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Abstract

Recent studies have shown that propositional planners, which de-
rive from Graphplan and SATPLAN, can generate significantly longer
plans than causal-link planners. We present experimental evidence
demonstrating that while this may be true, propositional planners
also have important limitations relative to the causal-link planners:
specifically, they can generate plans only for smaller domains, where
the size of a domain is defined by the number of distinguishable objects
it contains. Our experiments were conducted in the domain of code
optimization, in which the states of the world represent states of the
computer program code and the planning operators are the optimiza-
tion operators. This domain is well-suited to studying the trade-offs
between plan length and domain size, because it is straightforward to
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manipulate both these factors. On the basis of our experiments, we
conclude that causal-link and propositional planners have complemen-
tary strengths.

1 Introduction

The field of AI planning has changed markedly in the past five years with the
development of a class of algorithms that employs propositional representa-
tions for the planning problem. The first such algorithm was Graphplan [3],
a two-phased graph expansion/solution extraction algorithm, which forms
the basis of recent systems such as IPP [7]. A second class of propositional
planners is derived from SATPLAN [5], including, for example, BLACKBOX
[6]; these algorithms model planning as satisfiability, so that extremely fast
SAT algorithms can be used to solve planning problems.

The recent literature includes a number of studies demonstrating the
power of these new approaches. In particular, it has been shown that these
approaches are capable of generating significantly longer plans than those
that can be generated by the older, causal-link-based planners exemplified
by the UCPOP system [10]. In this paper, however, we demonstrate that the
propositional planning approaches also have certain important limitations
when compared to the causal-link planners. We present experimental evi-
dence showing that while propositional planners can find longer plans than
causal-link planners, they have more difficulty finding plans in large domains,
where the size of the domain is defined by the number of distinguishable ob-
jects it contains.

Our experiments were conducted in the domain of code optimization.
Modern compilers perform many code optimizations to improve the memory
and run time performance of computer programs. The process of optimizing
a program can be modeled naturally as a planning problem in which the
states of the world correspond to states of the program code (initially and
then after each optimization is applied), and the planning operators are the
optimization operators. As in all interesting planning problems, the opera-
tors have rich sets of preconditions and effects, and they interact with one
another, i.e., the application of one operator can influence the applicability
of subsequent operators. This domain is well-suited to an investigation of
the trade-offs between plan length and domain size because we can easily
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manipulate both these factors..
In the next section, we give a very brief introduction to code optimization

and then in Section 3, describe its representation as a planning problem.
Next, in Section 4, we present the results of experiments we conducted using
this domain to compare the performance of a propositional planner and a
causal-link planner. On the basis of these experiments, in Section 5 we
conclude that these classes of planners have complementary strengths and
suggest that future research should aim at combining these strengths.

2 The Code Optimization Problem

Code optimization is a challenging problem and has received much atten-
tion in the compiler design community. Compilers apply a large number of
optimizing transformations to programs, with the goals of (1) reducing the
number of statements executed at run time, (2) code size, and (3) resource
demands, such as register and memory usage, thereby improving the pro-
gram’s performance [1]. Optimizing transformations, which we will also refer
to as optimizations, can be viewed as actions that modify the state of the
program being compiled. Like the actions seen in more traditional AI plan-
ning domains, optimizations have preconditions and effects, and they interact
with one another [13, 14]. The preconditions and effects of an optimization
typically involve both the text of the program—the operators and operands
in each instruction—and the data flow and control flow dependencies that
exist between instructions.

Examples of simple classical optimizations include the following:

Constant propagation can be applied when a program contains an assign-
ment of the form x ← c where x is a variable and c is a constant, and
also includes a subsequent use of the variable x in an instruction that
is not reachable1 by any other assignment to x. Constant propagation
replaces the use of x by c in the latter instruction.

Copy propagation can be applied when the program includes a copy state-
ment of the form x ← y, and all future uses of x are only reachable
from this statement. Copy propagation replaces all uses of x by y.

