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ABSTRACT
Although graphical user interfaces (GUIs) constitute a large
part of the software being developed today and are typi-
cally created using rapid prototyping, there are no effective
regression testing techniques for GUIs. The needs of GUI
regression testing differ from those of traditional software.
When the structure of a GUI is modified, test cases from the
original GUI are either reusable or unusable on the modified
GUI. Since GUI test case generation is expensive, our goal is
to make the unusable test cases usable. The idea of reusing
these unusable (a.k.a. obsolete) test cases has not been ex-
plored before. In this paper, we show that for GUIs, the
unusability of a large number of test cases is a serious prob-
lem. We present a novel GUI regression testing technique
that first automatically determines the usable and unusable
test cases from a test suite after a GUI modification. It then
determines which of the unusable test cases can be repaired
so they can execute on the modified GUI. The last step is
to repair the test cases. Our technique is integrated into a
GUI testing framework that, given a test case, automatically
executes it on the GUI. We implemented our regression test-
ing technique and demonstrate for two case studies that our
approach is effective in that many of the test cases can be
repaired, and is practical in terms of its time performance.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools
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Verification, reliability, human factors.
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control-flow graph, GUI call-graph, call-tree, classification
of events.

1. INTRODUCTION
Graphical User Interfaces (GUIs) are pervasive in today’s

software systems and constitute as much as half of software
code [18, 13]. The correctness of a software system’s GUI is
paramount in ensuring the correct operation of the overall
software system. One way, and the common way, to gain
confidence in a GUI’s correctness is through comprehensive
testing. GUI testing requires that test cases (sequences of
GUI events that exercise GUI widgets) be generated and ex-
ecuted on the GUI [14]. However, currently available tech-
niques for obtaining GUI test cases are resource intensive,
requiring significant human intervention. Even though a few
automated GUI test case generation schemes have been pro-
posed [16], in practice, test cases are still being generated
manually using capture/replay tools [11].

When using a capture/replay tool, a human tester inter-
acts with the application under test (AUT); the capture com-
ponent of the tool stores this interaction in a file that can be
replayed later using the replay component of the tool. Our
experience has shown that generating a typical test case
with 50 events for different widgets takes 20-30 minutes us-
ing capture-replay tools. Because of the time that it takes,
a tester typically develops few test cases (100-300) for the
software interface and hence, each test case is valuable.

In addition, most GUIs are designed using rapid proto-
typing [18], in which software is modified and tested on a
continuous basis. The continuous modification of a GUI re-
quires that test cases be reusable across versions, as it would
be too expensive to generate new test cases for each version.

Although regression testing [6, 22, 24, 25] is an important
software maintenance activity for traditional software, ac-
counting for as much as one-third of the total cost of software
production [20, 4], regression testing of GUIs has remained a
largely unexplored area. The needs of GUI regression testing
differ from those of traditional software. Regression testing
research has focused on the development of regression test
selection techniques that from a test suite choose a set of test
cases that represent correct input and are deemed necessary
to validate the modified software. Test cases that cannot
be rerun (also known as obsolete test cases [24]) are ignored
and simply discarded. The problem of unusable test cases
is especially serious for GUIs, since GUI modifications make
a large number of test cases unusable, requiring expensive
regeneration.



When a GUI is modified, the test cases in a test suite fall
into one of two categories: usable and unusable. In the “us-
able” category, the test cases are still valid for the modified
GUI and can be rerun. In the “unusable” category, the
test cases cannot be rerun to completion. For example, a
test case may specify clicking on a button that may have
been deleted or moved. In early capture/replay tools that
represented user events in terms of pixel coordinates of GUI
widgets (also known as analog mode [1]), a moved widget
could not be identified. However, modern capture/replay
tools do not rely solely on coordinates for test case exe-
cution but maintain extra information such as the handle,
type, and label (if any) of the widget, enabling the replayer
to locate the widget when it has been moved. However,
even with these modern tools, a large number of test cases
are made unusable because of GUI layout changes such as
the creation of a new menu hierarchy, moving a widget from
one menu to another, and moving a widget from one window
to another. As will be seen in Section 6 we demonstrate that
more than 74% of the test cases become unusable.

In this paper, we present a novel regression testing tech-
nique for GUIs. Our key idea is not to throw away test
cases that are unusable for the modified GUI but to auto-
matically repair them so they can execute on the modified
GUI. For reasons discussed later, we focus on producing test
cases that are “similar” to the original ones. With our new
repairing technique, a tester can (1) rerun test cases that
are usable for the modified GUI, as currently done, (2) re-
pair and rerun previously unusable test cases, and (3) create
new test cases to test new functionality. As will be seen in
Section 6, our technique was able to repair more than 70%
of the test cases made unusable by a new version of the GUI
in our case study.

To perform GUI regression testing, we leverage the GUI
representations that we developed in our GUI testing frame-
work [17, 15, 13]. More specifically, we create a control
model of the event structure of a GUI, use the model to de-
termine the modifications, check if the test is usable on the
modified GUI and if not, repair it if possible. When there
are multiple ways to repair a test case, we use all of the
ways, and thus produce more test cases. We have developed
tools for automatic creation of our regression techniques, the
representations, and replay of the repaired test cases.1

The contributions of this paper include:

1. the first regression testing technique that automati-
cally generates new test cases from unusable test cases,

2. a checker that determines if an existing test case is
usable or unusable on a modified GUI and if unusable
determines if it can be repaired,

3. a repairer that takes a repairable GUI test case and
repairs it to execute on the modified GUI,

4. experimental demonstration on real applications that
our technique is effective and practical, and

5. integration of the regression testing technique into a
framework for GUI testing.

