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Abstract whether the AUT executed as expected [1]. The test ora-
cle may either be automated or manual; in both cases, the
Test designers widely believe that the overall effective- actual output is compared to a presumably correct expected
ness and cost of software testing depends largely on theoutput.
type and number of test cases executed on the software. In Testers widely believe that the overall effectiveness of
this paper we show that the test oracle used during test- the testing process depends largely on the number and type
ing also contributes significantly to test effectivenesd an of test cases used. Test adequacy criteria are used to com-
cost. A test oracle is a mechanism that determines whethempare and evaluate the adequacy of test cases and generate
a software executed correctly for a test case. We define amore if needed [18]. Our research has shown that the type
test oracle to contain two essential partsracle informa-  of test oracle used also has a significant impact on test ef-
tion that represents expected output, andaacle proce- fectiveness. There has been no reported work comparing
durethat compares the oracle information with the actual different types of oracles, their impact on fault detection
output. By varying the level of detail of oracle information effectiveness and cost in terms of space and time. In this
and changing the oracle procedure, a test designer can cre-paper, we describe several types of test oracles and empiri-
ate different types of test oracles. We design 11 typestof tescally show their relative strengths, weaknesses, and.costs
oracles and empirically compare them on four software sys-  We define a test oracle to contain two padsacle infor-
tems. We seed faults in each software to create 100 faultymationthat is used as the expected output andracle pro-
versions, execute 600 test cases on each version, for all 1lcedurethat compares the oracle information with the actual
types of oracles. In all, we report results of 660,000 test output [14]. Different types of oracles may be obtained by
runs on each software. We show (1) the time and space rechanging the oracle information and using different oracle
guirements of the oracles, (2) that faults are detectedyearl procedures. For example, for testing a spreadsheet, the fol
in the testing process when using detailed oracle informa- lowing two types of oracle information may be used: (1) the
tion and complex oracle procedures, although at a higher expected values of all the cells, and (2) the expected vdlue o
cost per test case, and (3) that employing expensive oraclesi single cell. The choice of oracle information depends on
results in detecting a large number of faults using reldtive  the goals of the specific testing process used. Similasy, th
smaller number of test cases. oracle procedure for a spreadsheet may (a) check for equal-
ity between expected and actual cell values, or (b) deter-
Keywords: Test oracles, oracle procedure, oracle in- mine whether a cell value falls within a specified expected
formation, GUI testing, empirical studies range. Combining the two oracle information types and two
procedure types yields four oracles: (1a) check for equalit
between all expected and actual cells, (1b) check whether
all cell values fall within a specified expected range, (2a)
check for equality between a single expected and actual
Software testing is an important software engineering ac- cell values, and (2b) check whether a specific cell's value
tivity widely used to find defects in programs. During the falls within a specified expected range. Note that the cost
testing procesdest casesre executed on aapplication of maintaining and computing different types of oracle in-
under test(AUT) and test oraclesare used to determine formation will differ as will the cost of implementing and

1 Introduction



executing different oracle procedures. Open 21| Labell

Several researchers have identified the need for different (ogkin: [ iz] & i Align _|alNone
types of oracles, although none have compared them em . Caption Files of fype:
.. . . . Music Color |c/BtnFace
pirically. Notable is the work by Richardson in TAOS [13] Eaecyded Font (tFont)
who proposes several levels of test oracle support, and Siep kel=hare Buttont

mann et al. in their TOBAC system [15] who provide seven | iz pame: y opon | /4quﬁon Cancel
Enabled TRUE

ways of implementing the oracle procedure.
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In this paper, we define several types of oracle informa- LEBCRTE = Cancel H':;ghi 5
tion and procedures and empirically compare them. Our
previous work [9] laid the foundation for test oracles of a @

