SOFTWARE TECHNOLOGIES

GUI Testing:
Pitfalls and Process

Atif M. Memon, University of Maryland

raphical user interfaces have
become a nearly ubiquitous
means of interacting with
software systems. The GUI
responds to user events, such
as mouse movements or menu selec-
tions, providing a front end to the
underlying application code. The GUI
interacts with the underlying code
through messages or method calls.
GUIs make software easy to use, and
developers are dedicating a larger por-
tion of code to implementing them.
GUIs can constitute as much as 60 per-
cent of an application’s total code
today. The use of GUIs in safety-criti-
cal systems is also growing, making
their correct operation imperative.
Given their increased importance,
testing GUIs for correctness can en-
hance the entire system’s safety, robust-
ness, and usability (http://www.cs.
umd.edu/~atif/dissertation.pdf). But
GUIs remain a neglected test research
area.

TOOLS AND TECHNIQUES

Current GUI testing techniques are
incomplete, ad hoc, and largely man-
ual. The most common tools use
record-playback techniques. A test
designer interacts with the GUI, gen-
erating mouse and keyboard events.
The tool records the user events, cap-
tures the GUI session screens, and then
stores the session—usually as a script.
The tester later plays back the recorded
sessions to re-create the events with dif-
ferent inputs.

This process is extremely labor inten-
sive, often relying on the test designer’s

ability to generate interesting GUI inter-
actions. An automatic test case genera-
tor can provide a higher level of support,
but a programmer must code it for all
possible decision points in the GUL

Automated or not, the time-consum-
ing record-playback approach easily
misses important GUI decisions. A pop-
ular alternative is to release beta copies
of the software and let the users do part
of the testing. For example, Microsoft
tested part of its Windows 95 software
by releasing almost 400,000 beta
copies.

GUI TESTING PITFALLS

Software testing is already labor and
resource intensive—often accounting
for 50 to 60 percent of total software
development costs—and GUI testing
poses further difficulties that tradi-
tional software testing techniques do
not adequately address.

Coverage criteria

Conventional software uses cover-
age criteria as a guideline for deter-
mining testing adequacy. These criteria
define sets of rules that test designers
use to determine the type and amount
of underlying code to test. For exam-

ple, a criterion for “event coverage”
might require all reachable events in a
GUI to execute at least once during a
complete cycle of test cases.

However, traditional coverage crite-
ria do not work well for GUISs. First,
GUI software differs from the under-
lying application code in its level of
abstraction, so mapping between GUI
events and the underlying code is not
straightforward. Code-based coverage
criteria do not necessarily address

GUIs differ from standard
software in ways that
complicate traditional
testing tools and
techniques.

problematic interactions between the
GUT’s user events and the application.

Second, even when experienced test
designers focus on specific parts of a
GUI, they may still find it impractical
to generate all possible test cases for
these parts. If the designers have to gen-
erate a subset of all possible test cases,
they often must select the subset dur-
ing test case generation. The difficulty
of anticipating a test case’s fault-detec-
tion capability makes it difficult, in
turn, to select the most effective subset.

Test oracles

Verifying whether the GUI executes
correctly poses a problem. The tradi-
tional verification tool is a test oracle—
a separate program that generates
expected results for a test case and com-
pares them with actual results. In con-
ventional software testing, the tester
invokes the oracle after the test case
executes and compares the final output
with the oracle’s expected output.

By contrast, a GUI test case requires
interleaving the oracle invocation with
the test case execution because an incor-
rect GUI state can lead to an unexpected
screen, which in turn can make further
test case execution useless. For exam-

August 2002




Software Technologies

ple, the test case might involve a button
on the GUI screen that no longer exists.
Thus, a GUI test case should terminate
as soon as the oracle detects an error.

Also, if the oracle does not verify the
GUI after each execution step in a test
case, pinpointing the error’s actual
cause can become difficult, especially
when the final output is correct but the
intermediate outputs are incorrect.
Consequently, in GUI test case execu-
tion, a tester gives the inputs one step
at a time and compares the expected
output with the GUI’s output after
each step. This interleaving compli-
cates GUI testing.

Regression testing

Test designers use regression testing
to ensure that code modifications do not
introduce new errors into already tested
code. Regressing the testing process pre-
sents special challenges for GUIs.

First, both inputs and outputs to a
GUI depend on the layout of graphical
elements. Changes in the layout—but-
ton placements, menu organization,
and so on—can change the input-out-
put mapping and render older test cases
useless. Similarly, the expected outputs
used by oracles may become obsolete.

Second, developers typically use rapid
prototyping for GUIs. This development
environment requires efficient regression
testing mechanisms that can detect the
frequent software modifications and
adapt the old test cases to them.

GUI TESTING PROCESS

Addressing the specific pitfalls of
GUI testing requires a clear methodol-
ogy that employs tools and techniques
integrated to use a standardized GUI
representation. This integration en-
sures that all test results are compatible
with each other.

Other goals include

e task automation to simplify the
test designer’s work;

o efficient overall test cycle to mini-
mize the frustration of an inher-
ently tedious and expensive pro-
cess;

Computer

e robust testing algorithms to detect
each time the GUI enters an unex-
pected state and to report all infor-
mation necessary to debug the
GUI; and

e portable tools and techniques to
allow test information—test cases,
oracle results, coverage reports,
and error reports—generated on
one platform to be used on all
other execution platforms.

Finally, the methodology should
employ tools and techniques that are
general enough to apply to a wide
range of GUIs.

GUIs require unique
testing techniques, but the
process for implementing
them is conventional.

Although GUIs differ from conven-
tional software in ways that require
unique testing techniques, the overall
process for implementing this method-
ology should follow the steps for con-
ventional software:

e Determine what to test by defin-
ing coverage criteria. A GUI cov-
erage criterion might require the
execution of each user interface
event to determine whether it
behaves correctly.

* Generate test case inputs from
software specifications and struc-
ture. For GUISs, these inputs con-
sist of events such as mouse clicks,
menu selections, and object
manipulations.

e Generate expected output to com-
pare with actual output. In GUIs,
the expected output includes
screen snapshots and window
positions and titles.

e Execute test cases and verify out-
put. Test cases execute on the soft-
ware, and the tester compares the
output with the expected output
from, for example, an oracle.

® Determine whether the GUI was
adequately tested. Once all test
cases have executed, the tester ana-
lyzes the software to check which
of its parts were actually tested. In
GUIs, the analysis checks events
and resulting GUI states.

The last step is especially important in
GUI testing, where coverage criteria
may not always be available or suffi-
cient.

After testing, the development team
corrects any identified problems. The
tester then performs regression testing
to help ensure the correctness of the
software’s modified parts and to estab-
lish confidence that the changes have
not adversely affected previously tested
parts.

Test designers develop regression test
suites that consist of new test cases and
a subset of the original test cases. The
subset of the original test cases retests
parts of the original software that may
have been affected by modifications.
The new test cases deal with parts of
the software not covered by the subset.

In GUISs, regression testing involves
analyzing the changes to the layout of
GUI objects.

ndividual test designers can instan-

tiate this high-level process to their

specific requirements. GUI testing is
far from a mature discipline. To help it
evolve, both researchers and practi-
tioners must contribute their experi-
ence.

Atif M. Memon is as an assistant pro-
fessor of computer science at the Uni-
versity of Maryland. He is also a
scientist at the Fraunhofer Center—
Maryland. Contact him at atif@cs.
umd.edu.

Editor: Michael J. Lutz, Rochester

Institute of Technology, Department of
Computer Science, 102 Lomb Memaorial
Drive, Rochester NY 14623; mjl@cs.rit.edu