1An instruction j is reachable from instruction i if control can flow from instruction i

to instruction j.
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N = 10;
M = 0;
For I = 1 to N do {

Read(x);
y = x;
if (y > M) then M = y}

Write(M);

(a) High Level Program 
to find the Maximum of 

N  Numbers

1. Mov, N, 10
2.  Mov, M, 0
3.  Mov, I, 0
4.  Add, I, I, 1
5.  Input, X
6.  Mov, Y, X
7.  Jle, (9), Y, M
8.  Mov, M, Y
9.  Jeq, (4), I, N
10.Output, M

(b) 3 Address 
Code

Figure 1: (a) High-level program and (b) its 3-address representation

Dead code elimination removes all “useless” instructions from the pro-
gram. An example is an instruction of the form x ← y where the
variable x is never subsequently used in the program. Typically, such a
condition would result from the application of some other optimization.

Classical code optimizations are usually not applied at the source level.
Instead, the high-level source program is first translated to a standard machine-
independent intermediate representation commonly known as 3-address code.
Figure 1 shows a small high-level program for calculating the maximum of N

numbers along with its translation to 3-address code. Several optimizations
may apply to this program. For example, we can propagate the constant
N=10 to Instruction 9 or we can propagate the variable Y=X to Instructions
7 and 8. Figure 2 shows the resulting code, labeled (2) and (3) respectively,
that is obtained as a result of applying these optimizations to the original
code which is labeled (1). See [1] for more detailed explanations of these
optimizations.

Figure 2 also illustrates that optimizations can interact with one another.
As a side-effect of applying constant propagation to the current program, we
enable the application of another optimization, namely dead code elimina-
tion, which was initially not applicable. If we apply copy propagation to the
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1. Mov, N, 10
2.  Mov, M, 0
3.  Mov, I, 0
4.  Add, I, I, 1
5.  Input, X
6.  Mov, Y, X
7.  Jle, (9), Y, M
8.  Mov, M, Y
9.  Jeq, (4), I, N
10.Output, M

1. Mov, N, 10
2.  Mov, M, 0
3.  Mov, I, 0
4.  Add, I, I, 1
5.  Input, X
6.  Mov, Y, X
7.  Jle, (9), X, M
8.  Mov, M, X
9.  Jeq, (4), I, N
10.Output, M

1. Mov, N, 10
2.  Mov, M, 0
3.  Mov, I, 0
4.  Add, I, I, 1
5.  Input, X
6.  Mov, Y, X
7.  Jle, (9), Y, M
8.  Mov, M, Y
9.  Jeq, (4), I, 10
10.Output, M

Possible Optimizations:
Dead code elimination (NONE)
constant propagation (N = 10 to inst # 9)
copy propagation (Y = X to instrs # 7 and 8)

Enabled Optimizations:
dead code elimination of inst #1

Enabled Optimizations:
dead code elimination of inst #6

APPLYING
Copy propagation

Y = X to instrs #7 and #8

APPLYING
Constant propagation

N = 10 to instr #9

(1)

(2) (3)

Figure 2: Code Optimizations Interact

initial program then we enable another application of dead code elimination.
In this simple example, the application of one optimization enables another.
Optimizations can also disable other optimizations, and the order of applying
optimizations can effect the final code produced.

For a given program, the performance improvement that results from
the overall optimization process may depend upon choosing the best se-
quence of optimizations to apply. Unfortunately, as the set of optimizations
grows and the individual optimizations become more complex, the interac-
tions among them become more intricate. Modern compilers rely on default
ordering schemes using distinct phases for applying optimizations [14]; al-
though these have been designed to work well overall, there is no guarantee
that the schemes will produce high-quality results for every program.