class of event-based systems; specifically those that have . State={(Label1, Align, aNone)(Labell, Caption, “Files of type:”), (Labell,
Graphical User Interface (GUI) frontend. We now leverage i /(e “;ggr&dbgiiollf“;;{;g“‘(guﬁif}ﬁ“lcfgf;fecfgi‘l’;"(‘gling"fml
the technology to develop and study several types of test or- Enabled, TRUE), (Buttonl, Visible, TRUE), (Buttonl, Height, 65), ...}
acles. We feel that the GUI domain is ideal for this type ®)
of study since the way we define a GUI oracle, in terms
of objects (widgets) and their properties that change over
time, allows us to “fine-tune” the oracle information and Figure 1. (a) Open GUI, (b) its Partial State
procedure. We define four types of oracle information in
increasing level of detail and costidget active window
visible windows and all windows The oracle procedure of related work in Section 5 and future research opportuni-
too has several increasing levels of complexity and cost: ties in Section 6.
“check for equality ofwidget active window visible win-
dow all windowsafttfr each event” and “checll wiljdows 2 GUI Model
after the last event” of the test case. (We provide details
and examples in Sections 3.1 and 3.2.) Combining the ora-
cle information and oracle procedures gives us 11 different Before we develop the different types of GUI oracles, we
types of oracles. We empirically compare these test oraclesl€efine the basic concepts needed to understand their design.
on four software systems. We seed faults in each softwareWWe begin by modeling a GUI state in terms of thiglgets
to create 100 faulty versions, execute 600 test cases on eact3UI's basic building blocks) the GUI contains, their prop-
version, for the 11 types of oracles. In all, we report result  €rties, and the values of the properties. We also define GUI
of 660,000 test runs for each software. eventgactions performed by the user) and use this defini-

The results of our experiments show that (1) oracles thattion to develop GUI test cases.
use detailed oracle information and complex procedures are
expensive both computationally and in terms of space, (2)2.1 Widgets, Properties and Values
defects are detected early in the testing process when using
an expensive oracle, and (3) using expensive oracles allows
catching a large number of defects using relatively smaller
number of test cases.

The specific contributions of this work include:
1. afirst empirical study comparing test oracles,
2. definition of different levels of GUI oracle informa-

We model a GUI as a set ofwvidgets W =
{wy,ws, ..., w;} (.., buttons, panels, text fields) that con-
stitute the GUI, a set gfropertiesP = {p1, p2..., pm } (€.9.,
background color, size, font) of these widgets, and a set of
valuesV = {vy,vq...,v,} (€.9., red, bold, 16pt) associated
with the properties. Each GUI will contain certain types

tion, . of widgets with associated properties. At any point during
3. development of different oracle procedures for GUIs, . - . .
and its execution, the GUI can be described in terms of the spe-

- . - cific widgets that it currently contains and the values ofrthe
4. guidelines to test designers about designing test ora- 9 y

cles, their relative strengths and weaknesses properties.
' g ' For example, consider th€pen GUI shown in Fig-

In the next section, we define GUI states and test casesure 1(a). This GUI contains several widgets, two of which
In Section 3 we use these definitions to describe the partsare explicitly labeled, namelgut t on1 andLabel 1; for
of a GUI test oracle, namely oracle information and oracle each, a small subset of properties is shown. Note that all
procedure. We also describe how our general definition of widget types have a designated set of properties and all
oracle information and procedure may be used to developproperties can take values from a designated set.
different types of test oracles. In Section 4, we presentde- The set of widgets and their properties can be used to
tails of experiments. Finally, we conclude with a discussio create a model of thetateof the GUI.



Definition: Thestateof a GUI at a particular time is the Test Case

setS of triples{(w;, pj, vx)}, wherew; € W,p, € P, v
anduv; € V. O Oracle _Run-time
Information |nforma_t|on from
A description of thecomplete statevould contain infor- executing GUI

Generator

Oracle|lnformation

mation about the types all the widgets currently extant in
the GUI, as well asill of the properties and their values for

each of those widgets. The state of @men GUI, partially Oracle
shown in Figure 1(b), contains all the properties of all the Procedure AE—
widgets inQpen.

In this research, we extensively use the definition of the Oracle

state of a GUI to develop the oracle information and proce-

dure. As will be seen later, we associate oracle information

with each test case. Hence, we formally define a GUI test

case next. Figure 2. An Overview of the GUI Oracle.
With each GUI is associated a distinguished set of states

called itsvalid initial state set

Verdict

The oracle information generatoautomatically derives
theoracle information(expected state) using either a formal
specification of the GUI as described in our earlier work [9]
or by using a “correct” version of the software [16, 17] (as

The state of a GUI is not statieventgperformed on the ~ described in Section 4). Likewise, thetual statgalso de-
GUI change its state. These states are calledethehable ~ SCribed by a set of widget, property, and value triples) is
statesof the GUI. The events are modeled as functions from obtained from arexecution monitor The execution moni-

Definition: A set of statesS; is called thevalid initial state
setfor a particular GUI iff the GUI may be in any state
S; € Srwhen it is first invoked.

one state to another. tor may use any of the techniques described in [9], such as
screen scraping and/or querying to obtain the actual state
Definition: The eventsE' = {e1, ea, ..., en} associated  of the executing GUI. Aroracle procedurehen automati-
with a GUI are functions from one state to another state Ca”y compares the two states and determines if the GUI is
of the GUI. m executing as expected.

