The Internet abounds with
reports of applied patches creating new problems. For example,
on August 13, 2013 as part of Microsoft’s monthly Patch
Tuesday release, eight patches were released to address 23
bugs. Among numerous other problems, these patches caused
corruption of Microsoft Exchange index database; moreover
the Active Directory Federation Services stopped working.
Microsoft finally recalled the patches.

Fortunately for Bob, he uses testPatch to test p on A.
He quickly creates two clones of A, called A1 and A2,
sandboxes them individually, and applies p to A1 to obtain
p(A1). He then launches testPatch, which works as follows:
it (1) automatically reverse engineers p(A1) and A2, without
their source code, obtaining workflow models—called event-
flow graphs (EFG)—of their user interfaces, (2) automatically
generates test cases—each modeled as a sequence of user-

interface actions—that (3) automatically simultaneously exe-
cutes on p(A1) and A2, in lockstep fashion, comparing their
outputs after each step for differences. Bob checks whether
the differences (if any) are consistent with p’s documented
changes. If yes, then p is safe; else A has regressed due to p.
Because testPatch uses formal test adequacy criteria based on
the executable workflows of A, Bob has a certain degree of
confidence in his decision.

Example 1: For A = Outlook 2013, p = KB2817630, a
patch released in September 2013; applying p causes A (Fig-
ure (a) below) to lose its Navigation Pane resulting in a
malformed window (b). Microsoft released a new patch to
fix this problem. testPatch detects this fault because among
the test cases it generates is 〈Click-on-Ribbon-View, Click-
on-ShowNavigationPane〉 that mimics a user trying to view
the navigation pane. The reverse-engineered EFG, zoomed-
out part seen in (c), of this application shows the two events
Click-on-Ribbon-View and Click-on-ShowNavigationPane con-
nected by a may-follow relationship that captures the workflow
between them. It is this automatically-derived workflow that
testPatch uses to obtain test cases automatically.

(a) Outlook Unpatched (b) Outlook Patched
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(c) Partial Event-Flow Graph

Example 2: For A = Outlook 2007, p = KB2509470, a patch
released in April 2011; applying p causes the software to
report printer problems; to print or generate a print preview



from within Outlook, the user would get the error message
“There is a problem with the selected printer. You might need
to reinstall this printer. Try again, or use a different printer.”
The resolution is to remove the patch. testPatch detects this
fault because among the test cases it generates is 〈Click-on-
PulldownMenu-File, Click-on-MenuItem-Print〉 that mimics a
user printing a document.

testPatch uses a workflow model, called an EFG, of the
software. An EFG contains nodes that represent events (user
actions) and directed edges that represent the may-follow
relationship between events. An edge from nx to ny means
that event ey (represented by ny) can be executed immediately
after event ex (represented by nx); i.e., “ey may-follow ex.”
Automatically walking (via graph traversal) the EFG yields
a sequence of events that can be automatically executed
as a test case. Different walking algorithms yield different
types of test cases, satisfying various workflow-based test
adequacy criteria. testPatch’s default test-case generator tests
all possible workflows bounded by length. testPatch has a
fully automatic test oracle mode that will detect the above
two flaws. It also has several user-configurable options that
allow specification of probes/hooks to collect specific outputs
for analysis/comparison.

I. INTRODUCTION

When a software system is changed/updated/modified, it is
regression tested to ensure that its existing features have not
broken [1]. It is typical to expect system developers and soft-
ware engineers to perform regression testing in house [2]. For
extremely critical systems, one expects additional regression
testing be conducted on site once the system has been installed
in case some previously hidden bugs surface in the customer’s
configuration (hardware, settings, environment, workload) of
the software [3]. Such a two-stage process is less typical
in conventional deployments. System administrators and end
users are left to their own devices when an update or patch is
available, often finding that an update has broken the software.

Such software maintenance use-cases preclude the use
of fully automatic source-code based tools to regression
test it [4] because the source code is not available. The
alternative—manual regression testing—is dauntingly expen-
sive [2]. Consequently, in the absence of automated testing
tools, users/system-managers are afraid to make changes to
their systems, lest they cause unintended regressions [5]. The
absence of tools is due to a fundamental gap between how
existing tools operate (at the code level [6]) and how system
testers test software systems (at the user-interface level via
multiple workflows [7]). In this paper, we bridge this gap,
thereby enabling the development of a new generation of
regression testing tools that operate at the workflow level.
System testers and administrators, as well as end users will
be able to use these tools to automatically regression test the
software systems they manage and use.

Consider the architecture of modern software systems, typi-
cally designed to respond to sequences of events [8], e.g., mes-
sages (Android Intents1, API method calls), user actions via
the user interface, or input signals in an embedded system [9].
Such systems are typically composed of loosely-coupled pieces

1http://developer.android.com/guide/components/intents-filters.html

of code called event handlers (e.g., action listeners, callbacks,
or event listeners/handlers) and initialization/glue code [10].
When such software executes, initialization code sets up the
handlers, and the software waits for events to occur. Once
an event occurs, the corresponding event handler executes to
handle the event; when finished, the software goes back to
waiting for a new event; and so on. The order of execution of
event handlers is largely dictated by the order of input events
driven by the software’s workflows.

