Automatically Testing “Nightly/daily Builds” of GUI Applications

Atif Memon*, Ishan Banerjee, Adithya Nagarajan
Department of Computer Science, University of Maryland College Park, Maryland, USA
(* also with Fraunhofer Center for Experimental Software Engineering, Maryland)
{atif, ishan, sadithya}@cs.umd.edu

Abstract

We describe a technique that addresses the needs of
“Nightly/daily building and smoke testing” of software that
has a graphical user interface (GUI). The key to our success
is automation of structural GUI analysis, test case genera-
tion, test oracle creation, code instrumentation, test execu-
tion, coverage evaluation, regeneration of test cases, and
their re-execution. We empirically evaluate the time taken
and memory required for GUI analysis, test case and test
oracle generation, and test re-execution.

Introduction: “Nightly/Daily building and smoke test-
ing” have become popular as many software developers find
them useful. During nightly builds, software is compiled,
linked and smoke tested. Smoke tests exercise the entire
system. They need not be an exhaustive test suite; the goal
is to detect major problems.

A limitation of current smoke tests is inadequate testing
of software that has a graphical user interface (GUI). Al-
though there has been considerable success in developing
techniques for efficient re-testing of conventional software,
the area of frequent GUI re-testing has been neglected.

Not being able to re-test a GUI efficiently has negative
impact on overall software quality because GUIs have be-
come ubiquitous as a means of interacting with software
systems. Currently to perform re-testing, a developer either
uses test harnesses that call methods of the underlying logic
as if initiated by a GUI, which requires major changes to
the software architecture and does not test the “end user”
software, or testers perform very limited smoke testing of
the GUI using manual tools.

In this paper, we present a new technique for automated
smoke testing of GUI software with minimal tester inter-
action. Our technique automates GUI structure analysis,
test case generation, oracle creation, code instrumentation
and execution, coverage evaluation, regeneration and re-
execution of test cases. Our technique also automatically
identifies smoke tests for the GUI. We present preliminary
results of experiments demonstrating its feasibility for daily

re-testing of GUIs.

High-level Design: Figure 1 shows the primary tools
employed by our technique. All tools interact with each
other via a common GUI representation. We first describe
the representation and then briefly describe each tool.

Test
Executor

Test Oracle
Generator

Coverage
Evaluator

Event-flow Graphs
GUI
Representation

| Integration Tree

| Objects & Properties

Code
Instrumenter

Test case
Generator

Figure 1. Tools Used for Re-testing.

The GUI representation is a formal model of the soft-
ware’s GUI. Note that the entire representation is extracted
automatically from the implemented GUI using a GUI Rip-
per. The GUI is modeled as a set of objects O = {01, 02,
..., o;} (e.g., label, form, button, text) and a set
of properties P = {p1, pa, ..., pi} of those objects (e.g.,
background-color, font, caption). Each GUI will
use certain types of objects with associated properties; at
any specific point in time, the GUI can be described in terms
of all the objects that it contains, and the values of all their
properties.

A Test Case Generator uses the representation to auto-
matically generate smoke tests. The smoke tests are deter-
mined by a Coverage Evaluator that specifies smoke testing
requirements using several coverage criteria: (1) Event Cov-



erage, which requires that individual events in the GUI be
exercised, (2) Event-Interaction Coverage, which requires
all events in a given path be exercised, and (3) Length-n
Event-sequence Coverage, which requires event sequences
of a given length be exercised.

A Test Oracle Generator collects/extracts complete (or
partial) state information of the GUI. This information is
used for verfying the correctness of the GUI during re-
testing. We can generate oracle information at different lev-
els of decreasing cost and accuracy: (1) Complete in which
all windows, invisible, visible, and their properties are col-
lected, (2) Complete Visible in which all visible windows
and their properties are collected, (3) Active Window in
which the active window and its properties are collected,
and (4) Widget in which only information about the widget
in question is collected.

A Test Executor automatically replays the entire test
suite. It takes as input the test suite to replay and the level
of oracle to incorporate as a test verifier. The test designer
has the ability to select the level of oracle to use and from
that, the test executor executes the tests and outputs from
the tests are automatically verified. The level of oracle in-
formation to incorporate has overheads as discussed in the
experiment section. The test executor further categorizes
the outputs as successful or unsuccessful and these results
are then processed by the testers.

Experiments: We now present results of experiments to
show that our re-testing technique is practical. We selected
a set of programs developed in-house as our subject applica-
tions. Table 1 summarizes the characteristics of these pro-
grams.

In the experiment, we manipulated three independent
variables: (1) P, i.e., the six subject programs, (2) LOI,
the four levels of oracle information detail, i.e., complete,
complete visible, active window, and widget, and (3) LOT,
the four levels of testing. Note that for a given test run, LOI
> LOT, i.e., the information must be generated before it can
be used.

On each run, with program P, levels LOI, levels LOT,
we generated test information for 1000 test cases and mea-
sured the total generation time and memory required. We
then executed all these test cases for each of the 10 possible
LOI and LOT combinations. In all, for our complete exper-
iment, we generated and executed 6 * 10 * 1000 = 60,000
test cases.

Results: The levels of testing (LOT1-LOT4) correspond
directly to the oracle information that was collected, i.e.,
complete, complete-visible, active window, and widget.
Figure 3 shows the total execution times for TerpSpread-
Sheet for all possible combinations of LOI and LOT. We see
that using all-windows, is, in general expensive compared to
widgets. Figure 2 compares the memory requirement for all
of our subject programs for all levels of oracle. LOIO rep-

resents test cases with no oracle information. The memory
requirements grow very rapidly when using detailed level
of test oracle.

Subjects Windows| LOC |Classes| Components
TerpPaint 8 9287 42 7
TerpSpreadsheet 6 9964 25 5
TerpPad 8 1747 9 5
TerpCalc 3 4356 9 3
TerpDraw 5 4769 4 3
TerpManager 1 1452 3 1

TOTAL 31 31575| 92 24

Table 1. Subject Applications

mLOI0 OLOK mLOI3 @LOI2 ELOI ‘

10000000
1000000 -
100000 -
10000
1000

100 4

Kilobytes

= - o =
g s k4 i S
@ s ? 3 g
3 = o I
& 2 ] 5 s
= [
pplication

Figure 2. Storage Requirements. Y-axis is

logarithmic

—4—_OT4 —8—LOT3 =A—LOT2 =%=LOT1

14000
12000 X
10000
8000 ._':;O—’/'——o
6000 -
4000 -
2000 -

Time for 1000 testcases (sec)

LOI4 LOI3 LOI2 Lon
Level of Oracle Information (LOI)

Figure 3. Time for TerpSpreadSheet

Conclusions and Future Work: We presented a tech-
nique for re-testing software that has a GUL. We empiri-
cally demonstrated that the technique is practical and may
be used for smoke testing nightly/daily builds of GUI soft-
ware. Our technique is not restricted to smoke testing of
nightly builds only. In the future, we will extend our tech-
nique to generate and execute tests other than smoke tests.