Events may be strung together into sequences. Of im- The above partitioning of functionality allows us to de-

portance to testers are sequences that are permitted by thiin€ @ simple algorithm for test execution. Given a test case,
structure of the GUI [10]. We restrict our testing to such W& execute all its events, compute the expected statenobtai
legal event sequences, defined as follows: the GUI's actual state, compare the two states, and deter-

mine if the actual is as expected. This algorithm is shown

Definition: A legal event sequenceof a GUI is in Figure 3. The algorithnExecTest Case takes four
e1;ez;es;...;e, Where e;1; can be performed parameters: (1) a test ca$e(LINE 1) of the form< Sy,
immediatehaftere;. O e1; ea; ..., en >, Wheres is the state of the GUI before

the test case is executed,; es; ...; e, is the event se-

Our concepts of events, widgets, properties, and values i .
can be used tl(o) formally define zquUI ?estpcase: guence; (2) a set of intege@PF (LINE 2) that determines

how frequently the oracle procedure is invoked (details in

Definition: A GUI test caseT is a pair< S, e1; e2; .. .; Section 3.2); (3Cos (LINE 3) is a boolean constraint used
en >, consisting of a stat&, € Sy, called theinitial to obtain relevant triples for the oracle information. Exam
state for T and a legal event sequeneg es; . . . ; ey. ples of some constraints are shown in Section 3.1C(4y
O (LINE 4) is a similar boolean constraint but used by the or-

acle procedure to obtain relevant triples for both the dctua
' and expected state.

The algorithm traverses the test case’s events one by one
(LINE 5) and executes them on the GUIIE 6). The
oracle informatiorDl; is obtained for the evert (LINE 7).

3 GUI Test Oracle The constrain€o; is used to select a subset of the complete
state. This constraint is discussed in Section 3.1. Sitpilar
In earlier work [9], we developed the design of a GUI the actual statAS; of the GUI, also constrained byGy g
test oracle shown in Figure 2. We now briefly present the is obtained (LNE 8). The oracle procedure is then invoked
design and extend it to develop different types of oracles. (LINE 9) that determines whether the software’s execution

Now that we have briefly defined the basic GUI concepts
(the interested reader is referred to [8] for details andrexa
ples), we now describe a GUI test oracle.



ALGORITHM :: ExecTest Case(
T: Testcasef* T= < Sy, e1; ea; ... en >*/ 1
OPF C {1,2,3,...,n}; I* oracle procedure freq. */ 2
Cor: Boolean Constraint* on oracle information */ 3
Cas: Boolean Constraint¥ on actual state *J{ 4

FOREACHEe; in T DO{ /* for all events */
EXECUTE(e;); /* perform the event on the GUI */ 6

[* obtain the expected state for event/
Ol; «— GETORACLEINFO(i, Cor);

[* extract the GUI's actual state */
AS; «— GETACTUALSTATE(, Ca5);

/* invoke the oracle procedure */
| F!I(OP(AS;, Ol;, C4g, OPF, i)) THEN { 9
RETURN(FAIL )} } /* test case fails */ 10
RETURN(PASS} /* if no failure, report success */ 11

Figure 3. Test Execution Algorithm

was correct for the event.
Having outlined the high-level algorithm for the test case
executor, we now develop a formal model of oracle in-

formation and procedure and explain the roles of the con-

straintsC 45 andCoy.
3.1 Test Oracle Information

Intuitively, the oracle information is a description of the
GUI's expected state for a test case.

Definition: For a given test cas€ = < Sy, e1; eo; .. .;
en, >, thetest oracle information is a sequence
S1,859,...,5, >, such thatS; is the (possibly par-
tial) expected state of the GUI immediately after event
e; has been executed on it. O

Recall from Section 2 that the GUI's state is a set of
triples of the form(w;, p;, v), wherew; is a widget,p;
is a property ofw;, andu, is a value forp;. Hence the or-

acle information for a test case is a sequence of these sets.