The above rather-simplified-for-brevity architecture creates
significant challenges for testing. It creates two distinct levels
of abstraction for software: (1) workflow level that system
testers see and (2) code level that developers see. A testing tool
that works at the workflow level must have access to some type
of blueprint of all possible workflows allowed/disallowed by
the software’s specifications [10]. It can use this blueprint to
generate workflows (sequences of events) to test the software.
Unfortunately, such blueprints are hardly ever available. On
the other hand, a testing tool that works at the code level will
attempt to maximize some underlying code-based criterion,
such as statement coverage, i.e., cover each code statement at
least once [6]. The code level is not suitable for modern event-
driven systems due to several reasons. First, high statement
coverage can be obtained by creating a contrived test suite that
executes each event only once – this suite will execute each
event handler once, covering many program statements. Our
past work has shown that faults are not detected when each
event is executed in isolation; rather, faults are detected when
different permutations of events are executed together. Second,
many event handlers reside in pre-compiled assemblies—often
from different programming languages—for which source code
is not available; code based techniques cannot be applied.
Finally, many stakeholders—for example, system managers
who apply patches to software—do not have access to source
code; they cannot employ code-based testing tools [4].

There is a severe need for a new generation of regres-
sion testing tools that operate without source code, do not
require complex manually created software specifications, and
are readily deployable by various software stakeholders, e.g.,
system administrators [11]. Until such tools are available, the
current state of the practice will persist: system administrators
will remain too afraid to update/patch their systems; regression
testing will remain ad hoc, incomplete, and largely manual;
regression bugs will remain undetected until they surface in
the field; “penetrate-and-patch”-like approaches (test system
from the outside, identify a flaw in it, fix the flaw, and then
go back to looking) will remain the prevalent practice. This
paper takes the first step to change this state of the practice.

We describe testPatch, a framework for fully automatic
regression testing. testPatch does not require source code or
any software specifications. It can reverse engineer—fully
automatically—formal workflow-based models of the patched
and unpatched software, generate test plans from the workflow
models, satisfying workflow-based criteria, and execute them
automatically. Mismatches indicate regression bugs or intended
changes in functionality. We have leveraged much of our pre-
vious work in developing testPatch. The workflow models are
event-flow graphs (EFGs) that model all allowed workflows.
We obtain these automatically using GUI Ripping [12] and
generate test plans using graph-walking algorithms based on



workflow criteria. The test oracles are based on comparion of
states of GUI widgets. The implementation is done with our
tool called GUITAR [13].

Even though we have been able to reuse much of our
previous infrastructure components, we have never before
performed regression testing using real multiple versions of
fielded software. Given two versions, S0 and S1, of a software,
we need to first identify a subset of workflows—from an
infinite set—that can reveal regression bugs. We need to
execute these on S0 and S1 to identify differences. Some of
these may not execute because the structure of the GUI may
have changed from S0 to S1. We need to capture the right
elements of the states of S0 and S1 to compare, so as to identify
errors. Each of these requirements created several research
challenges, for which we had to develop novel solutions. First,
it was difficult to determine which workflows to test in order
to reveal regression bugs. In principle, there are an infinite
number of workflows that can be executed on a modern GUI-
based software; the number grows exponentially with length.
Second, it was difficult to map events from one version to the
next. Typically, GUI elements do not have unique identifiers.
In the face of structural changes to the GUI, it is challenging to
determine a correspondence between widgets across versions.
For example, if a window has 3 text boxes in version v0, and 2
new text boxes were added, and one was deleted, in version v1,
then it is impossible to automatically determine the mapping
between text boxes from v0 to v1. This creates problems for
a text case executor that, while executing a test case, wants
to input text in the third text box of v0. Correspondingly,
it wants to enter the same text in v1 (to determine if its
behavior changed) but cannot confidently determine which text
box to target in v1. Third, it was difficult to determine what
to compare between versions to reveal bugs. One extreme is
to compare everything in the versions’ states. Besides being
impractical, this approach leads to false positives as many
elements in the state is expected to change. Comparing smaller
parts of the state may miss faults.

In addressing these challenges, we report 3 novel contribu-
tions: (1) Demonstration that certain workflow-based criteria
are adequate with respect to an identified set of bugs. (2)
Signature-based mapping between versions. (3) Demonstration
that certain test oracles provide the best mix of fault detection,
and false positives and negatives.

II. BACKGROUND

We now describe our previous work on automatic GUI test-
ing and test oracles for GUI testing. We start with a description
of GUITAR, our automatic GUI Testing frAmewoRk. GUITAR
automatically builds a formal model called an Event-Flow
Graph (EFG) of the application under test (AUT), generates
test cases based on a event coverage criteria, and replays them.

GUITAR adopts a process called GUI Ripping [14] to
traverse the available events on the GUI in a depth-first
manner. During this process, the GUI ripper extracts GUI
structure information, including the hierarchical structure of
GUI windows and widgets, as well as their properties (e.g.,
title, type, position, whether a widget opens a modal/modeless2

2Standard GUI terminology; see detailed explanations at
msdn.microsoft.com/library/en-us/vbcon/html/vbtskdisplayingmodelessform.asp
and documents.wolfram.com/v4/AddOns/JLink/1.2.7.3.html.

window or a menu). Restricted-focus events open modal win-
dows, unrestricted-focus events open modeless windows, and
termination events close modal windows.

The GUI Ripper then converts the GUI structure to an
EFG, which is a directed graph representing all possible event
interactions in the GUI. More formally, an EFG for a GUI G
is a 4-tuple <V, E, B, I> where: (1) V is a set of vertices
representing all the events in G. Each v ∈ V represents an
event in G; (2) E ⊆ V × V is a set of directed edges between
vertices. We say that event ei may-follow ej iff ej may be
performed immediately after ei. An edge (vx, vy) ∈ E iff the
event represented by vy may-follow the event represented by
vx; (3) B ⊆ V is a set of vertices representing those events of
G that are available to the user when the GUI is first invoked;
and (4) I ⊆ V is the set of restricted-focus events of the GUI.