In the next section, we formally define a GUI test case
and outline the different ways in which GUI modifications
may effect GUI test cases. We then define GUI control-flow
graphs and GUI call-graphs in Section 3. A GUI regression
testing example is presented in Section 4. The design of
a regression tester that employs the repairing technique is

1http://guitar.cs.umd.edu

described in detail in Section 5. In Section 6, we describe re-
sults of regression testing case studies performed on Adobe’s
Acrobat Reader and WordPad. Finally, in Section 7, we
present related research and in Section 8, conclude with a
discussion of ongoing and future work.

2. GUI MODEL AND TEST CASES
In this section, we first present a model of GUIs that we

developed for a GUI testing framework [17, 15, 13]. We
then define a GUI test case and formally define unusable
and usable test cases.

A GUI is modeled as a set of objects/widgets O = {o1,
o2, . . . , om} (e.g., label, form, button, text) and a set of
properties P = {p1, p2, . . . , pl} of those objects (e.g., font,
caption). Each GUI will use certain types of objects with
associated properties; at any specific point in time, the state
of the GUI can be described in terms of all the objects that
it contains, and the values of all their properties. Formally
we define the state of a GUI as follows:

Definition: State of a GUI is the set P of all the prop-
erties of all the objects O that the GUI contains.

A distinguished set of states called its valid initial state
set is associated with each GUI.

Definition: A set of states SI is called the valid initial
state set for a particular GUI iff the GUI may be in any
state Si ∈ SI when it is first invoked.

The state of a GUI is not static; events performed on the
GUI change its state. These states of a GUI are called reach-
able states. The events are modeled as state transducers.

Definition: The events E = {e1, e2, . . . , en} associated
with a GUI are functions from one state to another state of
the GUI.

The function notation Sj = e(Si) is used to denote that
Sj is the state resulting from the execution of event e in
state Si. Events occur as part of a sequence of events. Of
importance to testers are sequences that are permitted by
the structure of the GUI. We restrict our testing to such
legal event sequences, defined as follows:

Definition: A legal event sequence of a GUI is
e1; e2; e3; . . . ; en where ei+1 can be performed immediately
after ei.

An event sequence that is not legal is called an illegal
event sequence. For example, in MS Word, Cut (in the Edit

menu) cannot be performed immediately after Open (in the
File menu), and thus the event sequence <Open, Cut> is
illegal (ignoring keyboard shortcuts).

Finally, we define a GUI test case as:
Definition: GUI test case T is a pair (S0, e1; e2; . . .;

en), consisting of a state S0 ∈ SI , called the initial state for
T, and a legal event sequence e1; e2; . . . ; en.

If the initial state specified in the test case is not reachable
in the GUI and/or its event sequence is illegal, then the test
case is not executable.

Definition: GUI test case (S0, e1; e2; . . . ; en) is unus-
able if a modification of a GUI causes the state S0 to not
be reachable in the GUI or if the sequence e1; e2; . . . ; en can-
not execute to completion.

Unusable test cases cannot be executed on the GUI and
are usually discarded.

Definition: GUI test case (S0, e1; e2; . . . ; en) is usable
if it can execute to completion on a modified GUI.

Since GUI test cases are expensive to develop, we have
developed a new technique to repair them. We use a repre-



sentation of the structure of the GUI to first detect changes
to the GUI’s structure and then use this information to re-
pair the unusable test cases. Also, since today’s GUIs are
large, i.e., they consist of a large number of events and win-
dows, our representation decomposes the GUI into manage-
able parts.

3. REPRESENTATION
In this section we give an overview of a GUI control-flow

graph (G-CFG) and a GUI call-graph (G-call graph) that we
developed for a GUI testing framework [17]. In the frame-
work, the represesentations are used for coverage and test
oracles. We now develop a technique based on this represen-
tation to detect modifications to the structure of the GUI.
These graphs together represent a GUI’s structure and can
be automatically obtained from the GUI by performing a
traversal of the GUI’s event structure [17].

By representing a GUI with G-CFGs and a G-call graph,
the original and modified representations can be compared
to reveal modifications made to the GUI and to identify
unusable test cases. Also, since these representations de-
compose the GUI hierarchically into manageable GUI com-
ponents, the repair can focus on only one component at a
time.

GUIs, by their very nature, are hierarchical, and the hier-
archy can be exploited to identify groups of GUI events that
can be analyzed in isolation of other parts of the GUI. One
hierarchy of the GUI, and the one used in this research, is
obtained by examining modal windows in a GUI. A modal
window is a window that, once invoked, monopolizes the
GUI interaction, restricting the focus of the user to a spe-
cific range of events within the window until the window is
explicitly terminated. The Print window in Adobe Acrobat
Reader is an example of a modal window. All other win-
dows in a GUI are called modeless2 windows as they do not
restrict the user’s focus but they merely expand the set of
GUI events available to the user. For example, in Adobe Ac-
robat Reader, performing the event Find opens a modeless
window entitled Find.

