
Using a Goal-driven Approach to

Generate Test Cases for GUIs

Atif M. Memon, Martha E. Pollack, Mary Lou Soffa
Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260 USA
+1 412 624-8850

{atif, pollack, soffa}@cs.pitt.edu

ABSTRACT
The widespread use of GUIs for interacting with soft-
ware is leading to the construction of more and more
complex GUIs. With the growing complexity comes
challenges in testing the correctness of a GUI and the
underlying software. We present a new technique to au-
tomatically generate test cases for GUIs that exploits
planning, a well developed and used technique in ar-
tificial intelligence. Given a set of operators, an initial
state and a goal state, a planner produces a sequence
of the operators that will change the initial state to the
goal state. Our test case generation technique first ana-
lyzes a GUI and derives hierarchical planning operators
from the actions in the GUI. The test designer deter-
mines the preconditions and effects of the hierarchical
operators, which are then input into a planning system.
With the knowledge of the GUI and the way in which
the user will interact with the GUI, the test designer
creates sets of initial and goal states. Given these ini-
tial and final states of the GUI, a hierarchical planner
produces plans, or a set of test cases, that enable the
goal state to be reached. Our technique has the ad-
ditional benefit of putting verification commands into
the test cases automatically. We implemented our tech-
nique by developing the GUI analyzer and extending a
planner. We generated test cases for Microsoft’s Word-
Pad to demonstrate the viability and practicality of the
approach.

Keywords
GUI testing, application of planning, GUI regression
testing, automated test case generation, generating al-
ternate plans

1 INTRODUCTION
Graphical User Interfaces or GUIs have become an im-
portant and accepted way of interacting with today’s
software. Although they make software easy to use from

This paper appears in the Proceedings of the 21st Interna-
tional Conference on Software Engineering, 1999, held in
Los Angeles, CA, USA. Copyright of this paper belongs to
the ACM.

a user’s perspective, they complicate the software de-
velopment process. In particular, the testing of GUIs
is more complex than testing conventional software, for
not only does the underlying software have to be tested
but the GUI itself must be exercised and tested to check
for bugs in the GUI implementation. Even when tools
are used to generate GUIs automatically, they are not
bug free, and these bugs may manifest themselves in
the generated GUI, leading to software failures. Hence,
testing of GUIs continues to remain an important aspect
of software testing.

Testing the correctness of a GUI is difficult for a number
of reasons. First of all, the space of possible interactions
with a GUI is enormous, in that each sequence of GUI
commands can result in a different state, and a GUI
command may need to be evaluated in all of these states.
This results in a large number of input permutations
[19] thereby requiring extensive testing, e.g., Microsoft
released almost 400,000 beta copies of Windows95 [7]
targeted at finding program failures. Another prob-
lem relates to determining the coverage of a set of test
cases. For conventional software, coverage is measured
using the amount and type of underlying code exercised.
These measures do not work well for GUI testing, be-
cause what matters is not only how much of the code
is tested, but in how many different possible states of
the system each piece of code is tested. An important
aspect of GUI testing is verification of its state at each
step of test case execution. An incorrect GUI state can
lead to an unexpected screen, making further execution
of the test case useless since actions in the test case may
not match the right buttons on the GUI screen. Thus,
execution of the test case must be terminated as soon as
an error is detected. Also, if verification checks are not
inserted at each step, it may become difficult to iden-
tify the actual cause of the error. And lastly, regression
testing presents special challenges for GUIs, because the
input-output mapping does not remain constant across
successive versions of the software [13].

An important component of testing is the generation
of test cases. Manual creation of test cases and their
maintenance, evaluation and conformance to coverage

criteria are very time consuming. Thus some automa-
tion is necessary when testing GUIs. Current tools to
aid the test designer in the testing process are capture
replay tools [17, 5]. These tools capture the user events
and GUI screens during an interactive session. The
recorded sessions are later played back whenever it is
necessary to recreate the same GUI states. Several at-
tempts have also been made to automate test case gen-
eration for GUIs. One popular technique is program-
ming the test case generator [9]. For complete testing
this requires that the test designer program all possi-
ble decision points in the GUI. However, this approach
is time consuming, and is susceptible to missing im-
portant GUI decisions. Other automation techniques
include using variable finite state machines (VFSMs)
[15]. Work has also been done to reduce the total num-
ber of test cases either by focusing the test generation
process [4, 7, 10, 11] or by establishing an upper bound
on the number of test cases [19]. Many of these tech-
niques are not in common use either because of their
lack of generality or because they are difficult to use.

In this paper, we present a new technique to automati-
cally generate test cases for GUI systems. Our approach
exploits planning techniques developed and used exten-
sively in artificial intelligence (AI). The key idea is that
the test designer is likely to have a good idea of the
possible goals of a GUI user, and it is simpler and more
effective to specify these goals than to specify sequences
of actions that achieve them. Our test generation sys-
tem takes these goals as input and generates sequences
of actions that achieve these goals. These sequences of
actions or “plans” become test cases for the GUI. Our
testing system first performs an automated analysis of
the hierarchical structure of the GUI actions to identify
operators that will be used in the plan generation. The
test designer next describes the preconditions and ef-
fects of these planning operators, which are then input
to the planner. To generate test cases, a set of initial
and goal states is input into the planning system, which
applies hierarchical plan generation to produce multiple
hierarchical plans. We implemented our technique and
demonstrate its effectiveness and efficiency through a
set of experiments.