That is, in an EFG, each vertex represents an event on
the GUI (e.g., click-on-File, click-on-Open), and an edge
represents a may-follow relationship between two events. Note
that only events inside the modal window invoked will follow
a restricted-focus event. All events in the new invoked win-
dow as well as the original invoking window will follow an
unrestricted-focus event. All events in the window from which
the current modal window is invoked will follow a termination
event. In the example shown in Figure 1, a may-follow edge
from event Copy to another event Paste means the latter event
may be performed immediately after the former event.

Cut Copy

PrintPaste

Fig. 1. Example GUI and its EFG

Each test case generated is a sequence of events from
the EFG. More formally, a test case is <e1, e2, e3, . . . , en>
where (ei, ei+1) ∈ E, 1 ≤ i ≤ n − 1. Notice that each test
case will need to start from an event available at the initial
state of the AUT, thus reaching events may be prepended to
the test case to make it executable. Event coverage criteria
are used to generate GUI test cases. For example, a test
suite, TE , can be generated to cover all events in the EFG.
Consider a test suite T = {t1 =<Copy>, t2 =<Cut, Paste>,
t3 =<Cut, Print>} that covers all events in the GUI. A test
suite, TD, can also be generated in a similar manner to cover
all edges in the EFG. GUITAR executes the test cases one by
one from the same initial state of the application, capturing
the GUI’s state after each event. This state is used to create
the test oracle, a mechanism used to determine whether a test
case passed or failed.

We use the GUI state for the test oracle because any part
of the GUI state through the sequence of the test execution
may be potentially bug revealing. Xie and Memon present
automatic test oracles on applications with manually seeded
bugs [15]. More specifically, they conduct a thorough study on
two important research questions: (1) what to assert, and (2)
how frequently to check an assertion. To answer their research



questions, Xie and Memon [15] propose six different instances
of test oracles, namely, L1, L2, ..., and L6.

L1 Compare the properties of the GUI widgets associated
with the event after execution of each event.

L2 Compare the properties of all GUI widgets in the
current active window after execution of each event.

L3 Compare the properties of all GUI widgets of all
windows after execution of each event.

L4-6 After the last event of the test case, compare the
properties of widgets associated with the event, wid-
gets in current active window, or in all windows,
respectively.

Their study shows that a comparing all properties at the end
of test case execution provides the most effective test oracle.

III. OUR APPROACH

We now discuss the design of testPatch. There are several
key components in testPatch, including automatic test gen-
eration, matching, execution and oracle. We utilize our test
harness, GUITAR, for test generation; we discuss matching,
execution and oracle.

A. Automatic Matching

We intend to execute test cases developed for version VX−1
on version VX . Some differences between the versions may
make test cases from VX−1 unexecutable on VX . For example,
we have modified the GUI of Figure 1 to obtain the one shown
in Figure 2. Of the 3 test cases we showed earlier, none of t1,
t2, or t3 are executable. Each test case requires the reaching
event Edit to be performed first. Moreover, instead of being
instances of the JButton class, all 3 widgets Cut, Copy, and
Paste are now instances of JMenuItem. A test harness that
considers the widget’s class to locate it will fail.

We use two mechanisms to promote reusability of test cases
between the versions. First, we ignore all structural reaching
events, focusing instead on system interaction events. Second,
we use a signature to identify each event. We now discuss
these mechanisms.

Cut Copy

EditPaste

Fig. 2. A Regression Testing Example.

We classify GUI events into groups of reaching events
that perform only structural GUI operations such as opening
menus, and opening and closing windows. The rest are system
interactive events which invoke underlying business logic. We
map only system interactive events from VX−1 to VX to reduce
the risk of test case infeasibility. We can identify these event
types during GUI ripping.

Our signature mechanism is based on using the state (set
of property-value pairs) of the widget for its identification. A

naive approach to checking whether a widget wa in Vx−1 is
the same as widget wb in Vx is by using the expression:

match(wa, wb)← (va1 == vb1)& . . .&(vaN == vbN ) (1)

where va1, va2, . . ., vaN are property values representing
widget wa’s state, and vb1, vb2, . . ., vbN are property values
representing widget wb’s state.

However, we cannot blindly use all the elements of the
state because it will contain some property values that change
during the GUI’s execution, and play little role in identifying
that widget. For example, the value of the text property for
a JTextField object will change when the text changes; the
enabled property changes when the object is enabled/disabled.
Other properties are more likely to persist across executions,
e.g., the accessibility label (content description). Hence, cer-
tain properties are better candidates for matching than others.
This observation leads to the following matching definition we
used in this research.

match(wa, wb)← φ1(va1 == vb1)+ . . .+φN (vaN == vbN )
(2)

i.e., instead of a boolean match, we associate a weight φ
with each property. Properties that are more likely to mislead
us are given low weight (in some cases 0). Other properties
that are relatively more stable are given higher weight. Then
for a specific widget from VX−1, we calculate the weighted
distances of all widgets from VX to figure out the “closest”
widget as its corresponding widget.

The only remaining issue is how we obtain the weight
values φ. For this we leverage our prior work [16], wherein
we designed a large empirical study to evaluate for GUI
applications what extent of variation is seen in the widget
property values. We developed an entropy based metric to
quantify the stability of test runs. In this paper, we reuse the
entropy-based metric but on property values. A higher entropy
value indicates greater variation, and hence, lower stability.
Such widget properties are given lower weight in our formula.

In our empirical study of this paper, we present Tables VI
with weights of different properties. For example, the title of a
widget is very unlikely to change across versions. In contrast
the index property may change when new widgets are added
(e.g., the index of a menu item will change when another menu
item is inserted into the same menu list before it). Thus we
will give a higher weight to the title property than index.