At all times during interaction with the GUI, the user in-
teracts with events within a modal dialog. This modal dialog
consists of a modal window X and a set of modeless win-
dows that have been invoked, either directly or indirectly by
X. The modal dialog remains in place until X is explicitly
terminated. Intuitively, the events within the modal dialog
form a GUI component.

Definition: GUI component C is an ordered pair (RF ,
UF), where RF represents a modal window in terms of its
events and UF is a set whose elements represent modeless
windows also in terms of their events. Each element of UF
is invoked by an event in UF or RF .

Note that, by definition, events within a component do
not interleave with events in other components without the
components being explicitly invoked or terminated. Thus,
the operation of modal windows is very much like proce-
dure/method calls.

A GUI component is represented as a GUI control-flow
graph (G-CFG). Intuitively, a G-CFG statically represents
all possible interactions among the events in a component,
just like a control flow graph for programs statically repre-
sents all possible program paths.

2
http://java.sun.com/products/jlf/ed2/book/HIG.Glossary.html#51680
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Figure 1: G-CFG for Part of Acrobat Reader.

Definition: A G-CFG for a component C is a 4-tuple
<V, E, B, I> where:

1. V is a set of vertices representing all the events in the
component. Each v ∈V represents an event in C.

2. E ⊆ V × V is a set of directed edges between ver-
tices. Event ei follows ej iff ej may be performed im-
mediately after ei. An edge (vx, vy) ∈ E iff the event
represented by vy follows the event represented by
vx.

3. B ⊆ V is a set of vertices representing those events of
C that are available to the user when the component
is first invoked.

4. I ⊆ V is the set of events that invoke other compo-
nents.

An example of a G-CFG for a part of the Main3 compo-
nent of Acrobat Reader is shown in Figure 1. At the top are
three vertices (File, Edit, and Help) that represent part of
the pull-down menu of Acrobat Reader. They are events
that are available when the Main component is first invoked.
Once File has been performed in Reader, any of Edit, Help,
Open, and Save events may be performed. Hence there are
edges in the G-CFG from File to each of these events. Note
that Open, About and Discover are shown with dashed ovals.
We use this notation for events that invoke other compo-
nents, i.e., I = {Open, About, Discover}. Other events in-
clude Save, Cut, Copy, and Paste. After any of these events
is performed in Reader, the user may perform File, Edit,
or Help, shown as edges in the G-CFG.

Once all the components of the GUI have been individu-
ally represented as G-CFGs, the remaining step is to con-
struct a G-call graph to identify interactions among com-
ponents. These interactions take the form of invocations,
defined formally as:

Definition: Component Cx invokes component Cy iff
Cx contains an event ex that invokes Cy.

Intuitively, a G-call graph shows the invokes relationships
among all the components in a GUI. In general, the rela-
tionships among components are represented by a directed
acyclic graph (DAG), since multiple components may invoke
a component. However, the DAG can be converted into a
tree by copying nodes. A tree model simplifies our algo-
rithms based on tree traversals of the call-tree. Formally, a
call-tree is defined as:

Definition: A GUI call-tree is a triple < N ,R,B >,
where N is the set of components in the GUI and R ∈ N

3Without loss of generality, we assume that all GUIs have
a Main component, i.e., the component that is presented to
the user when the GUI is first invoked.
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Figure 2: GUI call-tree for Part of Acrobat Reader.

is a designated component called the Main component. B
is the set of directed edges representing the invokes relation
between components, i.e., (Cx, Cy) ∈ B iff Cx invokes Cy.

Figure 2 shows an example of a GUI call-tree representing
a part of the Acrobat Reader’s GUI. The nodes represent the
components of the GUI and the edges represent the invokes
relationship between the components. Component names
indicate their functionality. For example, FileOpen is the
component of Reader used to open files. The tree in Fig-
ure 2 has an edge from Main to FileOpen showing that Main
contains an event, namely Open (see Figure 1) that invokes
FileOpen.

4. A GUI REGRESSION TESTING EXAM-
PLE

We now present an overview of our GUI regression testing
technique by showing (1) examples of GUI modifications,
(2) examples of test cases that have become unusable for
the modified GUI, (3) an intuitive idea of how analysis of
the GUI can help identify the unusable test cases, and (4)
how unusable test cases may be repaired to obtain new test
cases. It should be noted that only structural changes in a
GUI make a test case unusable. If the semantics of a node
change, then the test cases would be usable although the
GUI’s output may change.

Figure 3 presents a GUI, its modified version, and their
corresponding G-CFGs. The original GUI consists of 4 events,
Cut, Copy, Paste, and Print, all directly accessible when
the GUI is invoked. The modified GUI contains 3 of the 4
original events; Print has been deleted and the remaining
3 events have been grouped into a pull-down menu, which
is opened by clicking on Edit. The semantics of individual
events have not changed. Figures 3(c) and (d) show the G-
CFGs of the original and modified GUIs respectively. The
original GUI’s G-CFG is fully connected with 4 vertices rep-
resenting the 4 events. The modified GUI’s G-CFG is quite
different from that of the original GUI; it is no longer fully
connected and Edit must be performed before any other
event can be performed. The following four sets of changes
may be obtained, summarizing the differences between the
two G-CFGs:

1. events deleted = {Print}.
2. events added = {Edit}.
3. efg edges deleted = { (Cut, Cut), (Copy, Copy),

(Paste, Paste), (Print, Print), (Cut, Copy),
(Cut, Paste), (Cut, Print), (Copy, Cut),
(Copy, Paste), (Copy, Print), (Print, Cut),
(Print, Copy), (Print, Paste), (Paste, Cut),
(Paste, Copy), (Paste, Print)}.