The important contributions of the method presented
in this paper include the following:

• We make innovative use of a well known and used
technique in AI, which has been shown to be capa-
ble of solving problems with large state spaces [8].
Combining the unique properties of GUIs and plan-
ning, we are able to demonstrate the practicality of
the approach.
• Our technique exploits structural features present
in GUIs to reduce the model size and complexity
and improve the efficiency of test case generation.

Home

OK

Select

Up
Cut

Paste

Open

Merge

Save

SaveAs

Home

OK

Select

Up

File Edit

Home

OK

Select

Up

MAIN SCREEN

Figure 1: The Example GUI.

• In contrast to earlier approaches where verification
commands have to be inserted manually at points
determined by the test designer, our system auto-
matically inserts the verification commands at ev-
ery step of the test case. This helps pinpoint the
errors faster.
• Exploiting the structure of the GUI makes regres-
sion testing easier. Changes made to one part of
the GUI do not affect the entire test suite. Most of
our generated scripts are updated by making local
changes.
• Platform specific details are incorporated at the
very end, making the entire test suite portable.
Portability assures that test cases written for GUI
systems on one platform also work on other plat-
forms [18].

The next section gives a brief overview of our system us-
ing an example GUI. Section 3 briefly reviews the fun-
damentals of AI plan generation. Section 4 describes
how planning was applied to the GUI test case gener-
ation problem. In Section 5 we describe a prototype
system and give timing results for its execution. In Sec-
tion 6 we discuss other work done on automated test
case generation and conclude in Section 7.

2 OVERVIEW
In this section we present an overview of our test genera-
tion system through an example. The goal is to provide
the reader with a high level picture of the operation
of the system, and highlight the role of the test de-
signer in the overall test case generation process. Details
about the algorithms used by the GUI testing planner
are given in Section 4.

Figure 1 present an simple example GUI for editing files,
which is used throughout the paper. This GUI can be
used for loading objects from files, manipulating these
graphical objects (by cutting and pasting) and then sav-
ing the objects in another file. At the highest level,
the GUI has a pull down menu with two buttons that
can be clicked to open new buttons. For example the

f1.fig

f4.fig

f7.fig

f9.fig
FILES

new.fig

GOAL STATE

(a) INITIAL STATE

(b)

html

xfig

bin Figuresprivate

gif

f9.fig

f1.fig f4.fig new.fig f7.fig

/

Directory Structure and Location of files

html

xfig

bin Figuresprivate

gif

f9.fig

f1.fig f4.fig new.fig f7.fig

/

Directory Structure and Location of files

FIG

Figure 2: (a) Initial State and (b) Goal State.

File button opens a menu with Open, Merge, Save and
SaveAs buttons. The Edit button opens a menu with
Cut and Paste buttons, which are used to cut and paste
objects from the main screen. Each of Open, Merge and
SaveAs buttons open windows with several more but-
tons. These are used to traverse the directory hierarchy
and select a file. Up moves up one level in the directory
hierarchy. Select is used to either enter subdirectories
or select files. Home changes the current directory to the
home directory. The window is closed by clicking on the
OK button.

The central component of our test case generation sys-
tem is a planner. A planner is a set of algorithms
and mechanisms developed to solve a planning prob-
lem. A planning problem consists of an initial state,
a goal state, a set of objects and a set of “operators”
(or domain actions). Operators are usually described
in terms of preconditions and effects: conditions that
must be true for the action to be performed, and con-
ditions that will be true after the action is performed.
A solution to a given planning problem is a sequence of
instantiated operators that are guaranteed to result in
the goal state when generated from the start state. In
our example GUI, the operators relate to the buttons.

Consider Figure 2 (a), which shows the directory struc-
ture and a collection of files in a directory. Assume
this to be the initial state. Using these files and
the GUI, we define a goal of making a drawing contain-

Phase Step Test
Designer

Automatic
System

Setup 1 Derive Hierar-
chical GUI
Operators

2 Define
Preconditions
and Effects of
Operators

Plan

Generation

3 Identify a
Task

4 Generate Test
Cases

Iterate 3 and 4 for Multiple Scenarios

Table 1: Roles of the Test Designer and the System
During Test Case Generation.

ing two objects shown in Figure 2(b) and then storing
it in file new.fig. This is the goal state. Note that
new.fig can be obtained in numerous ways, e.g., loading
file f9.fig and cutting the extra objects, by merging f1.fig
and f7.fig and cutting the square, or by constructing the
figure by cutting and pasting objects.

The roles of the test designer and the tasks automati-
cally performed by the system are summarized in Ta-
ble 1. The test case generation process is partitioned
into two phases, the setup phase and plan generation
phase. In the first step of setup, the testing system cre-
ates an abstract model of the GUI and returns a list of
derived operators from the model to the test designer.
The test designer then defines the preconditions and ef-
fects of the operators in a simple language provided by
the planning system using knowledge about the GUI.
During the plan generation phase, the test designer de-
scribes scenarios by defining a set of initial and goal
states for test case generation. In the fourth step, our
system generates a test suite for the scenarios. The test
designer can iterate through the plan generation phase
any number of times generating more test cases.