B. Automatic Test Execution

Having the matching between widgets, we can then trans-
form each test case of VX−1 to execute on VX . For the
purpose of automatic GUI testing, we extended our test harness
so it can execute test cases on the two program versions
(unpatched and patched) in lock-step manner and collect output
for comparison. Specifically, our test harness will record all
available runtime GUI structure information of the application
(i.e., all properties of all GUI widgets of all windows after the
execution of each event) to have a strong automatic test oracle
based on GUI states.



C. Automatic Test Oracle

Our previous study on automatic GUI oracles used only one
version of the AUT; the “modified” version was simulated by
seeding an artificial fault [15]. Mismatches detected between
these versions’ execution were due to the seeded fault. How-
ever, in a real regression scenario, such as ours in this paper,
the modified version contains multiple changes. Mismatches
during test execution may be due to one of two reasons: (1)
bugs and (2) changes in functionality. Unlike our previous
work, all mismatches cannot be simply regarded as faults.

We will determine what information to collect for each
application, balancing three goals: (1) important differences
are not missed, (2) spurious differences (false positives) are
minimized, and (3) the overall approach remains practical.

First of all, we need to decide when to capture GUI states.
Based on our observations on where the bug-revealing widgets
lie, we provide following three options:

ALW Properties associated with the Window that is Active
at the Last step (ALW) of the test execution;

LW Properties associated with all the Window at the Last
step (LW) of the test execution;

AW Properties associated with All Windows at all steps
(AW) of the test execution.

The ALW oracle is the most concise one and thus generates the
fewest false positives but it may also miss more bugs compared
to the latter two oracles which check a bigger set of GUI
properties. The AW oracle will check significantly more GUI
states especially when the length of test cases and the number
of windows opened in the test execution is big. Thus it may
have limited practical value because it may yield too many
false positives.

Secondly, as mentioned in test matching, some common
patterns of GUI properties are more likely to change across
versions and observed to be potential reasons for false posi-
tives [16]. Thus we provide one more degree of freedom in
our automatic oracle with two options:

SP A Subset of Properties after filtering out common
patterns of spurious properties.

AP All Properties of GUI widgets that can be extracted
by our test harness.

Here we provide some examples of spurious properties.
In GUI applications, the position (x-coordinate, y-coordinates)
and size (height, width) of a window may change often based
on the context when the window in redrawn. Also, the relative
position of GUI widgets inside a window often changes when
the window is resized. When we compare between versions
when the application evolves, it is even more likely that there
are minor or big mismatches in the positions and sizes of
windows and widgets. Thus GUI properties related with the
position or size are included in our list of ignored properties.
In our empirical study, we show that it may cause one bug
to be missed which is related with size of GUI widget. But
this happens very rarely and helps avoid a great number of
false positives. There are some other common spurious patterns
of properties, for example, by using a regular expression, we
ignore the string which is often used to show the current time
at the status bar at the bottom of some GUI applications.

Finally, when our GUI oracles in two independent dimen-
sions are combined, we obtain 6 different oracles in total,
namely, SP-ALW, SP-LW, SP-AW, AP-ALW, AP-LW and AP-
AW. We will evaluate all of them in our empirical study.

IV. EXPERIMENT

We pose the following research questions regarding our
approach of testPatch:

RQ1: How effective are workflow-based test plans, derived
from event-flow graphs, together with GUI-state-based refer-
ence testing oracles in detecting regression bugs in fielded
systems?

RQ2: What settings of the GUI-state-based reference testing
oracle are most effective?

RQ3: Do workflow-based test plans, derived from event-flow
graphs, detect more bugs than fuzzing in the same number of
test steps?

A. Metrics

RQ1 addresses effectiveness of our overall approach. We
measure effectiveness in terms of reduction of the window of
exposure (γ) of a bug. We define γ as the time for which a
regression bug has existed in the software. We first determine
two versions of the software (1) VX , the version in which the
bug first appeared and (2) VX+1, the version in which the
bug was fixed. We then compute γ as the time that elapsed
between VX and VX+1. As part of addressing this question,
we also discuss real regression bugs that we detected in fielded
systems.

RQ2 addresses the effectiveness of our test oracles. Because
the test oracle determines whether a test case has passed or
failed, the effectiveness of a test oracle has to do with coming
up with the right determination, while minimizing manual
work. If a test oracle fails a test case in the absence of a bug,
then we have a false positive; if it passes a test case when it
should in fact have failed, we have a false negative. Hence we
compare the effectiveness of the six test oracles in terms of
bugs, and false positives and negatives.

In practical terms, false positives increase the number of
(incorrectly) failed test cases that are output from a tool,
requiring manual work to weed them out. A developer/tester
will need to go through the list of reported failed test cases,
determine why each failed by examining the mismatches
reported by the test oracle. The nature of our test oracle—
one that compares widget properties—leads to mismatches in
terms of mismatched widget properties. Hence, to quantify
false positives, we count the number of mismatched widgets
that are not related to the bug in question. More specifically,
we define False Positives (FPs) for a given bug and test oracle
as follows:

Definition 1 (FP(oracle, bug)): The false positive measure
for a given oracle and bug is the total number of mismatched
widgets minus the number of widgets that should have mis-
matched due to the bug.