Note that we have deliberately defined oracle information
in very general terms, thus allowing us to create different

types of oracles for our study. The least descriptive oracle

information set may contain a single triple, describing one
value of a property of a single widget. The most descriptive
oracle information would contain values of all propertiés o

all the widgets, i.e., the GUI's complete expected state. In

fact, all the subsets of the complete state may be viewed as a 3.

spectrum of all possible oracle information types, with the

single triple set being the smallest and the complete state
being the largest. We use a boolean constraint (c&lled
LINE 6 in Figure 3) to define the following four different
types of oracle information that we later use in our study.
For every triple that is included in the state descriptibe, t
constraint must evaluate IRUE.

widget: the set of all triples for the single widget asso-
ciated with the event; being executed. The constraint is
written as ¢1 w), where#1 represents the first ele-
ment of the triple. Note that if applied to a triple witlw"

as its first element, the constraint would evaluaté RUE;

in all other cases, it would evaluateFé\L SE.

active window: the set of all triples for all widgets that are
a part of the currently active windoW. The constraint is
written as {(nWindow(#1, W)), whereinWindow(a, b)

is a predicate that i$RUE if widget a is a part of window

b.

visible windows: the set of all triples for all widgets that are
part of the currentlyisible windows of the GUI. The con-
straint is written asi@Window(#1, x) && isVisible(x)),
whereisVisible(z) is TRUE if window z is visible and
FALSE otherwise. Note that visibility is a property of a
window, which can be set, for example, by invoking the
Set Vi si bl e() method in Java. Windows that are par-
tially or fully hidden by other overlapping windows are also
considered to be visible as long as this property is set.

all windows: the set of all triples for all widgets of all win-
dows. Note that the constraint for this set is sSimpRUE
since this is the complete state of the GUI.

For brevity, we will use the terms LOI1 to LOI4 for the
above fourlevels of oracle information In Figure 3, we
used the subroutineE3ORACLEINFO(i, Cor) to compute
the oracle information. There are several different ways to
compute GTORACLEINFO. We now outline three of them:

1. Using capture/replay tools is the most commonly
used method to obtain the oracle information [7].
Capture/replay tools are semi-automated tools used to
record and store a tester's manual interaction with the
GUI with the goal of replaying it with different data
and observing the software’s output. A detailed dis-
cussion of these tools is beyond the scope of this paper.
The key idea of using these tools is that testers manu-
ally select some widgets and some of their properties
that they are interested in storing during a capture ses-
sion. This partial state is used as oracle information
during replay. Any mismatches are reported as possi-
ble defects.

We have usedormal specificationsin earlier work

[9] to automatically derive oracle information. These
specifications are in the form of pre/postconditions for
each GUI event.

In our experiments presented in this paper, we have
used a third approach that we cakecution extrac-

2.



tion. During this process, a test case is executed ONA| GORITHM oP(

an existing, presumably correct version of the software AS;: Actual state/* for evente; */
and its state is extracted and stored as oracle informa- ol;
tion. We have employed platform-specific technology
such as Java APIWindows AP, and MSA2 to ob-
tain this information.

1
: Oracle information/* for evente; */ 2
C 4s: Boolean Constraint* on actual state */ 3
OPFC {1,2,3,...,n} * oracle procedure freq. */ 4
i: event numberf* current eventindex < i <n* ){5

3.2 Oracle Procedure | F (i € OPF) THEN/* compare? */ 6
RETURN(FILTER(OIl;, C45) == AS;) 7
The oracle procedure is the process used to compare the ELSE RETURN(TRUE)} 8

oracle information with the executing GUI's actual state.
It returnsTRUE if the actual and expected matdRAL SE
otherwise. Formally we define an oracle procedure as:

Figure 4. Oracle Procedure Algorithm

Definition: A test oracle procedureis a functionF(Ol,
AS, Cor, Cas, ®) — {TRUE, FALSE}, whereOl is rently active windowi¥’. The constrain€ 45 is written as
the oracle informatiomAS is the actual state of the ex-  (inWindow(#1, W)) andOPF={1,2,3,...,n}.

ecuting GUI,Co; is a boolean constraint ddl, C 45 LOP3: After each event of the test case, we compare the
is a boolean constraint okS, and® is a comparison  set of all triples for all widgets that are part of the curtgnt
operator. F returnsTRUE if Ol andAS “match” as  visible windows of the GUI. The constrair€ 45 is writ-
defined by®; FALSE otherwise. O ten as (nWindow(#1,z) && isVisible(x)) andOPF =
(1,2,3,...,n).