4. efg edges added = {(Edit, Edit), (Edit, Cut),

(Edit, Copy), (Edit, Paste), (Cut, Edit),

(Copy, Edit), (Paste, Edit)}.

Four event sequences used to test the original GUI are

shown in Table 1. Column 1 shows the test case number,
column 2 shows the event sequence of the test case, column
3 shows the events in the G-CFG used by the test case, and
column 4 shows the edges of the G-CFG covered by the test
case. The following observations can be made by examining
these test cases and the 4 sets above:

1. Since Print was deleted from the GUI (events deleted),
event sequence 1 is illegal for the modified GUI.

2. Since (Cut, Paste) and (Copy, Cut) have been deleted
from the GUI (efg edges deleted), event sequences
3 and 4 are illegal for the modified GUI.

3. Event sequence 2 is still legal since Cut is available in
the modified GUI (starting in an initial state in which
Edit has been performed).

Intuitively, looking at the original and modified GUIs,
event sequences 3 and 4 may be modified (or repaired) to
obtain legal event sequences. One repair to event sequence
3 yields <Cut; Edit; Paste> and two repairs to event se-
quence 4 yields <Copy; Edit; Cut; Edit; Paste>. These
two repaired event sequences are legal and may be used to
test the modified GUI. It is not obvious how event sequence
1 may be repaired since it contains an event, namely Print,
that is no longer available in the modified GUI. In this exam-
ple, this event sequence may be discarded as non-repairable
and not used for regression testing. This example shows
that some unusable test cases may not be repairable. After
repairing, the test designer can choose from a total of three
event sequences and use them for regression testing. Note
that since event sequence 2 has already been executed on the
original GUI, and if none of the events in this sequence have
been modified, the test designer may choose to not rerun it
(unless something has changed in the underlying code). In
that case, the remaining two event sequences, 3 and 4, can
be used for regression testing plus any new test cases.

Since a test case may become unusable by several modifi-
cations made to the GUI, it may need to be repaired several
times before it is usable, and our techique performs multiple
actions to repair a test case.

Note that only adding new events and edges and not delet-
ing any edges or nodes from a G-CFG cannot result in illegal
event sequences. The event sequences from the original test
suite neither use any of the new events nor do they cover
any of the new edges. Since edges and nodes are not deleted,
the test case can still exercise the GUI.

5. REGRESSION TESTING
Our regression testing technique consists of two parts: a

checker that categorizes a test case as being usable or unus-
able; if unusable, it also determines if the test case can be
repaired. The second part is the repairer that repairs the
unusable, repairable test case. Although for ease of expla-
nation, these two parts are treated individually, they could
be merged together in an implementation.

The regression tester takes as input the G-CFGs and G-
call trees for both the original and modified GUI, the valid
initial states SI for the modified GUI, and test cases for
the original GUI. The checker partitions the original test
suite into unusable and usable test cases. Importantly, it
can also determine whether or not an unusable test can be
repaired. Intuitively, a test case can be repaired if its initial
state is still valid for the modified GUI (i.e., the GUI can be
brought into the state) and if its event sequence can be made
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Figure 3: A Regression Testing Example.

# Event Sequence Events Used Edges Covered
1 Copy; Print; Cut {Copy, Cut, Print} {(Copy, Print), (Print, Cut)}
2 Cut {Cut} {}
3 Cut; Paste {Cut, Paste} {(Cut, Paste)}
4 Copy; Cut; Paste {Cut, Copy, Paste} {(Copy, Cut), (Cut, Paste)}

Table 1: Four Event Sequences for the Original GUI.

original test suite

usable test cases unusable test cases

not repairable

repaired
new 

test cases

regression test suite

discardselect

Selected usable 
test cases

repair

Figure 4: The New Regression Testing Method.

legal for the modified GUI. To make a GUI event sequence
legal, we borrow an error-recovery technique from compiler
technology; we skip events or try to insert a single new event
until a legal event sequence is obtained [3]. This sequence
can be found by skipping over events or by including events
from the modified GUI. Formally, we define a repairable test
case as:

Definition: An unusable test case is repairable if its
initial state S0 is reachable, and its event sequence can be
made legal for the modified GUI, i.e., (ei, ek>i) ∈ E) or
{(ei, ex), (ex, ek>i)} ⊂ E for E, for 1 ≤ i ≤ n of the modified
GUI’s G-CGF.

Of the unusable test cases, the repaired test cases form a
part of the regression test suite whereas the non-repairable
ones are discarded. This new GUI regression testing method
is summarized in Figure 4. Note that new test cases, gen-
erated to test those unusable parts of the GUI that were
not tested by the repaired test cases, are also a part of the
regression test suite plus selected usable test cases.

The regression tester, contains the following components:

• Test case checker partitions the original test suite
into (1) usable test cases, (2) repairable unusable test
cases, and (3) non-repairable unusable test cases.
• Test case repairer repairs the unusable test cases by

adding and deleting events to the test case in order to
match the event sequence with the modified GUI.

Regression
Tester

Regression Test Suite

Original
Test
Suite

Test Case 
Checker

usable
Test Cases

Coverage
Evaluator

Test Case
Generator

Repaired
Test Cases

New
Test Cases

Output

Input
Not

Repairable

(1)

(2)

unusable 
Test Cases

Test Case
Repairer

Selected
usable

Test Cases

Select(3)

Figure 5: Regression Tester’s Components and their
Interactions.