Hence, for a given oracle, the average false positives rate
per bug is computed as follows:



TABLE I. BUGS IN JEDIT, JMOL AND JABREF

AUT Bug Id Bug Description VX−1 VX VX+1

jEdit

1324 CheckboxMissing 4.1-pre4 4.1-pre5 4.1-pre6
3538 BeanShellError 4.3.3 4.4-pre1 4.4.1
3645 DropdownlistUnenabled 4.4.2 4.5.1 5.0-pre1
3899 DropdownlistEmpty 4.3.3 4.4-pre1 5.0-pre1

Jmol

T1 LogoInNewWindow 11.6.27 11.7.1 12.0.38
T2 NewWindow 13.1.3 13.1.4 13.1.14
T3 LogoInAboutWindow 12.2.34 13.0.1 14.2.11
T4 MainWindowTitle 12.2.34 13.0.1 NA

JabRef

65 HelpContent 1.1 1.2 1.3.1
160 SearchColumn 1.5 1.6-beta 1.7-beta2

1130 CloseDatabase 1.7.1 1.8-beta 2.0-beta
1132 SaveDatabase 1.7.1 1.8-beta 2.0-beta
1133 Search 1.7.1 1.8-beta 2.0-beta
1134 Export 1.7.1 1.8-beta 2.0-beta
1135 EditEntry 1.7.1 1.8-beta 2.0-beta
1136 SearchPanel 1.7.1 1.8-beta 2.0-beta

Definition 2: FP(oracle) =

∑
bugs FP (oracle,bug)

#bugs

The metric for false negatives is simpler as a real fault is
missed, the tester does not expend effort. We can simply count
the number of faults missed when using a certain oracle.

We consider false positives as the most relevant measure
because the entire list of mismatches will need to be manually
examined by a tester/developer. Too many false mismatches
(false positives) will degrade the usability of our approach.

For RQ3, we measure the number of bugs detected by a
fuzzing tool called the Monkey.

B. Subjects of Study & Bugs

Three Java applications under test (AUT) are used in our
empirical study: jEdit,3 Jmol,4 and JabRef.5 jEdit is a text
editor for programmers. Jmol is a molecular viewer for three-
dimensional chemical structures. And JabRef is a bibliography
reference manager. We select 16 reported regression bugs from
these applications’ bug reporting sites (usually SourceForge6).
Our choice of bugs was driven only by their manifestation as
failures on the GUI. Table I shows the bugs and the versions in
which they first appeared and fixed. For each bug, we denote
the version in which the bug first appeared as VX , the past
version in which the broken feature still worked as VX−1 and
the future version in which the bug was first fixed as VX+1.
We also use a concise, descriptive keyword to describe each
bug. As the keywords indicate, these bugs are all reflected on
the GUI.

C. Addressing RQ1

We start by visually showing, in Figure 3, the window
of exposure of each of our bugs under consideration. The x-
axis shows clock time, in years, increasing from left to right,
and the corresponding version numbers. The y-axis shows the
individual bugs. Each bug is represented by a horizontal bar
that starts at the time the bug was first introduced (not detected)
into the software and ends when the bug was removed. The
length of the bar indicates the window of exposure. We see
that our selected bugs’ window of exposure varies across

3http://sourceforge.net/p/jedit/
4http://sourceforge.net/p/jmol/
5http://sourceforge.net/projects/jabref/
6http://sourceforge.net/

Fig. 3. Window of Exposure for Bugs in Our Study

TABLE II. TEST CASE GENERATION BASED ON COVERAGE CRITERIA

Application Windows |TE | |events(TE)| |TD| |events(TD)|
JE4.1Pre4 22 426 556 11650 26410

JE4.3.3 34 780 1008 22749 51433
JE4.4.2 18 663 780 19439 42415

JM11.6.27 17 278 488 4536 12776
JM12.2.34 22 354 753 7202 22131
JM13.1.3 25 445 1154 10636 40581

JR1.1 12 213 324 3601 8878
JR1.5 20 537 989 12697 36591

JR1.7.1 23 631 1063 27923 79237

applications and bugs. Most bugs in JabRef and jEdit persisted
for months whereas most from Jmol persisted across years. For
example, Bugs T3 and T4 of Jmol, and Bug 113x of JabRef
persisted across major versions. Other bugs only persisted
across multiple minor versions. Bug T4 of Jmol remained
unresolved by the writing of this paper, and we denote its
VX+1 as NA.

As discussed in Section III, our algorithm underlying test-
Patch has two tunable parameters: (1) the nature of workflow-
based test plans in terms of how they cover the event-flow
graphs and (2) the test oracle. For the former, we generated
our test plans to satisfy event coverage and edge coverage
criteria. These test plans are used to generate test suites that
we call TE and TD, for event and edge coverage, respectively.



TABLE III. JEDIT BUGS

Bug Id |TC| Steps TC Length Oracle
1324 303 1. Click on the tool bar icon “Buffer options” 1 A checkbox and a text label “Indent line when Enter key

is pressed” are shown in VX−1 but missed in VX .
3538 30 1. Click on menu “View”; 2 A dialog “BeanShell Error” is shown in VX .

2. Select the menu item “Global Scope” under “Buffer Sets”.
3645 41 1. Click on tool bar icon ”Global options”; 4 The “Enabled” property of the JComboBox “Choose a Widget”

2. Click on menu tree item ”Status Bar”; is True in VX−1 but false in VX .
3. Click on tab “Widgets”;
4. Click on button ”+”.

3899 41 1. Click on tool bar icon ”Global options”; 4 The JComboBox “Choose a Widget” is empty in VX ,
2. Click on menu tree item ”Status Bar”; whereas an element, a BasicComboBoxRenderer titled “lineSep”,
3. Click on tab “Widgets”; is shown in VX−1.
4. Click on button ”+”.

TABLE IV. JMOL BUGS

Bug Id |TC| Steps TC Length Oracle
T1 19 1. Click on menu “Help”; 2 The logo of Jmol is shown in VX−1 but not shown in VX

2. Click on menu item “What’s new”. in dialog “What’s new”.
T2 19 1. Click on toolbar icon “new” to create a new file. 1 A new file is created and shown in a new window in VX−1,

but nothing is shown in VX .
T3 23 1. Click on menu “Help”; 2 The logo of Jmol is shown in VX−1 but not shown in VX

2. Click on menu item “About Jmol”. in dialog “About Jmol”.
T4 20 1. Click on any widget in the main window. 1 The main window title is “Jmol” in VX−1,

but is some random string in VX .