The oracle procedure may be invoked as frequently as
LOP4: After each event of the test case, we compare the set

once after every event of the test case or less frequergly, e. ; . . )
after the last event. The algorithm for the oracle procedureOf aII.trlplgs for all widgets of all windows. The constraint
is shown in Figure 4. Note that our specific implementation C4s iS written asTRUE andOPF = {1,2,3,...,n}.

OP of F takes an extra parametethat accounts for this LOPS5: After the last event of the test case, we compare
frequency. Also note thad is hard-coded to “set equal- the set of all triples for all widgets of all windows. The
ity” (Line 7 of Figure 4). OP (as invoked from LNE 9 of constrainiC 4 5 is written asTRUE andOPF = {n}.

Figure 3) takes five parameters described earlier. The pro- Even though we define and use only five types of oracle
cess of comparing is straightforward: if the GUI needs to be procedures, our definition @P is very general and may be
checked at the current indéxef the test case (INE 6), then  ysed to develop a large variety of test oracle procedures.
the oracle information is filtered using the constrdints
to allow for set equaliticomparison. The oracle procedure
returnsTRUE if the actual state and oracle information sets 3.3 Oracle Types
are equal.

We now use the definition d@P to develop five differ- ) . .
ent types of oracle procedures. Note that it is important to ~ USing the four oracle information types (LOI1-LOI4)
specify the constrair€ 45 and the seDPF to completely ~ @nd five oracle procedures (LOP1-LOPS) described in the
specify the oracle procedure. previous _sect|on, we d_efme different _types of test oracles.
LOP1: After each event of the test case, we compare the '€ key idea of defining these multiple types of oracles
set of all triples for the single widget associated with that 1S that even though detailed oracle information (say LOI4,
event. The constrairE 45 is written as §1 == w) and |.e.,_“aII windows”) may be available (pgrhaps computed.
OPF={1,2,3,...,n}. Note thatC .5 is first used to se- earl!er), the tester may choose to save time and compare it
lect relevant triples for the actual statei(ie 8 of Figure 3) ~ 2dainst a subset of the actual state, e.g., only “current wid

and then later to filter the oracle informationigie 7 of ~ 9€t’. Hence, LOP1 (comparing against the current widget
Figure 4). only) can be used in the presence of all levels of oracle in-

LOP2: After each event of the test case, we compare the formation (LOI1-LOI4). Similarly, LOP2 can be used for
set of all triples for all widgets that are a part of the cur- -©O12-LOI4. Note that it does not make sense to talk about
comparing LOI1 with more actual state information than

Yjava.sun.com the active widget; the additional information in the actual
2msdn.microsoft.com/library/default.asp?url=/librny-

usiwinprog/winprog/windowsapL reference.asp state will be simply ignored. The combinations of oracle
3msdn.microsoft.com/library/default.asp?url=/librény- informatio_n and procedure gives us 11 types of test oracles,
us/msaa/msaaccf7ja.asp marked with anx in Table 1.



LOP1 | LOP2 | LOP3 | LOP4 | LOP5 LOC Classes |Windows
::8:; x TerpWord 1,747 9 8
X X
LOI3 % % % Teerr?sent 4,769 4 5
LOI4 % % « « « TerpPaint 9,287 42 8
TerpSpreadSheet 9,964 25 6
Table 1. Types of Test Oracles TOTAL 25,767 80 27

Table 2. TerpOffice Applications
4 Experiments

) . _ TerpPaint and TerpSpreadSheet. They have been imple-
Having presented the design of test oracles and our abil-anted using Java. Table 2 summarizes the characteristics

ity to create many types of oracles, we now present detailSt these applications. Note that these applications arly fai
of an experiment using actual software and test cases Qarge with complex GUIs.

compare the different oracle types. The following question
need to be answered to show the relative strengths of the
test oracles and to explore the cost of using different types

of oracles. 4.2 Fault Seeding

1. What is the cost (in terms of time and space) incurred o _ _
in using different oracles? Fault seeding is used to introduce known faults into the

2. Do different types of test oracles detect different num- Program under test. Artificially seeded faults should be sim
ber of faults for a given number of test cases? ilar to faults that are naturally introduced into a program
3. Are faults detected early in the testing process whendue to mistakes made by developers. Offutt et al. have sug-

using detailed oracle information and complex oracle gested approaches for determining whether a fault is real-
procedures? istic [11]. Harrold et al. [5] have developed fault seeding

techniques using program dependence graphs.