3 Code Optimization as Planning

We now describe how the code optimization process can be encoded as an AI
planning problem. We let the states of the world correspond to states of the
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Dep(1, 9)
Dep(2, 7)
Dep(2, 10)
Dep(3, 4) 
Dep(4, 4)
Dep(4, 9)
Dep(5, 6) 
Dep(6, 7)
Dep(6, 8)
Dep(8, 7)
Dep(8, 10) 

(b) 
Dependency 

Encoding

6: Opcode(6, Mov)
Dest(6, Y)
Opnd1(6, X)

7: Opcode(7, Jle)
Opnd1(7, Y)
Opnd2(7, M)

8: Opcode(8, Mov)
Dest(8, M)
Opnd1(8, Y)

9: Opcode(9, Jeq)
Opnd1(9, I)
Opnd2(9, N)

10: Opcode(10, Output)
Opnd1(10, M)

1: Opcode(1, Mov)
Dest(1, N)
Opnd1(1, 10)

2: Opcode(2, Mov)
Dest(2, M)
Opnd1(2, 0)

3: Opcode(3, Mov)
Dest(3, I)
Opnd1(3, 0)

4: Opcode(4, Add)
Dest(4, I)
Opnd1(4, I)
Opnd2(4, 1)

5: Opcode(5, Input)
Dest(5, X)

(a) Instruction Encoding

Complete Encoding of the Program

Figure 3: Modeling a Program

program code. We need to represent not only the program text, but also the
data flow and control flow of the program. Program text is encoded using four
predicates: opcode, dest, opnd1, and opnd2. These represent the operator
and arguments (destination, first operand, and second operand) for each
instruction in a 3-address code program. Data- and control-dependencies
are encoded using the dep operator, which represents a dependency between
two instructions. We say that instruction j is dependent on instruction i if
i produces a result that is used by j. Figure 3 shows our encoding of the
3-address code for the program in Figure 1.

The initial state of a code optimization planning problem is a complete
description of the input program using the representation just described. The
goal state is more interesting. It can be defined as one in which no further
optimizations apply. Since optimizations interact, not all goal states will be
equally good. One thus needs to use a strong measure of program quality to
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guide the heuristic search, so that the first goal state found will represent a
high-quality program.

In the experiments described below, we use a slightly different notion of
goal state. This modified formulation is designed to facilitate our analysis
of the effect of plan length on planner performance. Note that any legal
sequence of optimizations applied to a program produces an optimized pro-
gram, albeit not necessarily the best quality program. Thus, in contrast to
most AI planning problems, in this domain any intermediate state can be
viewed as a goal state. We exploit this fact in our experiments by directly
manipulating the length of the plans sought. Thus, we describe a goal state
as one in which exactly n optimizations have been applied to the input pro-
gram. Note that we still require a heuristic function to determine the quality
of the program in each node so as to guide the search towards good solutions.

To date, we have not developed strong heuristics for this purpose. With-
out such heuristics, one might view state-space planning as a better approach
to the compiler optimization problem. However, as noted earlier, the opti-
mizations strongly interact with one another, and thus we expect that, as in
other domains with rich plan interactions, plan-space planning will be more
efficient than state-space planning [2, 8] (but cf. [12]). Also, recall that our
primary aim in this paper is not to solve the compiler optimization problem,
but to explore the relative performance of causal-link and propositional plan-
ners, and this domain is especially amenable to the manipulations needed for
this comparison.

Returning to the encoding of the compiler optimization problem, the re-
maining step is to represent each optimization with a planning operator. As
mentioned above, optimizations are typically described in terms of precondi-
tions and effects, even in the compiler literature [14]. The preconditions and
effects can be encoded using the same set of predicates we employ in repre-
senting the state of the program. Figure 4 provides an example for one of the
simplest code optimizations: constant propagation, which was described ear-
lier. Figure 4(a) and (b) informally illustrate the preconditions and effects,
respectively, while Figure 4(c) shows an encoding of this optimization using
the formalization from UCPOP planning system [10]. Similar representations
were used for operator encodings throughout our experiments.

Note that even to encode constant propagation, we need to make use
of quantified conditions. In principle, one can achieve this with a STRIPS
formulation, by generating a separate operator for each conditional effect
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of an action [7]. However, such encodings lead to an exponential number
of operators making even small planning problems intractable. Other code
optimizations are more complex, involving operations such as updating de-
pendencies, deleting or moving instructions, creating code, or creating tem-
porary variables, constants, labels. Encoding these optimizations requires
the use of conditionals as well as quantifiers. Therefore, for efficient repre-
sentation, we need a planning system that employs at least a subset of the
ADL representation [9] with quantification and conditionals.