Figure 5 shows the checker and repairer of the regression
tester and their interactions. The figure also shows the in-
teractions of these components with a test case generator
and a coverage evaluator to generate new test cases that
test new parts of the GUI [16, 17]. Together, the repaired,
new, and selected usable test cases form the regression test
suite. We now present the details of the design of the test
case checker and repairer.

5.1 Test Case Checker
The test case checker’s primary function is to identify un-

usable test cases and of those, which can be repaired. The
test-case checker determines whether an event sequence in



a test case is reusable by first identifying the modifications
made to the GUI by traversing the G-CFGs and G-call trees
of the original GUI amd modified GUI.

Since we want this analysis to be efficient, we simplify the
analysis by making a number of reasonable assumptions.
We assume that events and components: (1) have unique
names (renaming can be carried out to accomplish this) and
(2) are not renamed across versions of the GUI unless they
are modified. For example, if an event File is not modified,
then it is called File in the modified GUI. In case some
events or components are renamed, then the test designer
is made aware of these changes by the GUI developer who
must maintain a log of all such changes.

Using these assumptions, we can automatically identify
and classify GUI modifications as simple additions and dele-
tions to the G-CFG and G-call tree. Note that similar
approaches of tracking additions/deletions on control flow
graphs for software have been used for incremental data-flow
and code-optimizations [19] and incremental testing [9].

Events within a component, represented by a G-CFG,
may be modified by adding or deleting a vertex or edge.
If GCFGo and GCFGm are the G-CFGs of a component
that exists in both the original GUI and the modified GUI
respectively, then the following sets of modifications are ob-
tained by performing set subtraction. Note that the func-
tions V ertices and Edges return the sets V (the set of ver-
tices) and E (the set of edges) for the G-CFG in question.

1. The set of all new vertices in the G-CFG:
vertices added ← V ertices(GCFGm)−
V ertices(GCFGo);

2. The set of all vertices deleted from the original G-CFG:
vertices deleted ← V ertices(GCFGo)−
V ertices(GCFGm);

3. The set of all new edges added to the G-CFG:
efg edges added← Edges(GCFGm)−Edges(GCFGo);

4. The set of edges deleted from the original G-CFG:
efg edges deleted← Edges(GCFGo)−Edges(GCFGm);

As illustrated earlier in Section 4, the above sets can be
used to identify unusable test cases.

Similarly, a call-tree may be modified by adding or delet-
ing a component or edge. Let Go and Gm be the call-trees of
the original and modified GUIs respectively. The following
sets of modifications may be obtained from these two call-
trees. Note that Nodes and CompEdges return the sets N
and B for the call-tree respectively.

1. The set of components added to the G-call tree:
components added ← Nodes(Gm)−Nodes(Go);

2. The set of components deleted from the G-call tree:
components deleted ← Nodes(Go)−Nodes(Gm);

3. The set of edges added to the G-Call tree:
comp edges added ← CompEdges(Gm)−
CompEdges(Go);

4. The set of edges deleted from the G-call tree:
comp edges deleted ← CompEdges(Go)−
CompEdges(Gm);

Note the difference between the edges of a G-CFG and
those of a call-tree. Edges of a G-CFG are ordered pairs of
the form (ex, ey), where ex and ey are events, whereas edges
of the G-call tree are ordered pairs of the form (Cx, Cy),
where Cx and Cy are components. An edge in the G-call
tree (Cx, Cy) represents the set of all edges (ey, ez), where
ey is an event in component Cx that invokes Cy.

The set of modifications obtained above are used to iden-
tify unusable test cases. Specifically, the following two sets
are used to identify unusable test cases:

1. vertices deleted, and
2. edges deleted ←− efg edges deleted ∪

EventEdges(comp edges deleted), where EventEdges
is a function that takes a set of G-call tree edges and
returns the corresponding edges in terms of events.

To identify unusable test cases, we can employ at least two
different techniques. The first one, which we call the graph
matching technique, takes an event sequence < e1; e2; . . . ; en >

and determines whether (ei, ei+1) for 1 < i < n − 1 is a
valid edge in a modified G-CFG. This technique is simple
to implement and shows good performance for small test
suites. An alternative technique, which we show in Sec-
tion 6 to be more efficient than graph matching for large
test suites, records GUI modifications in two bit vectors,
EDGES-MODIFIED and EVENTS-MODIFIED. Each test
case is also associated with two bit vectors, EVENTS-USED
and EDGES-USED. Determining whether a test case is us-
able/unusable can be done by using very fast bitwise AND
operations. Using this information, the test-case checker
identifies test cases that were made unusable by each modi-
fication. For example, if an event e is deleted from the GUI,
then all test cases that use event e are unusable. Note that
one GUI modification may be reflected in more that one set
of modifications, and a test case may be marked as unusable
several times because of the same modification. As will be
seen later, being marked as unusable several times has no
effect on the repairability of the test case.

Once the unusable test cases have been identified, they are
repaired by the test case repairer, which is described next.