For our example GUI, the simplest approach in step 1
would be for the system to identify one operator for each
directly executable GUI action (e.g., Open, File, Cut,
Paste, etc.). These are called primitive operators and
are in a one-to-one correspondence with the directly ex-
ecutable actions. Using this approach, the test designer
would need to define the preconditions and effects for
all the operators shown in Figure 3(a). (As a naming
convention, we disambiguate with meaningful prefixes
whenever operator names are the same, such as Up in
Figure 1.) Although conceptually simple, this approach
is inefficient for generating test cases for GUIs. This
is because many of these operators merely make other

Primitive Operators = {File, Edit, Open, Merge, Save, SaveAs, Cut, Paste,
Open.Up, Open.Select, Open.Home, Open.Ok, Merge.Up, Merge.Select,
Merge.Home, Merge.Ok, SaveAs.Up, SaveAs.Select, SaveAs.Home,
SaveAs.Ok, Save}.

Derived Operators = {Load_File, Combine_File, Store_File, Edit_Cut,
Edit_Paste, File_Save}.

(a)

(b)

Figure 3: Operators for the Example GUI.

operators available, but do not interact with the under-
lying software. These simple types of operators can be
tested in isolation.

An alternative modeling scheme, and the one used in
this work, models the domain hierarchically with high
level operators that decompose into sequences of lower
level ones. Although high level operators could be devel-
oped manually by the test designer, our system avoids
this inconvenience by automatically performing most of
the abstraction. More specifically, the modeling process
begins with primitive operators, and uses certain struc-
tural properties of GUIs to generate additional levels of
operators. The first of these are intermediate operators
which are composed of a sequence of primitive opera-
tors. For example, our system would define an interme-
diate operator EDIT CUT to be composed of a sequence
of clicks on EDIT and CUT, i.e., a mapping EDIT CUT =

<EDIT, CUT>. Note that intermediate operators can
also be viewed as macros. This approach of modeling
prevents generation of test cases that contain the Edit
action in isolation whose only effect is to open a menu
containing Cut and Paste. Examples of other interme-
diate operators in the example GUI are EDIT PASTE and
FILE SAVE.

The second set of operators generated by our system
are abstract operators. These will be discussed in more
detail in Section 4. The basic idea is that these are op-
erators that need to be expanded by a later call to the
planner. Abstract operators for our example GUI in-
clude LOAD FILE, COMBINE FILE and STORE FILE. The
result of the first step of the setup phase is a set of op-
erators that are returned to the test designer. The hier-
archical operators returned for our example are shown
in Figure 3(b). In order to keep a correspondence be-
tween the original GUI and these derived operators, the
system also stores mappings, given in Table 2. For ab-
stract operators the mapping to primitive operators will
be incomplete at this stage. A subsequent call to the
planner is required and is indicated by the Φ.

The test designer then specifies the preconditions and
effects for each derived operator. An example of a plan-
ning operator, EDIT CUT is shown in Figure 4. EDIT CUT

is an intermediate operator obtained by combining the

Operator Name Expansion

LOAD FILE <File, Open, Φ, OK>
COMBINE FILE <File, Merge, Φ, OK>
STORE FILE <File, SaveAs, Φ, OK>
FILE SAVE <File, Save>
EDIT CUT <Edit, Cut>
EDIT PASTE <Edit, Paste>

Table 2: Mappings of Derived Operators to Primitive
Operators.

Cut

Paste

Menu2

File Edit Menu1

isCurrent(Menu2)

FORALL OBJ in OBJECTS
DEL isCurrent(Menu2)

Preconditions:

Effects:

Selected(OBJ) => ADD inClipboard(OBJ)
DEL Selected(OBJ)
DEL onScreen(OBJ)

ADD isCurrent(Menu1)

Operator :: EDIT-CUT

Figure 4: A GUI Example of Planning Operators.

Edit and Cut actions. The operator contains two parts,
preconditions and effects. All the components in the
preconditions must hold in the GUI before the opera-
tor can be applied, e.g., for the user to click on the Cut
button, the current menu should be at the second menu
level, i.e. Menu2, as shown in Figure 4. One of the ef-
fects of the Cut action is that the selected objects are
moved to the clipboard. The language used to define
each operator is provided as an interface to the plan-
ning system. Specifying the preconditions and effects
is not difficult as this knowledge is already built into
the GUI. For example, the GUI specifications require
that Cut and Paste be made active (visible) only after
Menu2 is opened. This is precisely the precondition de-
fined for our example operator (EDIT-CUT) in Figure 4.
The test designer can also further reduce the set of op-
erators and define more abstractions by making use of
properties specific to the GUI being tested and by em-
ploying domain information. In addition, definitions of
commands that commonly appear across GUIs can be
maintained in a library and used for subsequent similar
applications.