4 Experimentation

Our main hypothesis was that propositional planners and causal-link plan-
ners have complementary strengths: while propositional planners can gen-
erate longer plans than can causal-link planners, causal-link planners can
generate plans for larger domains. To test this hypothesis and quantify the
impact of plan length and domain size on planner performance, we conducted
a series of experiments using the compiler optimization domain. Note that
actually optimizing a real program would involve constructing a large plan
for a large domain. A medium-sized 3-address code program has on the or-
der of 500 instructions, involving 30 opcodes, 50 variables, and 20 constants;
approximately 100-250 optimizations would be applied to it.

In our experiments, we used the UCPOP [10] system as a representa-
tive of causal-link planners, and the IPP [7], and BLACKBOX [6] systems
as representatives of propositional planners. In Experiment 1, we compare
UCPOP and IPP directly on plans with varying plan length and domain size.
We could not include BLACKBOX in the experiment, because BLACKBOX
is restricted to the STRIPS representation and does not support universal
quantification or conditional effects. However, in Experiment 2, we com-
pared UCPOP and BLACKBOX on some select problems that do not pose
a representational challenge, to get some indication of whether the trends we
see with IPP also occur in BLACKBOX. Finally, in Experiment 3, we return
to a comparison of UCPOP and IPP, analyzing the influence of branching
factor on their performance.
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Table 1: The Core Programs
Name Vars Consts Opcodes Lines

Average 8 3 4 10
OddEven 6 4 3 6
Volume 5 3 2 5
Maximum 7 3 4 9
Sum 3 2 2 3
Squares 5 3 4 6

4.1 Influence of Plan Length and Domain Size

The design for Experiment 1 is as follows. We constructed six realistic core
programs, listed in Table 1. They are small 3-address programs that perform
simple computations, e.g., computing the average of a set of numbers, finding
the maximum, or summing two numbers. The table lists the number of
variables (Vars), constants (Consts), operators (OpCodes), and lines of
code (Lines) in each program. To construct the input for the planning
systems, we concatenated multiple copies of the core programs, carefully
renaming the variables and constants. This repetition is similar to what a
compiler would produce by loop unrolling, in which copies of the body of
a loop are generated. We varied the number of concatenated copies of each
core program from 1 to 90; thus, for example, we constructed programs based
on Average that had anywhere from 10 to 900 lines of codes. The number
of concatenated copies of a core program serves as our measure of domain
size.

The operator library included the three optimizations described earlier:
dead-code elimination (DCE), constant propagation (CST), and copy prop-
agation (CPY). In addition to varying the size of the input program (and
thus, the domain size), we also varied the length of the plans generated. As
described in the previous section, the code optimization problem has special
features that allowed us to control the length of the plan produced in any run
by specifying that a goal state is one in which a fixed number of optimizations
have been applied. We considered three ways of implementing this specifi-
cation. One possibility was to modify each optimization operator so that it
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increments a system variable with each plan step. This approach increases
the arity of each operator, and is thus potentially detrimental to IPP perfor-
mance. Another approach was to keep a separate operator for incrementing
the system variable and alternate between this operator and the original plan
operators. This produces longer plans: a plan that would include n steps in
the first approach will require 2n steps here. We opted for this second ap-
proach to avoid introducing a bias against IPP.2 A third approach involves
controlling the plan length by modifying the algorithms of the two planners
to terminate plan generation when a specific length plan was obtained. We
opted not to choose this approach, as it would require making changes to
the planners’ implementation and possibly introduce inefficiencies, leading
to unfair comparison.