To answer the questions we take different (assumed cor- We seeded faults in the TerpOffice applications to create
rect) software, artificially seed faults in them (borrowing 100 faulty versions for each application. Here we discuss
this technique from mutation testing), generate test caseshe issues faced while seeding faults in GUI applications.
and multiple types of test oracles for each test case, and de- We define &5UI fault as one that manifests itself on the
tect the number of faults found by the test cases for eachvisible GUI at some point of time during the software’s ex-
oracle type, while measuring the following variables: ecution. We adopted an observation-based approach to seed

_ GUI faults, i.e., we observed “real” GUI faults in real ap-
Number of Faults Detected: We record the total number plications. During the development of TerpOffice, a bug

of faults detected by each oracle type, from the pool of - v\ing tool calledBugzill#® was used by the developers
faulty programs. o _ to report and track faults in TerpOffice version 1.0 while
Oracle Comparison Time (OCT): This is the time re- oy \yere working to extend its functionality and develop-
quired to execute the oracle procedure. _ ing version 2.0. The reported faults are an excellent repre-
Space: Each oracle type has different space requirements,septative of faults that are introduced by developers gurin
primarily because of the level of detail of the oracle ., lementation. Table 3(a) shows an example of a fault re-
information. We measure the space required to store,iye in our Bugzilla database and Table 3(b) shows the
different levels of oracle information. (later) corrected segment of the same code. Table 3(c) and
) o 3(d) show examples of faults seeded into this code.
4.1 Subject Applications We created 100 faulty versions for each software. Note
that exactly one fault was introduced in each version. This
The subject applications for our experiments are part of model is useful to avoid fault-interaction, which can be a
an open-source office suite developed at the Department othorny problem in these types of experiments and also sim-
Computer Science of the University of Maryland by un- plifies the computation of the variable “Number of Faults
dergraduate students of the senior Software EngineeringDetected”; now we can simply count the faulty versions that
course. It is called TerpOffiéeand consists of six applica- led to a test case failure, i.e., a mismatch between actual
tions out of which we use four — TerpWord, TerpPresent, state and oracle information.

4www.cs.umd.edu/users/atif/ TerpOffice 5pugzilla.org



Reported Fault in Bug Database Corrected Code Each test case required approximately 10 seconds to exe-

for( row = 0 ; row < 1024 ; ++row) | for(row =0 : row < 1024 : ++row ) cute. This varied depended on the application and the num-
for(col = 0 ; col < 26 ; ++col ) for(col =0 ; col < 26 ; ++col ) ber of GUI events in the test case. The total execution time
display_cell( col, row ): display_cell( row, col ) was approximately 600,000 seconds for each application.

@ ®) The execution included launching the application undey tes

replaying GUI events from a test case on it and analyzing

Fault #1 Fault #2 . . .
= = the resulting GUI states. The analysis consisted of record-
for f°W:|0é)f°W|<2§6? +ow) forf((::z"ztjo;o“"r“éjvlgzz“e? *:i’rl’; ing the actual GUI states of the faulty version and deter-
= ’ < N =0 ) - . .
o C(ﬁsp|ay’_22||( row, colc)? ) display._cell( row, col ) mining the result of the test case execution based on the 11
© @ oracle types.
Table 3. Seeding GUI Faults 4.6 Threats to Validity

Threats to external validitare conditions that limit the
4.3 Testcases ability to generalize the results of our experiments to in-
dustrial practice. We have used four Java applications are

We used an automated tool (GUITARo automatically our subject_ programs. Although t_hey have different types
of GUIs, this does not reflect a wide spectrum of possible

generate 600 test cases for each application. Note that GUI- . .
TAR employs previously developed structuresdnt-flow GUIs that are av_allable today. All our subject programs
graphsandintegration tree410]) to generate test cases. A v(\;/Erle deyelqped ”.} Jaya. bAIthouth our abzt@gtg); of tlh €
detailed discussion of the details of the algorithms used by =~ mamr;[alns u|n| ormity et\f/ve(\e/r\} g;a anll N3 appil-
GUITAR is beyond the scope of this paper. The interested cations, the resuilts may vary for Win32 applications.