The test designer begins the test case generation pro-
cess by identifying a task (initial and goal states) and
inputs the defined operators into the planning system.
The system automatically generates a set of test cases
that achieve the goal. Also inserted in the test cases
are validation statements that help verify the state of
the GUI at each step. An example of a plan for the
task in Figure 2 is shown in Figure 5. This is a high

level plan that must be translated into primitive GUI
actions. The translation process makes use of the map-
pings stored during the modeling process. One such
translation or test case is shown in Figure 6. Note the
use of Φ in both components of the plan indicating a
required call to the planner. Since the maximum time
is spent in generating the high level plan, it is desir-
able to generate a family of test cases from this single
plan. This is achieved by generating alternate sub-plans
at lower levels. These sub-plans are generated much
faster and can be substituted into the high level plan
to obtain alternate test cases. One such alternate low
level test case generated from the same plan is shown
in Figure 7. Such a hierarchical mechanism also makes
regression testing faster, since changes that are made
to one component does not invalidate all test scripts.
The higher level plans can still be retained and local
changes can be made to scripts specific to the changed
component of the GUI.

STORE_FILE("xfig", "new.fig")LOAD_FILE("xfig", "f4.fig")

Higher Level Plan

Figure 5: A Plan for the Goal.

LOAD_FILE("xfig", "f4.fig") STORE_FILE("xfig", "new.fig")

File Open

Φ OK

File SaveAs

Φ OK

chDir("html")Home

chDir("xfig") SelectFile("new.fig")

File Open Home

chDir("html") chDir("xfig")

SelectFile("f4.fig") OK

File SaveAs

SelectFile("new.fig")

OK

SelectFile("f4.fig")

Higher Level Plan

Expanding to Lowest Level

Expanding One Level

Final Test Case

Figure 6: Expanding the Higher Level Plan.

LOAD_FILE("xfig", "f4.fig") STORE_FILE("xfig", "new.fig")

File Open

Φ OK

File SaveAs

Φ OK

chDir("html")

chDir("xfig")

SelectFile("f4.fig")

SelectFile("new.fig")

chDir("html") chDir("xfig")

SelectFile("f4.fig") OK

File SaveAs

SelectFile("new.fig")

OK

File Open Up Up

Higher Level Plan

Expanding One Level

Final Test Case

Expanding to Lowest Level

Up Up

Figure 7: An Alternate Expansion Leads to a New Test
Case.

3 PLAN GENERATION
We now provide some details on plan generation. Au-
tomated plan generation has been widely investigated
and used within the field of artificial intelligence. Given
an initial state, a goal state, a set of operators, and a
set of objects, a planner returns a set of steps (instan-
tiated operators) to achieve the goal. Many different
algorithms for plan generation have been proposed and
developed. The interested reader can consult [16] for
examples of recent work in the field.

In this work, we employed a recently developed planning
technology that increases the efficiency of plan genera-
tion. Specifically, we generate single level plans using
the Interference Progression Planner (IPP) [12], a sys-
tem which extends the ideas of the Graphplan system
[1] for plan generation. Graphplan introduced the idea
of performing plan generation by converting the rep-
resentation of a planning problem into a propositional
encoding. Plans are then found by means of a search
through a leveled graph, in which even levels (0, 2, . . . , i)
represent all the (grounded) propositions that might be
true at stage i of the plan, and odd levels (1, 3, . . . i+1)
represent actions that might be performed at time i+1.

LOAD_FILE("xfig", "new.fig") STORE_FILE("xfig", "new.fig")

COMBINE_FILE("FIG", "f1.fig")

COMBINE_FILE("xfig", "f4.fig")

1

2

3

2

LOAD_FILE("xfig", "new.fig") COMBINE_FILE("FIG", "f1.fig")

COMBINE_FILE("xfig", "f4.fig") STORE_FILE("xfig", "new.fig")

LOAD_FILE("xfig", "new.fig") COMBINE_FILE("xfig", "f4.fig")

COMBINE_FILE("FIG", "f1.fig") STORE_FILE("xfig", "new.fig")

(b) Linear Orders

(a) The Partial Order Plan

Figure 8: A Partial Order Plan and its Two Lineariza-
tions.

The planners in the Graphplan family, including IPP,
have shown increases in planning speeds of several or-
ders of magnitude on a wide range of problems com-
pared to earlier planning systems that rely on the full
propositional representation and a graph search requir-
ing unification of unbound variables.

IPP uses a standard representation of actions in which
preconditions and effects can be parameterized: subse-
quent processing does the conversion to propositional
form.1 As is common in planning, IPP produces partial
order plans. A partial order plan is a solution to a plan-
ning problem if and only if every consistent linearization
of the partial order plan meets the solution conditions.
Figure 8 (a) shows the partial order plan obtained to
realize the goal shown in Figure 2 using our example
GUI. The steps are labeled with numbers that indicate
the order of plan execution. At any time i, all steps
labeled i can be performed in any order with respect
to one another but must precede all operators at time
i + 1. For example, the two COMBINE FILE actions (la-
beled 2) can be performed in either order, but they must
precede the STORE FILE action (labeled 3) and must be
performed after the LOAD FILE action (labeled 1). We
obtain two legal orders, both of which are shown in Fig-
ure 8 (b), and thus two high level test cases that may
be expanded to yield a number of low level test cases.