Plan length was varied from 1 to 10 actual optimizations, i.e., from 2 to
20 total plan steps: our results are reported in terms of the number of actual
optimizations. We aborted any run in which memory use exceeded 200 MB
(and there was a threat of the system crashing on the machine we were using)
or in which none of the available optimizations were applicable. For each run,
we measured both the time taken to generate a plan and memory used. We
used the RIFO simplification strategy for IPP, and the ZLIFO strategy for
UCPOP. RIFO removes irrelevant facts and operators, resulting in smaller
propositional formulae. ZLIFO is a generally good strategy for flaw selection
in UCPOP, but it is not necessarily the best; consistent with the results of
Pollack et al. [11], our preliminary experiments suggested that LCFR-DSep
probably would have improved the efficiency of UCPOP. Again, however, we
wanted to ensure that we were not introducing any bias in favor of UCPOP.
Thus, we also use CPU time as a basis of comparison, despite the fact that
that UCPOP is implemented in LISP, whereas IPP is a C implementation.
We rely on the CPU-time reports generated by each of the planners. The
independent parameters are summarized below:

Domain Size Number of concatenated copies of a core program used as
input; Values: {1 . . . 90}.

Core Program One of the size core programs from Table 1; Values: {Average,
OddEven, Volume, Maximum, Sum, Squares}.

2We conducted experiments that confirmed our analysis: the first approach led to worse
performance by IPP in all cases; the second led to worse performance by UCPOP in all
cases.
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Plan Length Number of code optimizations in the final plan; Values: {1
. . . 10}.

Operators Number of code optimizations in the operator library; Values:
{1, 2, 3}.

Planning System Values: {IPP, UCPOP}.

We fixed the number of Operators to three (i.e., we used all three code
optimizations), and otherwise employed a straightforward factorial design.
Thus we ran a total of 90 × 6 × 10 × 1 × 2 conditions. For analysis, we
separated the results into six sets, one for each of the core programs. The
planners displayed very similar patterns of behavior on each of the six core
programs, and thus in this paper we describe these patterns for a typical core
program (“Sum”). The complete data set is available upon request.

Figure 5 shows the plan times for IPP and UCPOP for fixed domain sizes
(S) and increasing plan length. The x-axis shows plan length varying from
1 to 10. The y-axis shows the planning time in seconds. The curves for
UCPOP (dotted lines) are for five different domain sizes (S=1..5). We see
that UCPOP takes longer as plan length increases and fails to generate plans
for length>5. It was, however, able to generate plans for domain size = 90.
In contrast, IPP (solid lines) was successful in generating plans for only three
domain sizes (S=1..3). We see that for small domain sizes (S<3) IPP’s time
usage grows very slowly with plan length, but even for S = 3, IPP shows
rapid growth.

Figure 6 shows memory usage for the same experiments. Here, we see
that although UCPOP takes more time to search for a plan, it does no worse
than IPP in terms of memory usage for plans of the same length.

Figure 7 shows the same results from a different perspective. Here we
show plan times for IPP and UCPOP for fixed plan lengths (PL) and in-
creasing domain size. The x-axis shows the domain size varying from 1 to
10. When PL is small, the results for UCPOP (dotted lines) are all close
to the x-axis, indicating very slow growth as domain size increases. On the
other hand, IPP (solid lines) shows a rapid growth as domain size increases
even slightly.

The related data on memory usage is shown in Figure 8. Here we see that
IPP makes heavy demands on the memory as domain size increase, whereas
UCPOP uses much less memory.
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Table 2: Plan Time of IPP and UCPOP at a Glance
IPP’S Time UCPOP’S Time

As domain size grows grows rapidly grows slowly
As plan length grows grows slowly grows rapidly

The complementary behavior of both planning systems is summarized in
Table 2. UCPOP takes more time to generate long plans whereas IPP takes
more time on larger domain problem instances.

4.2 Comparison with BLACKBOX

Next we considered the question of whether IPP’s performance is solely a
result of its particular solution extraction algorithms. To this end, we con-
ducted a set of experiments using BLACKBOX, which is similar to IPP in its
use of a propositional representation, but differs significantly in its approach
to finding a solution: it employs SAT solving techniques.3

Because of BLACKBOX’s expressive limits, we could not include Dead
Code Elimination (DCE) in the operator library. For Experiment 2, then,
we used the same design as Experiment 1, except for fixing the number of
operators to two (CST and CPY) and using UCPOP and BLACKBOX as
the planning systems. We used BLACKBOX’s default simplifiers.