TABLE V. JABREF BUGS

Bug Id |TC| Steps TC Length Oracle
65 369 1. Click on menu “Options”; 3 The widget “JabRef Help” contains help content

2. Click on menu item “Customize entry types”; in VX−1 whereas is empty in VX .
3.Click on the help icon in the new window.

160 24 1. Click on toolbar icon “new” to create a new database. 1 The search column is not wide enough nor expandable in VX .
1130 490 1. Click on toolbar icon “new” to create a new database. 1 The “Enabled” property of the menu item “Close database”

has a value true in VX−1 but a value false in VX .
1132 490 1. Click on toolbar icon “new” to create a new database. 1 The “Enabled” property of the menu item “Save database”

has a value true in VX−1 but a value false in VX .
1133 490 1. Click on toolbar icon “new” to create a new database. 1 The “Enabled” property of the menu item “Search”

has a value true in VX−1 but a value false in VX .
1134 490 1. Click on toolbar icon “new” to create a new database. 1 The “Enabled” property of the menu item “Export”

has a value true in VX−1 but a value false in VX .
1135 490 1. Click on toolbar icon “new” to create a new database. 1 The “Enabled” property of the menu item “Edit Entry”

has a value true in VX−1 but a value false in VX .
1136 490 1. Click on toolbar icon “new” to create a new database. 1 The search panel on the left side of the main window

is shown in VX−1 but missing in VX .

Table II shows the fundamental characteristics of these suites,
including their sizes (|TE | and |TD|) and the number of events
(steps) they execute (|events(TE)| and |events(TD)|). For the
test oracle, we used “Subset of properties of all widgets in all
windows extant in the GUI after execution of the last event in
the test case” (SP-LW). We excluded certain properties that we
know a priori will vary between runs: ID (a dynamic hash code
generated from a set of properties), x-coordinate, y-coordinate,
width and height.

Having configured our algorithms, for each bug, we took
its respective pair of versions (VX−1, VX ) generated test plans
to satisfy the coverage criteria, and executed the resulting test
suites on the pair in lockstep manner. During the execution
of each test case, testPatch captured the GUI states, including
properties of all widgets in all the windows after each step of
the test case. Then, as determined by our test oracle, a subset
of this captured state was used to determine whether a test
case passed or failed. Because of the nature of our reference
testing oracle, a mismatch in the state is a failure of the test
case; otherwise it passes.

The second column in Tables III through V shows the
total number of test cases that detected the respective bug.
We see that 3 bugs were detected by hundreds of test cases;
the remaining were detected by numbers much beyond our

expectation given that these bugs have been in the systems
for months to years. For each bug, we also show a sample
test case that automatically revealed the bug as well as the
cause of this revelation, i.e., the properties that mismatched,
and hence triggered the test oracle to report a failure. The
columns “Steps” and “TC length” show the steps and length
of the test cases. The “Oracle” column shows the mismatch.

As can be seen, all the 16 bugs are in fact detectable by
using GUI state. In our case, we missed Bug T1 of Jmol and
Bug 160 of JabRef. This is because T1 requires us to compare
logo images, a capability that we currently do not have in
testPatch. Bug 160 requires that we examine a property that
allows us to determine whether a column is expandable or
not; we currently do not know how to do this. Hence, we
missed these bugs because of our current inability to examine
certain aspects of the GUI state. We consider this weakness
a limitation of our current implementation, not of the overall
approach.

This study showed us that with testPatch we can actually
reveal almost all of our selected bugs at the very version when
the bugs are first introduced, thereby making the window of
exposure 0. This answers RQ1.
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Fig. 4. False Positives of Bug Revealing Test Cases of 3 Applications Using Different Oracles

TABLE VI. SELECTED PROPERTIES OF LAST ACTIVE WINDOW – DIFFERENCES AND REASONS OF FPS

jEdit
Bug Id Total Bug Related isSelected Class Icon Enabled Foreground

1324 3 2 1
3538 22 20 1 1
3645 11 4 2 1 1 2 1
3899 2 2

JMol
Bug Id Total Bug Related isSelected Class Icon Foreground Text Index Background Font Other

T1 3 0 2 1
T2 12 1 1 1 1 2 5 1
T3 2 1 1
T4 29 4 17 1 2 2

JabRef
Bug Id Total Bug Related isSelected Class Icon Text Index Background Font Color Accelerator Other

65 34 0/3∗ 2 31 1
160 57 0/0† 2 6 2 18 1 3

1130 105 3‡ 2 1 1 19 1
1132 105 1‡ 2 1 1 19 1
1133 105 3‡ 2 1 1 19 1
1134 105 3‡ 2 1 1 19 1
1135 105 3‡ 2 1 1 19 1
1136 105 2‡ 2 1 1 19 1

∗diff in last step but not active window of last step
† the bug is related to the minor diff of the width of a column
‡ there are totally 80 differences related to the bugs, but for most of the reported bugs,

only a few differences are related with them.

D. Addressing RQ2

We start by comparing the FPs for the six oracles. The
results are shown in Figure 4. We see that oracle SP-ALW
has the lowest number of false positives and oracle AP-AW
has the largest number. In fact, for jEdit and Jmol, SP-AWL
has very few false positives. We note that these oracles did
successfully detect bugs.