IPP forms plans at a single level of abstraction. We
have extended this to hierarchical planning 2 which is

1In fact, IPP generalizes Graphplan precisely by increasing
the expressive power of its representation language, allowing for
conditional and universally quantified effects.
2Techniques have been developed in AI planning at multiple

valuable for GUI test case generation for several rea-
sons. Firstly, since GUIs tend to be large, the use of a
hierarchy allows us to decompose it into parts at differ-
ent levels of abstraction, resulting in greater efficiency.
Secondly, decomposition of the GUI results in generat-
ing plans for each level individually. Changes to one
component of the GUI does not invalidate all the test
cases. In fact, most of the test cases can be retained.
Changes need to be made only to the test cases specific
to the modified component, aiding regression testing.

One final point concerns the generation of alternative
plans. As noted earlier, one of the main advantages of
using the planner in this application is to automatically
generate alternative plans for the same goal. AI plan-
ning systems typically generate only a single plan; the
assumption is that the heuristic search control rules will
ensure that this is a high quality plan. (but cf. [20]).

In our system, we generate alternative plans in the fol-
lowing two ways.

1. Linearizing the partial order plans. The relative
order of some of the actions are not specified in
the partial order plan. We are free to choose any
linear order consistent with the partial order. All
possible linear orders of a partial order plan result
in a family of test cases.

2. Iterating during planning and generating different
test cases at each iteration.

4 PLANNING GUI TEST CASES
In developing a planning system useful for testing GUIs,
the first step is for the system to identify operators. The
simplest approach is to define one operator for each di-
rectly executable GUI action. However, as we argued
earlier, there are advantages to forming the test case
plans in a hierarchical fashion. In our system, we begin
with primitive operators, which stand in a one-to-one
correspondence with the directly executable actions of
the GUI. Our system then analyzes the the primitive
operators, using structural properties of GUIs, as de-
scribed below, to generate two additional levels of op-
erator. The intermediate operators are expanded like
macros to obtain primitive operators, while the abstract
operators are replaced with a call to the planner, yield-
ing subplans.

levels of abstraction; this is typically called Hierarchical Task Net-
work (HTN) planning [3]. In HTN planning, domain actions are
modeled at different levels of abstraction, and for each operator
at level n, one specifies one or more “methods” at level n− 1. A
method is a single-level partial plan, and we say that an action
“decomposes” into its methods. HTN planning focuses on resolv-
ing conflicts among alternative methods of decomposition at each
level. In our work to date, we have avoided the need for such
conflict resolution.

To generate intermediate operators, our system first
identifies primitive expansion operators. These are op-
erators whose only effect is to make available other op-
erators, i.e., they expand the set of actions available to
the user. By definition, expansion operators do not in-
teract with the underlying software. The most common
example of expansion operators are buttons that gener-
ate pull down menus. All other primitive operators will
be called interaction operators as they interact with the
underlying software; common examples include buttons
for cutting or pasting text.

The first step in producing the operator hierarchy is to
identify all sequences of primitive expansion operators
supported by the GUI, and to construct an intermedi-
ate level operator for each such sequence. For simplicity,
consider a small part of our example GUI, one pull down
menu with one option (Edit) which can be opened to
give more options, i.e., Cut and Paste. The primitive
actions available to the user are Edit, Cut and Paste.
We identify Edit to be an expansion operator and Cut

and Paste to be interaction operators. Using this infor-
mation we obtain the following two intermediate oper-
ators.

EDIT_CUT = <Edit, Cut>

EDIT_PASTE = <Edit, Paste>.

Although new operators have been defined, these ac-
tually reduce the size of the overall operator set made
available to the planner. The system hides Edit, Cut
and Paste, making only the intermediate operators
namely EDIT CUT and EDIT PASTE available to the plan-
ner. These intermediate operators are later replaced by
the primitive operators when generating the final test
case. This model prevents generation of test cases in
which Edit is used in isolation, i.e., the model forces
the use of Edit either with Cut or with Paste. In order
to provide a meaningful interaction with the underlying
software, either Cut or Paste must be used immediately
after Edit. Test cases in which Edit stands in isolation
can be handled separately.

Next, our system generates abstract operators by identi-
fying expansion operators that have a special property,
i.e., once invoked, they monopolize the GUI interaction,
limiting the focus of the user to a specific range of other
actions until such time as they are explicitly terminated.
An example is preference setting in many GUI systems:
the user clicks on Edit and Preferences, then spends
an indefinite period of time modifying the preferences,
and finally explicitly terminates the interaction by ei-
ther clicking OK or Cancel. We can model a complete
such interaction with an abstract operator that decom-
poses into three parts: an expansion operator, followed
by an explicit call to the planner, the result of which

represents the actions a user might have during the fo-
cused interaction, followed by a primitive termination
operator. Note that the expansion operator may itself
be at the intermediate level. The abstract operator is
a complex structure since it contains all the necessary
components of a planning problem. These include the
initial and goal states, the set of objects and the set of
operators.