reader is referred to [8] for additional details and analysi Threats to internal validityare conditions that can affect
the dependent variables of the experiment without the re-

searcher’s knowledge. We have used an observation-based
approach for seeding faults in the GUI applications. This
may have affected the detection of faults by the test cases.
We employedxecution extraction(Section 3.1)togen-  Faults not exercised by any test case will go undetected.
erate the oracle information. We used an automated tOOlWe made an effort to make the faults as close as possib|e to
(also a part of GUITAR) that implements this technique. npaturally occurring faults. Some of these faults might not
The key idea to the technique employed by this tool is that manifest themselves through the GUI.
itautomatically executes a given test case on a software and - Threats to construct validitgrise when measurement in-
captures its state (widgets, properties, and values) @&ttom  giryments do not adequately capture the concepts they are
ically. By running this tool on the four subject applicatoon  gypnosed to measure. For example, in this experiment one
for all 600 test cases, we obtained the oracle information. 5¢ 5,y measures of cost is time. Since GUI programs are
Note that the tool extracted all four levels of oracle infor- fian multi-threaded, and interact with the windowing sys-
mation. We measured the time and memory required for joy's manager, our experience has shown that the execution

4.4 Oracle Information

this process. time varies from one run to another. One way to minimize
the effect of such variations is to run the experiments multi
4.5 Oracle Procedure and Test Executor ple number of times and report average time.

The results of our experiments, presented next, should be

We implemented all five levels of oracle procedure. We interpreted keeping in mind the above threats to validity.
used “set equality” to compare the actual state with the ora-
cle information. 4.7 Results

We executed all 600 test cases on all 100 versions of the
subject applications. When each application was being ex-
ecuted, we extracted its run-time state and compared it with
the stored oracle information. A mismatch was reported as
a fault. Note that we ignored widget positions during this
process since the windowing system launches the softwar
in a different screen location each time it is invoked.

We now present some of the results of our experiments.
Due to lack of space, in many of these results, we are un-
able to present data for all 11 oracle types. Instead, when-
ever possible, we combine and report results of five impor-
e[ant data points: L1 (LOI1, LOP1), L2 (LOI2, LOP2), L3
(LOI3, LOP3), L4 (LOI4, LOP4), and L5 (LOI4, LOP5)
8guitar.cs.umd.edu (see Table 1).




Fault-detection ability: Result: complex oracles are
better at detecting faults than the simplest onEgyure 5
shows the percentage of faults detected by the test case
for different levels of oracles. The height of the columns
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percentage of faults. However, there is no significant im-
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Figure 6. Number of Test Cases of a Specific
Length and their Fault Detecting Ability
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Figure 5. Number of Faults Detected

Test case lengthResult: a greater percentage of shorter
test cases with complex oracle procedures are able to de-
tect faults than longer test cases with less complex oracle
procedures.In Figure 6, the x-axis represents the test case
length and y-axis shows the number of test cases that suc-
cessfully detected at least one fault (averaged for all four
subject programs). Note that there is a significant increase
in the fault detection ability of test cases when equipped
with more powerful test oracle procedures. Also note that  Time: Result: A complex oracle procedure is expensive
we did not present results for LOPS since the comparison isin terms of computation timeThe actual time for execut-
done only after the last event of the test case, in which caseng the oracle procedure (OCT) is shown in Figure 9. A
the length of the test case is irrelevant. more expensive oracle procedure takes longer time to ex-

ecute. This was true for all the four applications. This is

Number of test cases:Result: a greater percentage of because a higher LOP validate_s a more detailt_ed GUI state
test cases detect faults when using an expensive ofdle.  than a cheaper one. An exception is LOPS, which executes
show this result using 3-D graphs (Figures 7 and 8). The x- faster. This is because LOPS validates only the final state of

axis shows the number of detected faults, the y-axis showgthe GUI.

the number of test cases (averaged over the four subject pro-

grams) that detected the faults successfully, and thesz-axi  Space requirements: Result: L3 and L4 show a sig-
shows the different oracles. From the graph, it is seen thatnificant increase in storage requirementdn Figure 10
only 1100 test cases are able to detect even a single fault foive compare the storage requirements of different oracles.
L1, whereas almost 2000 test cases are able to detect fault¥here is a large increase of storage requirement from L2 to
for L2, L3, and L4. Note, however, that there is no signif- L3. Thisis because L3 and L4 capture a more complete GUI
icant difference between L3 and L4. Also, note that for L5 state informationthat L1 and L2. These relatively expessiv
(see Figure 8 for better view), the number of test cases thatoracle can be used to detect faults by executing shorter test
detect at least one fault is quite large. cases.