5.2 Test Case Repairer
The test case repairer repairs (algorithm given in Fig-

ure 6) illegal event sequences so that is can be executed
on the modified GUI. An illegal event sequences uses either
a deleted event or a deleted edge. Intuitively, if an event
ei, at position i in an event sequence is deleted from the
GUI, then an event-sequence repairer must remove ei from
the event sequence. However, to obtain a legal resulting
event sequence, the event-sequence repairer scans the event
sequence from left to right, starting at position i+1, until it
finds an event ej such that either: (1) < ei−1; ej > is a legal
event sequence for the modified GUI, or (2) there is another
event ex, from the set of all the events in the modified GUI,
such that < ei−1; ex; ej > is a legal event sequence for the
modified GUI.

It could happen that there is more than one way to repair
a test case. When multiple ways are found, then all of the
repairs are used to produce more test cases.

Once such an ej is found, then the sub-sequence < ei; . . . ; ej−1 >

is deleted from the event sequence and, in case 2, ex is in-
serted. Figure 7(a) shows these two cases. In case 1, the
repairer searches for an event ej from ei+1 to en, such that
ei−1 follows ej , and in case 2, it searches for an event ex,
from the set of all the events in the modified GUI, such that
ei−1 follows ex and for some ej in the event sequence, ej

follows ex.
In general, this technique may be extended to finding a se-

quence of events < ep; . . . ; eq > such that < ei−1; ep; . . . ; eq; ej >

is a legal event sequence for the modified GUI. However,
computing such a sequence is expensive and can produce a



ALGORITHM : EventSeqRepairer( 1

S: illegal event sequence; vertices deleted: vertices; 2,3

edges deleted: edges; EVENTS: events; 4,5

EVENTS-USED, EDGES-USED: Bit vector) 6,7

{ foreach (ei ∈ vertices deleted) do 8,9

while (eth
i bit of EVENTS-USED == 1) do 10

repairability←− repair del event(t, ei); 11

if (! repairability) then return(FALSE); 12

update(EVENTS-USED, S); 13

update(EDGES-USED, S); 14

foreach ((ei, ej) ∈ edges deleted) do 15

if ((ei ∈ EVENTS && ej ∈ EVENTS) then 16

while ((ei, ej)th bit of EDGES-USED == 1) do 17

repairability←− repair del edge(S, (ei, ej)); 18

if (! repairability) then return(FALSE); 19

update(EDGES-USED, S); 20

return(TRUE); } 21,22

PROCEDURE : repair del event( 23

S: Event Sequence; e: Event) 24,25

{ for k ←− p+1 to n do 26,27

if ek ∈ follows(ep+1) then 28

S ←− < e1; . . . ; ep−1; ek; . . . ; en >; 29

done1 ←− TRUE; break; 30

else if ∃ ex ((ex ∈ follows(ep−1))

&& (ek ∈ follows(ex))) then 31

S ←− < e1; . . . ; ep−1; ex; ek; . . . ; en >; 32

done2 ←− TRUE; break; 33

return (done1 || done2); } 34,35

PROCEDURE : repair del edge( 36

S: Event Sequence; (ea, eb): Edge) 37,38

{ for k ←− b to n do 39,40

if ek ∈ follows(ea) then 41

S ←− < e1; . . . ; ea; ek; . . . ; en >; 42

done1 ←− TRUE; break; 43

else if ∃ ex ((ex ∈ follows(ea))

&& (ek ∈ follows(ex))) then 44

S ←− < e1; . . . ; ea; ex; ek; . . . ; en >; 45

done2 ←− TRUE; break; 46

return (done1 || done2)} 47

Figure 6: Algorithm for the Event-sequence Re-
pairer.

test case that is very different from the original one. Our
goal is to produce similar test cases to the original one, a
necessary condition to retest already tested functionality of
the GUI.

Similarly, Figure 7(b) shows the repairing technique for
the deleted edge (ei, ej). In this technique, the event se-
quence is scanned from left to right, starting with the event
ej , the second element in the deleted edge. Case 1 tries to
find an event ea from the subsequence < ej ; . . . ; en > such
that ea follows ei. Case 2 tries to find an event ex, from
the set of all the events in the modified GUI, such that ex

follows ei and ej follows ex.
As noted earlier, an event sequence may have become ille-

gal because of several changes made to the GUI. Each event
sequence is checked for all instances of deleted events and
edges that made the event sequence illegal.

The algorithm for the repairer is shown in Figure 6. The
main algorithm is called EventSeqRepairer that takes a
number of parameters: (1) the illegal event sequence S,
(2) the set vertices deleted, (3) the set edges deleted,

(4) the set of all the events available in the modified GUI,
(5) the bit vector EVENTS-USED associated with the
event sequence, and (6) the bit vector EDGES-USED.
EventSeqRepairer returns TRUE if the event sequence was
repaired successfully, and FALSE otherwise. The algorithm
starts by examining each event ei that was deleted from the
GUI (Line 9). If S uses this event (Line 10), then it is il-
legal. The procedure repair del event is invoked to repair
S (Line 11). If S is repairable, then repair del event re-
turns TRUE, otherwise EventSeqRepairer terminates with
a FALSE result (Line 12). Since repair del event may
have changed the events used by S, the bit vector EVENTS-
USED is updated to reflect the changes (Line 13). Note
that the while loop continues examining the event sequence
for the deleted event ei. After S has been repaired for all
deleted events, its EDGES-USED is updated to reflect all
the changes made so far (Line 14). EventSeqRepairer con-
tinues by examining each edge (ei, ej) that was deleted (Line
15). It makes sure that both events ei and ej are available in
the GUI (Line 16). If S uses this edge (Line 17), then it is
illegal. The procedure repair del edge is invoked to repair
S (Line 18). If S is repairable, then repair del edge re-
turns TRUE, otherwise EventSeqRepairer terminates with
a FALSE result (Line 19). EDGES-USED is updated to
reflect the changes made to S (Line 20). If EventSeqRepairer
has not terminated using any of the return statements
(Lines 12, 19), then the event sequence has been success-
fully repaired (Line 21).