Again consider a small part of the example GUI, a
menu with two options, namely Open and SaveAs.
Opening each of these, we get further options that
are quite similar. In both cases, we can exit af-
ter pressing OK. The primitive operator set available
is Open, SaveAs, Open.Select, Open.Up, Open.Home,
Open.OK, SaveAs.Select, SaveAs.Up, SaveAs.Home

and SaveAs.OK. Once the user selects Open, the fo-
cus is limited to Open.Select, Open.Up, Open.Home

and Open.OK. Similarly, when the user selects SaveAs,
the focus is limited to SaveAs.Select, SaveAs.Up,
SaveAs.Home and SaveAs.OK. These observations lead
the system to define the following two abstract opera-
tors.

LOAD_FILE(args) = <Open, IPP(args), OK>

SAVEAS_FILE(args) = <SaveAs, IPP(args), OK>

Here we see the detailed instantiation of the call to the
planner, IPP(args), (previously denoted by Φ) that re-
turns a subplan. The parameters args to the plan-
ner contain all the essential components of the plan-
ning problem, i.e., an initial state, determined dynami-
cally at the point before the call, the goal state, which
is the desired GUI state after the call, and the set of
operators that are available during the limited focused
user interaction. In this case the set of operators is
SaveAs.Select, SaveAs.Home and SaveAs.Up.

The final set of operators given to the planner is con-
structed from the abstract, intermediate and a subset
of the primitive operators. The choice of which primi-
tive operators to make available to the planner is made
during the modeling phase. First, all the primitive oper-
ators that were used to compose intermediate operators
are not made available. Also, abstract operators hide
lower level GUI details, also hiding the primitive oper-
ators. These are also not made available at this level of
abstraction.

Now we can see how the complete planning system oper-
ates. The operators are assumed available before mak-
ing a call to this algorithm. Figure 9 shows the algo-
rithm for the test generation system. The parameters
(lines 1..5) include all the components of a planning
problem and a threshold (T) that controls the loop-
ing in the algorithm. The loop (lines 8..12) contains
the explicit call to the IPP planner while modifying

ALGORITHM :: GenTestCases(
S = Operator Set; G = Goal State; 1, 2

I = Initial State; O = Object Set; 3, 4

T = Threshold) { 5

planList ← {}; c← 0; 6, 7

/* Successive calls to the IPP planner,
modifying the operators before each call */
WHILE ((p == IPP (S,G, I,O)) ! = NO PLAN) 8

&& (c < T) DO { 9

InsertInList(p, planList); 10

S ← ModifyOperators(S, p); c++} 11, 12

linearPlans ← {};/* No linear Plans yet */ 13

/* Linearize all partial order plans */
FORALL e ∈ planList DO { 14

L ← Linearize(e); 15

InsertInList(L, linearPlans)} 16

testCases ← linearPlans; 17

/* decomposing the testCases */
FORALL tc ∈ testCases DO { 18

FORALL C ∈ Steps(tc) DO { 19

IF (C == intermediateOperator) THEN { 20

newC ← ExpandMacro(C); 21

REPLACE C WITH newC IN tc} 22

ELSEIF (C == abstractOperator) THEN { 23

SC ← OperatorSet(C); GC ← Goal(C); 24, 25

IC ← Initial(C); OC ← ObjectSet(C); 26, 27

/* Generate the lower level test cases */
newC ←
GenTestCases(SC, GC, IC, OC, T); 28

FORALL nc ∈ newC DO { 29

copyOftc ← tc; 30

REPLACE C WITH nc IN copyOftc; 31

APPEND copyOftc TO testCases}}}} 32

RETURN(testCases)} 33

Figure 9: The Complete Algorithm for Generating Test
Cases

the operator set once in the loop. At the end of this
loop, planList contains the entire partial order plan
set. Each partial order plan is then linearized (lines
13..16), leading to multiple linear orders. Initially the
test cases are just high level linear plans (line 17). The
decomposition process leads to lower level test cases.
Each step of the plan needs to be expanded to get lower
level test cases. If the step is an intermediate operator,
then the mappings are used to expand it (lines 20..22).
However, if the step is an abstract operator, then it is
expanded to a test case on its own and substituted into
this higher level plan (lines 23..32). Note the use of
extraction functions to access the planning problem’s
components at lines 24..27. The lowest level test cases
are returned as a result of the algorithm (line 33).

Plan Plan
Step Action

1 FILE-OPEN(“private”, “Document.doc”)
2 DELETE-TEXT(“muust”)
3 TYPE-IN-TEXT(“must”, Times, Italics, 12pt)
4 FILE-SAVEAS(“Samples”, “doc2.doc”)

1 FILE-OPEN(“private”, “report.doc”)
2 SELECT-TEXT(“this”)
3 FORMAT-FONT(“this”, Times, Italics, 12pt)
4 TYPE-IN-TEXT(“must”, Times, Normal, 12pt)
4 DELETE-TEXT(“needs to”)
5 FILE-SAVEAS(“Samples”, “report.doc”)

1 DELETE-TEXT(“This is”)
2 SELECT-TEXT(“example”)
3 FORMAT-FONT(“example”, Times, Bold, 14pt)

Table 3: Some WordPad Plans Generated for Different
Goals.