Figure 9 and 10 show the planning time and memory usage respectively
for BLACKBOX and UCPOP for problems with increasing domain sizes (cf.
Figure 7 and 8). Note that the x-axes in these graphs is not uniform: the
increments from 1 to 10 are stretched, relative to those between 10 and 90,
to allow for more direct comparison with the previous figures. Although
BLACKBOX’s performance appear to be better than IPP’s on these prob-
lems, once the domain size is above 10, BLACKBOX exhibits the same pat-
tern of performance relative to UCPOP as did IPP: it is simply unable to
cope with the large domains.

Kambhampati et al. [4] observed that Graphplan planners, such as IPP,

3Note that BLACKBOX can be made to use several different solvers, including Graph-
Plan. For our experiments, we hard-coded BLACKBOX to use only one SAT solver,
namely satz.
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might perform worse than state-space search in cases where the constructed
graph has layers that contain preconditions of many domain actions, when
in fact only a few subsets of these preconditions are reachable at that layer.
This observation may be true, but it appears to not be the only factor (and
perhaps not even the dominant factor) influencing IPP’s performance in our
experiments. After all, BLACKBOX exhibits a very similar pattern of be-
havior to IPP, despite the fact that it uses a very different solution finding
algorithm. Additionally, we observed informally that once IPP completes
its graph construction, it nearly always solves the problem; similarly once
BLACKBOX formulates the SAT problem, it also nearly always finds a so-
lution. Most of the memory demands occur during graph or SAT problem
formulation. Kambhampati’s observation does not address the behavior of
the planner during this phase of plan construction; rather, it addresses the
solution finding phase. We, however, observe the inefficiencies of proposi-
tional planners during problem representation. An illustration of the mem-
ory demands of the planners is seen in Figure 11, which provides a detailed
memory trace for IPP on a single problem; note that virtually all its memory
demands occur during graph construction. We collected memory traces for
all problems with both IPP and BLACKBOX and consistently saw the same
behavior. On the basis of the evidence, and our analyses of domain size-
memory usage interactions shown in Figures 6, 8, and 10, we conclude that
what makes it difficult for such planners to perform efficiently is the increased
memory demands posed by domains with a large number of distinguishable
objects.

4.3 Influence of Branching Factor

In our final experiment, we returned to a comparison of UCPOP and IPP,
so that we could again avoid limits on expressive power, and studied the
the influence of the branching factor on these systems’ performance. We
measure the branching factor by the number of operators available to the
planner. The experimental design was identical to that of Experiment 1,
except that instead of using all three optimizations, here we also varied the
set of optimizations in the operator library, allowing it to contain one, two,
or three optimizations. Again for all 6 programs, we saw similar patterns of
behavior, and provide data for a typical program.

Figures 12 and 13 show IPP’s plan time and memory usage, respectively,
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for experiments in which the plan length was set to one and the domain
size and set of optimizations was varied. With either constant propagation
(CST) or copy propagation (CPY), IPP was unable to produce a result for
domain size>5. In addition, when both of these optimizations were given
simultaneously (CST+CPY), IPP performed worse, and was unable to pro-
duce a plan even for domain size=5. We do not show IPP’s performance with
dead code elimination (DCE), because when this optimization was included
in the operator library, IPP could not produce plans beyond domain size 1.
In general, whenever IPP was given a set S of operators, it would perform
much worse than with a proper subset S ′ ⊂ S.

An interesting contrast is seen in Figures 14 and 15, which show the
influence of changing the size of the operator library, and thus the branching
factor. Note that the x-axis varies from domain sizes of 1 to 90 on UCPOP
(as opposed to 1 to 5 for IPP). Also, for UCPOP, the x-axis is stretched
between 1 and 10. As Figure 14 shows, UCPOP was extremely fast for
small domain sizes, and increasing the number of optimizations available had
little effect; in fact, until domain size equals approximately ten, the effect is
negligible. Dead code elimination (DCE) is challenging for UCPOP, as it
was for IPP; making available a larger set of operators (CST+CPY+DCE)
actually improves performance relative to requiring only the use of DCE.
This behavior of UCPOP is due to the availability of a greater number of
operators. Figure 15 shows that UCPOP makes minimal memory demands
except in the case of DCE where it requires up to 50MB for domain size
90. This should be compared with IPP’s use of 150MB even for CPY with a
domain size of four.