To further understand the differences that compose the FPs,
we study the GUI properties that contribute to FPs for each
bug on each application when applying oracle SP-ALW. The
results, shown in Table VI, show that varying sets of GUI
properties contribute to FPs in different applications. Columns
“Total” and “Bug Related” show the number of all/bug related
mismatches. For jEdit, the bug related mismatches make up
the majority of all mismatches. The bug 113x is an exception,
because the test case is able to report 80 mismatches that
are bug related, but for each single bug, there are only a
small number of related mismatches. The following columns

show the GUI properties that contribute to the non-bug related
mismatches. Among them, a few properties, such as Index,
Class, Font and Background contribute the most.

TABLE VII. FALSE NEGATIVES & TEST ORACLES

Application Bug ID SP AP
ALW LW AW ALW LW AW

Jmol T1 1 1 1 1 1 1
JabRef 65 3 0 0 0 0 0
JabRef 160 1 1 1 1 1 1

Next, we consider the FNs of the oracles in Table VII. Only
3 bugs are shown in the table because there are no FNs for
the remaining bugs. It is interesting to observe that the oracle
SP-AWL lead to more FNs than other oracles on Bug 65 of
JabRef. This is because the bug-related difference is included
in one of the windows shown after the last step of the test
case, but not in the active window. And as mentioned earlier,
two bugs, Bug T1 on Jmol and Bug 160 on JabRef, require a
stronger set of GUI properties to be examined, thus they report



TABLE VIII. FAULT DETECTION ABILITY OF DIFFERENT TEST GENERATION TECHNIQUES

1324 3538 3645 3899 T1 T2 T3 T4 65 160 103x
TE 1 1 1 1 1 1 1 1 1 1 1
RE 0.02 0.01 0.00 0.00 0.11 0.09 0.03 0.04 0.00 0.03 1.0
TD 1 1 1 1 1 1 1 1 1 1 1
RD 0.38 0.01 0.05 0.04 0.74 0.36 0.90 0.92 0.26 0.48 1.00
TE 19 1 1 1 1 1 3 3 14 1 1
RE 0.02 0.01 0.00 0.00 0.11 0.10 0.03 0.04 0.00 0.03 15.62
TD 303 30 41 41 19 19 23 20 369 24 490
RD 0.49 0.01 0.05 0.05 1.38 0.54 2.38 2.07 0.29 0.61 1240.81

one FN of on all of our 6 oracles.

To conclude, oracle SP-AWL, has relatively fewer FPs and
one FNs. This addresses RQ2.

E. Addressing RQ3

For this research question, we executed a fuzzing Monkey
algorithm that essentially performs a bounded number of
random actions on the GUI. In our case, we bounded this
by the number of steps (events) that our workflow-based test
plans covered. Equivalent to our event-coverage based plans,
we obtained RE suites; for our edge-coverage based plans,
we obtained RD suites. We repeat the random test generation
process for 100 times.

We obtain the probability of the random sequence to detect
the bug as the ratio of sequences in the 100 sequences that
detect the bug. The results are shown in Table VIII. Each
column shows one bug and each row show the fault detection
ability of one test generation technique. Test suites RE and
RD are the random test suites that have the same cost as
TE and TD, respectively, in terms of test steps. Table VIII
are separated into two parts: in the upper part, we show the
probability of a certain technique to detect the bug. Since the
TE and TD test suites can detect all bugs we have, they always
have a probability value 1. Whereas the randomly generated
test sequences may not be able to detect the bug. And for a
certain bugs, the random technique is not able to detect the
bug after repeating the random process for 100 times. The
lower half of the table show the expected times of the bug
triggering events to be executed. For most of the bugs, the
technique based on event-coverage criteria outperforms the
random techniques except the bugs 103x that requires only
clicking on one of the initial events of the application. This
addresses RQ3.

F. Limitations

In its present form, our implementation and evaluation suf-
fered from a few limitations that we now discuss. First, to make
our method more practical, the number of false positive needs
to be further decreased. In its present form, the false positives
may overwhelm the tester, thereby making our technique less
desirable for practical deployment. Second, our weight-based
widget matching scheme, to find the closest match, needs to
be enhanced to handle the case of ties. Consider the case when
widget wa (e.g., a text box) in version Vx−1 matches with two
widgets, also text boxes, wb and wc in version Vx. This may
happen if we ignore the coordinates of these widgets, which we
usually do because the screen coordinates change frequently
across runs, and only consider their type. If wb and wc are
in different containers (e.g., window, panel, fragment), then

we are able to use wa’s container to break the tie. However,
if wb and wc are in the same container, a case we never
encountered in our study subjects, we may need to enhance
our matching scheme, or require human input. Third, we
completely sidestepped the issue of obsolete or unexecutable
test cases. Consider our example of Figure 1 and 2, in which
Print has been deleted. Test case t3 is no longer executable
on the modified software because the test case uses Print but
the GUI no longer contains that event. Fourth, even though we
did not encounter this issue in our work, it is quite possible
that our matching scheme yields an incorrect match, i.e., an
event from Vx−1 is incorrectly matched to an event in Vx.
Execution of test cases involving these events will likely yield
a large number of mismatches in GUI state, which will increase
the number of false positives. Finally, we have evaluated only
length-2 test cases in our experiment. Longer test cases will
likely increase execution cost because the number of test cases
will go up.

V. RELATED WORK

Our work attempts to address two classical problems in
the context of regression testing for GUI applications: test
generation and test oracles, aiming at finding regression faults
with workflow-based criteria and GUI properties as oracles.