5 EXPERIMENTS
We conducted several experiments to ensure that our
system is practical and useful. These experiments were
run on an Ultra SparcStation running UNIX System V.
We summarize the results of some of these experiments
in the following paragraphs.

We used our system to generate test cases for a com-
monly used software GUI, namely Microsoft’s WordPad.
Some of the generated high level test cases are shown
in Table 3. The original number of primitive operators
were determined to be approximately 325. The hier-
archical model resulted in 32 operators at the highest
level of abstraction, i.e., roughly a ratio of 10 : 1. This
reduction in the number of operators is impressive and
helps speed up the plan generation process. Our earlier
experiments compared the performances of the hierar-
chical and single level approaches and found that the
single level approach takes much longer to generate test
cases than the hierarchical approach.

Defining preconditions and effects for the 32 operators
was fairly straightforward. The average operator size
was 5 lines, with the most complex operator requiring
10 lines of code. For the test generation phase, we de-
fined three additional operators for mouse and keyboard
events. The results of some of the runs are shown in
Table 4. Each row presents CPU execution times for
a different test scenario. The average time required to
generate a test case was quite low. These results show
that the maximum time is spent in generating the high
level plan (column 2). This same plan is then used to
generate a whole family of test cases by substituting al-
ternate low level sub-plans. These sub-plans are gener-
ated relatively faster (column 3 shows the time spent to
decompose each subplan once). This helps amortize the

Plan Plan Sub Total
No. Time Plan Time

(sec) Time (sec)
1 3.16 0.00 3.16
2 3.17 0.00 3.17
3 3.20 0.01 3.21
4 3.38 0.01 3.39
5 3.44 0.02 3.46
6 4.09 0.04 4.13
7 8.88 0.02 8.90
8 40.47 0.04 40.51

Table 4: Average Time Taken to Generate Test Cases
for WordPad.

cost of plan generation over multiple test cases. Plan 8,
which took the longest time to generate, was linearized
to obtain 2 high level plans, each of which were decom-
posed to give several low level test cases, the shortest of
which consisted of 25 actions.

The plans shown in Table 3 are at a high level of ab-
straction. Changes made at lower levels of the GUI have
no effect on these plans, making regression testing eas-
ier and less expensive since the GUI test cases are still
valid. For example, none of the plans in Table 3 con-
tain any low level physical details of the GUI. Changes
made to fonts, colors, etc. do not affect the test suite
in any way. Changes that modify the functionality of
the GUI can also be readily incorporated. For example,
if the WordPad GUI is modified such that additional
file opening features are introduced, then most of our
high level plans remain the same. Changes are needed
to subplans that are generated by the abstract operator
FILE-OPEN. Hence the cost of initial plans is amortized
over a large number of test cases.

We are also analyzing the much larger GUI of Microsoft
Word. The automatic modeling process has been suc-
cessful in reducing the number of primitive operators to
a ratio of 20 : 1.

6 RELATED WORK
Planning has been found to be useful in generating fo-
cused test cases [6] for a robot tape library command
language. However, the approach used there, of model-
ing each command as an operator, has scaling problems
for GUI testing. Also, no specific algorithms were pre-
sented to generate alternate cases.

In an attempt to improve coverage and guide test case
generation, [4] suggests that the test designer inserts ar-
tificial constraints in the domain model. The constraints
must be manually inserted, which also slows down the
test case generation time.

Latin square method [19] for test case generation is
used to reduce the number of test cases for GUI test-
ing. The underlying assumption is that it is enough to
check pairwise interactions between components of the
GUI requiring that each menu item appears in at least
one test case. This assumption appears insufficient for
GUIs since the sequence of actions performed on the
GUI may result in a new state, many of which need to
be exercised.

Test cases have been generated to mimic novice users
[7]. The approach is to use an expert to generate the
initial plan manually and then use genetic algorithm
techniques to generate longer paths. The assumption
is that experts take a more direct path when solving
a problem using GUIs whereas novice users often take
longer paths, deviating from the shortest. Although use-
ful for generating multiple scripts, the technique relies
on an expert to generate the initial script. The final
test case suite depends largely on the paths taken by
the expert user.

A finite state machine (FSM) based modeling approach
is suggested in [2]. However, FSM models have been
found to have scaling problems when applied to GUI test
case generation. Slight variations such as variable finite
state machine (VFSM) models have been proposed in
[15]. These require that verification checks be inserted
manually at points determined by the test designer.

One way to improve coverage is to introduce sets of data
and path variations. In [14] path variations and data
variations are defined by the test designer. One disad-
vantage is that this technique puts too much burden on
the test designer. The overall coverage is influenced by
the test designer.

7 CONCLUSIONS
A new approach is presented to generate test cases for
GUI system validation. The method is based on plan
generation techniques from AI to produce test cases that
represent patterns of user interaction with the GUI. Our
experiments indicate that our approach is practical.

Several coverage measures for GUIs can be developed
from our technique. Operator coverage defines the per-
centage of GUI actions that were used in the test cases.
Also, since there are many possible plans to achieve a
task, and the test cases are generated from a subset of
these, we measure plan coverage as the percentage of
plans that were used in test case generation.