In summary, larger operator sets appear to slow IPP’s performance and
result in increased memory usage. This effect can be attributed to the propo-
sitionalization process: as the number of operators increases, a new propo-
sition must be added for each possible instantiation of that operator with
respect to all the constants and variables in the input program. In contrast,
UCPOP relies on a more dynamic algorithm, searching for solutions and
binding dynamically.
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5 Conclusions

In this paper we have compared the performance of two classes of planning
systems: propositional planners, which are generating significant interest
in the planning community, and causal-link planners. We used IPP and
BLACKBOX as the main representatives of the first class, and UPCOP as
the representative of the second class of planners. We studied each system’s
performance on code optimization, an interesting and realistic problem which
we showed could be encoded as a planning problem. Our primary experi-
ments were aimed at investigating the influence of plan length and domain
size on the performance of these planners; we also conducted an experiment
aimed at evaluating the influence of branching factor.

Our main conclusion is that the propositional planners and the causal-link
planners have complementary strengths and weaknesses. As demonstrated in
the recent literature, propositional planners are capable of generating longer
plans than causal-link planners. Our experiments are consistent with this
finding, but they also show that propositional planners are incapable of find-
ing plans in some larger domains. Some of the planners make use of prepro-
cessors and simplifiers to reduce the domain size. However, they fail in large
domains, specifically because the simplifiers are invoked after the proposi-
tional formulation is complete, and in large domains the combinatorial ex-
plosion does not allow the propositional formula to be represented. Moreover,
increased branching factor may have more of a negative effect on proposi-
tional planners, especially for medium and large domains. In our view, these
results are perhaps more negative than positive: after all, many—perhaps
most—real-world problems will require planners capable of generating long
plans for large domains.

Our analysis of time and memory usage, however, suggests a possible
approach to designing planners to meet this challenge. IPP’s main weakness
is its inability to handle large domains; this results from the combinatorial
explosion during propositionalization. In our experiments, we observed that
the large majority of IPP’s memory usage occurs during its first phase, graph
expansion. One possibility, then, is to avoid complete propositionalization,
and instead develop techniques for demand-driven propositionalization and
graph construction. That is, the process of creating the plan graph might be
interleaved with the search process; where the Graphplan algorithm creates
one complete graph level at a time, we are proposing the demand-driven
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extension of the graph. By this we mean that the plan graph be extended
only when needed by the solution finding algorithm and pruned when memory
demands increase. Exploration of this idea is deferred to future work.
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A dependency exists

i: mov <VAR1>, <CONST>

j: USE(<VAR1>)

add x, y, <VAR1>, or another copy statement,
such as

An instruction that uses the value of <VAR1>.

mov x, <VAR1>.

This could be an operation such as

No other definition of
<VAR1> reaches statement j.
This is important, since this other

to <VAR1>
definition might assign another value

.

now uses <CONST> instead.
The instruction that used the value of <VAR1>,

j: USE(<CONST>)

i: mov <VAR1>, <CONST>

No dependency exists

(a) Preconditions for Con-
stant Propagation

(b) Effects of Constant
Propagation

(:operator constprop :parameters (?i ?j ?c ?x)
:precondition (and

(opcode ?i mov)
(dest ?i ?x)
(opnd1 ?i ?c)
(opnd1 ?j ?x)
(const ?c)
(dependency ?i ?j)
(forall (instructions ?k)

(or (eq ?i ?k) (not (dependency ?k ?j)))))
:effect (and

(not (dependency ?i ?j))
(not (opnd1 ?j ?x))
(opnd1 ?j ?c)))

(c) Encoding Constant
Propagation in UCPOP

Figure 4: Modeling an Optimization
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