The procedure repair del event tries to repair the ille-
gal event sequence caused by deleting an event. It takes two
parameters: (1) the event sequence S, and (2) the deleted
event e. It starts scanning the subsequence < ep+1; . . . ; en >

from left to right (Line 27) until one of the cases shown in
Figure 7(a) is found or the sequence terminates. If case 1 is
solved (Line 28), then the sequence is updated (Line 29)
and success reported (Line 30). Otherwise if case 2 is solved
(Line 31), then the sequence is updated (Line 32, 33).
The procedure repair del edge is similar to repair del event.
It scans the subsequence < eb; . . . ; en > from left to right
until one of the cases of Figure 7(b) is found.

Note that since repairer employs information from the G-
CFG and G-call trees (represented by follows), the event
sequence repairer is guaranteed to produce legal event se-
quences.

6. CASE STUDIES
Having presented the algorithms of the regression tester,

we now examine its practicality using actual software ver-
sions and test runs. We identified the following questions
that need to be answered to show the practicality of the
repairing process and to explore the cost of using different
implementations of the checker.

1. How many test cases are made unusable by GUI mod-
ifications across versions?

2. How many unusable test cases are repairable?
3. How much time does the checker and repairing pro-

cesses take?
4. How does the graph-matching based checker algorithm

compare with the bit-vector based algorithm; for what
test suite size does one outperform the other?

To answer the questions we needed to take different ver-
sions of software, count the number of test cases made un-
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Figure 7: Repairing an Event Sequence that Uses a
(a) Deleted Event ei, and (b) Deleted Edge (ei, ej).

usable/usable and not repairable, while measuring the cost
of the overall process.

6.1 Subject Applications
For our studies, we used two programs, each with two ver-

sions as our subjects. We used one commercially available
software - Adobe’s Acrobat Reader, and a program devel-
oped in-house - our own implementation of MS WordPad.

The first subject application, Adobe’s Acrobat Reader
version 4.0 (for Linux) and version 5.0 (for MS Windows
2000) were used as our original and modified GUIs respec-
tively. Adobe’s Acrobat Reader version 4.0 consists of 15
components with 176 events (not counting short-cuts). Ver-
sion 5.0 is much more complex, consisting of 25 components
with 351 events.

The second subject application was developed in-house.
We employed our own specifications and implementation
of the MS WordPad software. The software consists of 36
modal windows, and 362 events (not counting short-cuts).
Our implementation of WordPad is similar to Microsoft’s
WordPad except for the Help menu, which we did not
model. A modified version of the WordPad GUI was created
by grouping three events into a separate pull-down menu. As
Figure 8 shows, Find, FindNext, and Replace were grouped
into a new pull-down menu item called Search. Note that
these items were deleted from their original location, i.e.,
from the Edit menu. In terms of the elements of the G-CFGs
of WordPad’s Main component, no nodes were deleted but
three edges were deleted – (Edit, Find), (Edit, FindNext),
and (Edit, Replace). One node labeled Search was added
with its associated edges.

Search

Find… 
Find Next
Replace…

Figure 8: Modified WordPad GUI with a New Pull-
down Menu Item called Search.
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Figure 9: Time Taken to Generate 400 Test Cases.

6.2 Study 1: Performance and Effectiveness
of the Regression Testing Technique

For both subjects, the G-CFGs and G-call trees of the
original and modified GUIs were automatically generated.
All the components of the regression tester were implemented.
Specifically, the test case checker and repairer were imple-
mented in Perl. The study was conducted on a 1.7 GHz
Pentium Workstation with 1 GB of RAM. 400 test cases
were generated manually using a capture/replay tool4 for
each subject application. We then executed the checker to
determine how many of the test cases became unusable and
how many were (un)repairable. We then repaired these test
cases. Results for each subject application are described
next.

Adobe’s Acrobat Reader: We manually generated 400
test cases in 7.59 hours using the capture/replay tool. The
time taken to generate each test case is shown in Figure 9.
The changes in the GUI made 296 (74%) test cases unusable.
The remaining 104 (26%) test cases were usable. The total
time taken for the checker was 6.5 sec. We then executed
the test case repairer on the unusable test cases and suc-
cessfuly repaired 211 (71.3%) of them. The total time taken
for repairer was 17.76 sec. We had a total of 315 (78.75%)
usable test cases. Since the original test cases were gen-
erated manually and our repairing technique did not make
significant changes to the test cases, the resulting test cases
were similar to the original. The results are summarized in
Figure 10 and Table 2.

WordPad: We manually generated 400 test cases using
the capture/replay tool in 5.47 hours. The GUI modifica-
tions affected 210 of the 400 test cases. The checker took
6.15 seconds. We repaired all 210 test cases since all that
was needed was to replace Edit with Search in each unus-

4Available at http://guitar.cs.umd.edu



repaired

unrepairable

usable

unusable

Figure 10: Results of Adobe’s Reader Case Study.