Figure 7. Number of Test Cases Detecting
Faults (view 1)
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Figure 10. Oracle storage requirements

test oracle [12, 14, 13, 3]. In most cases, the expected be-
havior of the software is assumed to be provided by the
test designer. The expected behavior is specified by the
test designer in the form of a table of pafextual output,
expected outpuf)l 2], as temporal constraints that specify
conditions that must not be violated during software execu-
tion[13, 2, 3, 14], or as logical expressions to be satisfied b
the software [4]. This expected behavior is then used by the
verifier by either performing a table lookup [12], FSM cre-

Figure 8. Number of Test Cases Detecting
Faults (view 2)

2500 ation [6, 3], or boolean formula evaluation [4] to determine
2000 the correctness of the actual output.
- mLoP1 Richardson in TAOS (Testing with Analysis and Oracle
@ 15004 oLor2
e BLOPS Support) [13] proposes several levels of test oracle suppor
£ 10004 @074 One level of test oracle support is given by tRenge-

500

checker which checks for ranges of values of variables
during test-case execution. A higher level of support is

TerpPresent TerpWard TerpSpreadsheet TerpPaint given by the@ L andRTI L languages in which the test de-
Application Under Test signer specifies temporal properties of the software. Siep-
mann et al. in their TOBAC system [15] assume that the
Figure 9. Total time for executing oracle pro- e_xpected output is specified_ by the test d_esigner and pro-
cedure vide seven ways of automatically comparing the expected

output to the software’s actual output. A popular alterreati

to manually specifying the expected output is by perform-

ing reference testing [16, 17]. Actual outputs are recorded

the first time the software is executed. The recorded outputs

The above results show that oracle type L5, i.e., checkingare later used as expected output for regression testing.

for the complete GUI’s state after the last event of the test  Automated GUI test oracles were developed in the
case has been executed, is both cheap in terms of space arRATHS (Planning Assisted Tester for grapHical user inter-
time, and yet is able to yield results that are comparableface Systems) system [9, 8]. PATHS uses Al planning tech-
to the most expensive test oracles. With the exception ofniques to automate testing for GUIs. The oracle described
L5, all complex oracles were more expensive both in termsin PATHS uses a formal model of a GUI to automatically
of time and space, but they were also more successful inderive the oracle information for a given test case.
detecting faults.

6 Conclusions
5 Related Work

In this paper, we showed th#gst oraclesplay an im-
Very few techniques have been developed to automat-portant role in determining the effectiveness and costef th
ically generate the expected output for conventional soft- testing process. We defined two important parts of a test
ware. Hence, software systems rarely have an automatearacle:oracle informationthat represents expected output,



and anoracle procedurgéhat compares the oracle informa-
tion with the actual output. By varying the level of detail of
oracle information and changing the oracle procedure, we
developed 11 types of test oracles. We empirically showed
that faults are detected early in the testing process when us
ing detailed oracle information and complex oracle proce-
dures, although at a higher cost per test case. Moreover, em-
ploying expensive oracles catches a large number of faults (gj o' M. Memon. A Comprehensive Framework for Testing
using relatively smaller number of test cases.

Our results provide valuable guidelines to testers. If
testers have short and a small number of test cases, they[9] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
can improve their testing process by using complex test or-

acles. On the other hand, if they have generated test cases
using an automated tool (e.g., GUITAR ), then they can use
cheaper and simpler test oracles to conserve resources.

Our results may be applicable to all event-based software
that can be modeled in terms of objects, properties, and thei
values (e.g., object-oriented software). Test oraclesudoh

software would check for the correctness of (partial) state [11]

of the objects.
In the future, we will extend our pool of subject applica-

tions to include non-Java and non-GUI programs. We will [12]
also generate multiple types of test cases and observe the

effect of different test oracles on these test cases. kinall

since we have identified differences in fault-detection-abi

ity of different test oracles, we will develop adequacyesrit
ria for test oracles in a way similar to those already avélab
for test cases [18].
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