Since the model exploits the structural properties of
GUIs, regression testing is made easier. Changes to
parts of the GUI do not affect the entire test suite.
These changes can be made locally and incorporated
in the test suite automatically. These observations are
consistent with our plans obtained in Section 5.

We plan to explore the possibility of inferring some of
the preconditions and effects automatically from the
GUI. We are also doing more experiments with larger
GUIs to determine if more powerful modeling techniques
are useful which exploit additional features of GUIs. For
effective testing we also intend to partition the input do-
main into classes of snapshots of initial and goal states
and select good representatives from each class.

8 ACKNOWLEDGMENTS
This research was partially supported by the Air Force
Office of Scientific Research (F49620-98-1-0436) and by
the National Science Foundation (IRI-9619579).

REFERENCES

[1] A. L. Blum and M. L. Furst. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1–
2):279–298, 1997.

[2] J. M. Clarke. Automated test generation from a behav-
ioral model. In Proceedings of Pacific Northwest Soft-
ware Quality Conference. IEEE Press, May 1998.

[3] K. Erol, J. Hendler, and D. S. Nau. HTN planning:
Complexity and expressivity. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-94), volume 2, pages 1123–1128, Seattle, Wash-
ington, USA, Aug. 1994. AAAI Press/MIT Press.

[4] S. Esmelioglu and L. Apfelbaum. Automated test gen-
eration, execution, and reporting. In Proceedings of
Pacific Northwest Software Quality Conference. IEEE
Press, Oct 1997.

[5] M. L. Hammontree, J. J. Hendrickson, and B. W. Hens-
ley. Integrated data capture and analysis tools for
research and testing an graphical user interfaces. In
P. Bauersfeld, J. Bennett, and G. Lynch, editors, Pro-
ceedings of the Conference on Human Factors in Com-
puting Systems, pages 431–432, New York, NY, USA,
May 1992. ACM Press.

[6] A. Howe, A. von Mayrhauser, and R. T. Mraz. Test
case generation as an AI planning problem. Automated
Software Engineering, 4:77–106, 1997.

[7] D. J. Kasik and H. G. George. Toward automatic gen-
eration of novice user test scripts. In M. J. Tauber,
V. Bellotti, R. Jeffries, J. D. Mackinlay, and J. Nielsen,
editors, Proceedings of the Conference on Human Fac-
tors in Computing Systems : Common Ground, pages
244–251, New York, 13–18 Apr. 1996. ACM Press.

[8] H. Kautz and B. Selman. The role of domain-specific
knowledge in the planning as satisfiability framework.
In R. Simmons, M. Veloso, and S. Smith, editors, AIPS
98, Proceedings of the Fourth International Conference
on Artificial Intelligence Planning Systems, pages 181–
189, 1998.

[9] L. R. Kepple. The black art of GUI testing. Dr. Dobb’s
Journal of Software Tools, 19(2):40, Feb. 1994.

[10] M. Kitajima and P. G. Polson. A computational model
of skilled use of a graphical user interface. In Proceed-
ings of ACM CHI’92 Conference on Human Factors in

Computing Systems, Modeling the Expert User, pages
241–249, 1992.

[11] M. Kitajima and P. G. Polson. A comprehension-based
model of correct performance and errors in skilled,
display-based, human-computer interaction. Interna-
tional Journal of Human-Computer Studies, 43(1):65–
99, 1995.

[12] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopoulos.
Extending planning graphs to an ADL subset. Lecture
Notes in Computer Science, 1348:273, 1997.

[13] B. A. Myers. Why are human-computer interfaces diffi-
cult to design and implement? Technical Report CS-93-
183, Carnegie Mellon University, School of Computer
Science, July 1993.

[14] T. Ostrand, A. Anodide, H. Foster, and T. Goradia.
A visual test development environment for GUI sys-
tems. In Proceedings of the ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis
(ISSTA-98), volume 23,2 of ACM Software Engineering
Notes, pages 82–92, New York, Mar.2–5 1998. ACM
Press.

[15] R. K. Shehady and D. P. Siewiorek. A method to au-
tomate user interface testing using variable finite state
machines. In Proceedings of The Twenty-Seventh An-
nual International Symposium on Fault-Tolerant Com-
puting (FTCS’97), pages 80–88, Washington - Brussels
- Tokyo, June 1997. IEEE.

[16] R. Simmons, M. Veloso, and S. Smith, editors. Proceed-
ings of the Fourth International Conference on Atri-
ficial Intelligence Planning Systems, Pittsburgh, PA,
June 1998. AAAI Press.

[17] L. The. Stress Tests For GUI Programs. Datamation,
38(18):37, Sept. 1992.

[18] A. Walworth. Java GUI testing. Dr. Dobb’s Journal of
Software Tools, 22(2):30, 32, 34, Feb. 1997.

[19] L. White. Regression testing of GUI event interactions.
In Proceedings of the International Conference on Soft-
ware Maintenance, pages 350–358, Washington, Nov.4–
8 1996. IEEE Computer Society Press.

[20] M. Williamson and S. Hanks. Optimal planning with a
goal-directed utility model. In Proceedings of the Sec-
ond International Conference on Artificial Intelligence
Planning Systems, pages 176–181, 1994.