Regression testing has been extensively investigated during
the past decades, especially in minimization, selection and
prioritization [17]. These works aim to maximize the value
of the accrued test suite by eliminating redundant test cases,
identifying relevant the test cases and ordering test cases.
In other words, they work to find subsets of regression test
suites and they do not change the codes of test cases. For
these works, information about the cost of verifying the output
observed with the existing test suite may be collected across
versions, since regression testing techniques seek to efficiently
re-use existing test cases. This can be incorporated. New
versions may change some original features, not just adding
new features, and some test cases cannot be run against the new
versions. Our work aims to make full automated regression
testing with test oracles. On the one hand, our techniques
can automatically find differences between versions that reveal
bugs and transform the previous test suites into ones that can
work on the new versions as well as automatically differences
between versions that reveal bugs. On the other hand, test
oracles can be automatically created by our techniques.

Richardson [18] developed a toolkit called TAOS (Testing
with Analysis and Oracle Support) toolkit to provide different
levels of test oracle support. In lower levels, developers can
write down expected outputs for a test input, specify ranges
for variable values, or manually inspect actual outputs. The
oracle support we provide is in TAOS’ lower levels: generating



expected outputs (widgets) for test inputs. In higher levels,
developers can use specification languages to specify temporal
properties. There exist a number of proposed approaches for
providing oracle supports based on different types of speci-
fications [19]. Different from these specification-based oracle
supports, we can enhance oracle checking only for exposing
regression faults without any specifications.

When specifications do not exist, automatic test-generation
tools such as JCrasher [20] use program crashes or uncaught
exceptions as symptoms of the current program version’s
faulty behavior. Randoop [21] allows annotation of the source
code to identify observer methods to be used for assertion
generation. Orstra [22] generates assertions based on observed
return values and object states and adds assertions to check
future runs against these observations. Eclat [23] can generate
assertions based on a model learned from assumed correct
executions. EvoSuite[24] uses mutation testing to select a
subset of assertions. Both Harrold et al’s spectra compari-
son approach [25] and Xie et al’s valuespectra comparison
approach [26] focus on exposing regression faults. Program
spectra usually capture internal program execution information
and these approaches compare program spectra from two
program versions in order to expose regression faults. Xie et
al. [22]developed an automatic approach and its supporting
tool, called Orstra, for augmenting an automatically generated
unit-test suite with regression oracle checking. Orstra creates
assertions for asserting behavior of the object states, as well
as return values of methods. Zaeem et al. [27] applied user-
interaction features, which is implicated in a significant frac-
tion of bugs and for which oracles can be constructed, based on
their common understanding of how apps behave. We model a
GUI state in terms of the widgets that the GUI contains, their
properties, and the values of the properties.

Orso and Kennedy [28] developed techniques for capturing
and replaying interactions between a selected subsystem (such
as a class) and the rest of the application. Orso et al. proposed
[29] behavioral regression testing approach by (1) generating
test cases that focus on the changed parts of the code, (2) run-
ning the generated test cases on both the old and new versions
of the code and identifying differences in the tests’ outcome,
and (3) analyzing the identified differences and presenting
them to the developers. Their techniques focus on creating fast,
focused unit tests from slow system-wide tests. Different from
their work, the test suites for new versions are transformed
from the previous versions by GUI model matching, which can
make the regression test suites run accurately against the new
versions. our technique does not only check the differences
between the outcomes, but also checks the differences between
GUI models. What’s more, our technique has a more accurate
oracle mechanism and make a automatic regression testing.

Xie and Memon [30] developed six instances of test oracles
for a general purpose as described in Section II Background. In
this paper, to fulfill the task finding regression faults, our tech-
niques determines oracle timing depicted as III Our Approach,
as well as introduces test matching to oracle mechanism.

VI. CONCLUSIONS & FUTURE WORK

This paper presented a new way to think about regression
testing – fully automatic so as to empower the end user, who

does not have access to source code, specifications, and test
expertise. Armed only with the previous and new (or patched)
releases of the software, we want to give the end user a tool
that can be used to fully automatically regression test the new
release. As we are only interested in regression bugs, we can
use the previous version as a “correct” version as a basis
for a test oracle. Any differences between the version is a
potential bug. Our approach described was simple: run test
cases on both versions and report mismatches. Because we
relied on worflow-based coverage of the software, we ensured a
uniform coverage of the application, without considering code
coverage. We, of course realize that end users will augment
our test cases with those derived from their own use cases
so as to conduct a thorough end-to-end testing of their own
scenarios..

Our experiment showed that we can automatically detect
all 16 bugs that are manifested on the GUI. At the same
time, this experiment helped us to better understand limita-
tions and quantify the overall risks associated with using a
dynamic approach to reference test patched software. Because
it is rooted in dynamic analysis (i.e., based on actual code
execution), we expect our solution will have some limitations
that may hinder wider applicability; for example, testPatch will
not find a vulnerability unless it executes the program path
that manifests the vulnerability during execution. Although our
work-flow based criteria are designed to force execution of all
paths via workflows in the input space, we may still miss some.

This research has applicability to any changes. It can be
applied to any quality assurance activity that involves reference
testing, i.e., testing an application version with respect to
another. Consider for example, a memory-footprint optimizer
that applies code-level optimizations to an Android app in
order to reduce its memory footprint. There exist no tools
to automatically determine whether the optimizations had any
unintended side-effects that broke the software. A variant of
testPatch may be used.

The limitations of our work and results that we raised
earlier give us directions for future work. First, the impact of
the bounded length of test cases would have an impact on our
experiment results. We used length 2 test cases. We suspect
that longer test cases may lead to increased false positives
but need to confirm experimentally in future work. Second,
as seen in our study, all the 16 bugs are in fact detectable
using GUI state, but 1 is missed due to limitations of our tool
implementation. One future work direction is to improve the
implementation to better support our method. Third, we need
to address the issue of obsolete or unusable test cases, perhaps
by using our previous work on test repair [31]. Finally, we
need to study the liklihood and impact of incorrect matching
on our false positive rate, and devise approaches to minimize
incorrect matches.
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