Step
Subject

Application
Time

Reader 7.59 hrs.
WordPad 5.47 hrs.
Reader 6.5 sec.

WordPad 6.15 sec.
Reader 17.76 sec.

WordPad 18.01 sec.

Manual
Generation

Checker

Repairer

Table 2: Time Taken at a Glance.

able test case. The lengths of the original and repaired test
cases were identical. The time taken was 18.01 sec. These
times are summarized in Table 2.

In this case study, we have demonstrated that our repair-
ing technique is practical and effective and can be used for
GUI regression testing. Our experience with GUI testing
has shown that the currently employed techniques, which
are largely manual aided with capture/replay tools, require
a long time to develop only a few hundred test cases. The
use of this technique helps reduce the cost of GUI regression
testing. Note that the repaired test cases obtained form an
important part of the regression testing test suite. The test
designer will also need to generate additional test cases to
check the new parts of the GUI.

6.3 Study 2: Comparing the Bit-vector with a
Graph Matching Checker

As noted in Section 5.1, we can employ two different al-
gorithms for our checker. In this study, we compare the
execution times of the bit vector based checker with the
simpler graph matching based checker. The time for the bit
vector based checker consisted of measuring the setup time
for (1) computing the sets of vertices/edges/components
added/deleted (2) for each test case the bit vectors EVENTS
EDGES-USED, and (3) two global vectors EVENTS-MODIFIED
and EDGES-MODIFIED encoding the edges and events mod-
ified in the GUI. Once this information was computed, deter-
mining whether a test case was unusable was done by using
the binary operation AND on each test case’s bit vectors
and the global EVENTS/EDGES-MODIFIED vectors. The
time taken for this algorithm is shown by the curve marked
Bit-vector in the graph of Figure 11. The time taken for
the graph matching algorithm is shown by the curve marked
Graph in the graph of Figure 11.

Figure 11 shows that although the bit-vector based checker
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Figure 11: Comparing Bit-vector with Graph
Matching Checker.

requires initial setup time, subsequent detection of unusable
test cases is very fast. In fact, it performs better than the
graph algorithm for more than 50 test cases. Also, the bit
vectors computed for each test case can be used across mul-
tiple versions of the GUI.

7. RELATED WORK
Although regression testing of conventional software has

received a lot of attention [6, 22, 24, 25], there has been
almost no reported research on GUI regression testing. The
only reported research was by White [27] who proposes a
Latin square method to reduce the size of the regression
test suite. The underlying assumption made therein was
that it is enough to check pair wise interactions between
components of the GUI. The technique requires that each
menu item appears in at least one test case. This strategy
seems promising since it also employs GUI events. However,
the technique needs to be extended to GUI items other than
menus. Moreover, detailed studies need to be conducted to
verify whether the pair wise interactions checking assump-
tion is sufficient.

Record/playback tools [7] are currently the most popular
tools for GUI testing but they provide little support for re-
gression testing. Consequently, even a small change in the
layout of the GUI requires redeveloping a large number of
test cases from scratch.

Several strategies for regression testing of conventional
software have been proposed [8, 21, 12]. One regression test-
ing strategy proposes rerunning all test cases that have not
become obsolete. Since this retest-all strategy is resource in-
tensive, numerous efforts have been made to reduce its cost.
Selective retest techniques [2, 5, 10] attempt to reduce the
cost of regression testing by testing only selected parts of
the software. These techniques have traditionally focused
on two problems: (1) regression test selection problem, i.e.,
selecting a subset of the existing test cases [24], and (2) cov-
erage identification problem, i.e., identifying portions of the
software that require additional testing. Solutions to the re-
gression test selection problem traditionally compare struc-
tural representations (e.g., control-flow graphs [24], control-
dependence graphs [23]) of the original and modified soft-
ware. Test cases that cause the execution of different paths
in these structures are likely to be selected for retesting.
Among selective retest strategies, the safe approaches re-



quire the selection of every existing test case that exercises
any program element that could be affected by a given pro-
gram change. Although computationally less expensive than
the retest-all strategy, safe approaches still make heavy de-
mands on resources. At the other end of the spectrum of
selective retest strategies are minimization approaches that
attempt to select the smallest set of test cases necessary
to test affected program elements at least once [26]. These
techniques attempt to assure that some structural coverage
criterion is met by the test cases that are selected. Practical
strategies fall between safe and minimization strategies.

Other regression testing techniques include analyzing changes
in functions, types, variables, and macro definitions [21], us-
ing def-use chains [8], constructing procedure dependence
graphs [6], and analyzing code and class hierarchy for object-
oriented programs [12].

8. CONCLUSIONS
This paper presents a new regression testing technique

for GUIs that repairs unusable test cases. Test cases are
very time consuming and tedious to construct manually so
our motivation for this work is to try to maintain test cases
rather than generate new ones. To represent the events of
a GUI, we employed representations that showed the event
behaviour of a component by a GUI control flow graph, and
the invoking behavior of components by a GUI call-graph.
These representations of the original and modified GUIs are
compared to detect unusable test cases and then used to re-
pair them. We show that our repairing technique is efficient
and effective.

Modification of conventional software also produces ob-
solete test cases [24]. Studies need to be conducted to de-
termine whether the repairing technique developed in this
paper can be extended to repair unusable test cases for con-
ventional software.
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