144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.2, FEBRUARY 2001

Hierarchical GUI Test Case Generation
Using Automated Planning

Atif M. Memon, Student Member, IEEE, Martha E. Pollack, and Mary Lou Soffa, Member, IEEE

Abstract—The widespread use of GUIs for interacting with software is leading to the construction of more and more complex GUIs.
With the growing complexity come challenges in testing the correctness of a GUI and its underlying software. We present a new
technique to automatically generate test cases for GUIs that exploits planning, a well-developed and used technique in artificial
intelligence. Given a set of operators, an initial state, and a goal state, a planner produces a sequence of the operators that will
transform the initial state to the goal state. Our test case generation technique enables efficient application of planning by first creating
a hierarchical model of a GUI based on its structure. The GUI model consists of hierarchical planning operators representing the
possible events in the GUI. The test designer defines the preconditions and effects of the hierarchical operators, which are input into a
plan-generation system. The test designer also creates scenarios that represent typical initial and goal states for a GUI user. The
planner then generates plans representing sequences of GUI interactions that a user might employ to reach the goal state from the
initial state. We implemented our test case generation system, called Planning Assisted Tester for grapHical user interface Systems
(PATHS) and experimentally evaluated its practicality and effectiveness. We describe a prototype implementation of PATHS and
report on the results of controlled experiments to generate test cases for Microsoft's WordPad.

Index Terms—Software testing, GUI testing, application of Al planning, GUI regression testing, automated test case generation,

generating alternative plans.

1 INTRODUCTION

GRAPHICAL User Interfaces (GUIs) have become an
important and accepted way of interacting with
today’s software. Although they make software easy to
use from a user’s perspective, they complicate the software
development process [1], [2]. In particular, testing GUIs is
more complex than testing conventional software, for not
only does the underlying software have to be tested but the
GUI itself must be exercised and tested to check whether it
confirms to the GUI’s specifications. Even when tools are
used to generate GUIs automatically [3], [4], [5], these tools
themselves may contain errors that may manifest them-
selves in the generated GUI leading to software failures.
Hence, testing of GUIs continues to remain an important
aspect of software testing.

Testing the correctness of a GUI is difficult for a number
of reasons. First of all, the space of possible interactions
with a GUI is enormous, in that each sequence of GUI
commands can result in a different state and a GUI
command may need to be evaluated in all of these states.
The large number of possible states results in a large
number of input permutations [6] requiring extensive
testing, e.g., Microsoft released almost 400,000 beta copies
of Windows95 targeted at finding program failures [7].
Another problem relates to determining the coverage of a

o The authors are with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260.
E-mail: {atif, pollack, soffa}@cs.pitt.edu.

e M.E. Pollack is also with the Intelligent Systems Program.

Manuscript received 15 Nov. 1999; revised 10 Apr. 2000; accepted 1 May
2000.

Recommended for acceptance by D. Garlan.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112144.

set of test cases. For conventional software, coverage is
measured using the amount and type of underlying code
exercised. These measures do not work well for GUI testing,
because what matters is not only how much of the code is
tested, but in how many different possible states of the
software each piece of code is tested. An important aspect of
GUI testing is verification of its state at each step of test case
execution. An incorrect GUI state can lead to an unexpected
screen, making further execution of the test case useless
since events in the test case may not match the correspond-
ing GUI components on the screen. Thus, the execution of
the test case must be terminated as soon as an error is
detected. Also, if verification checks are not inserted at each
step, it may become difficult to identify the actual cause of
the error. Finally, regression testing presents special
challenges for GUIs, because the input-output mapping
does not remain constant across successive versions of the
software [1]. Regression testing is especially important for
GUIs since GUI development typically uses a rapid
prototyping model [8], [9], [10], [11].

An important component of testing is the generation of
test cases. Manual creation of test cases and their main-
tenance, evaluation, and conformance to coverage criteria
are very time consuming. Thus, some automation is
necessary when testing GUIs. In this paper, we present a
new technique to automatically generate test cases for GUI
systems. Our approach exploits planning techniques devel-
oped and used extensively in artificial intelligence (AI). The
key idea is that the test designer is likely to have a good idea
of the possible goals of a GUI user and it is simpler and
more effective to specify these goals than to specify
sequences of events that the user might employ to achieve
them. Our test case generation system, called Planning
Assisted Tester for grapHical user interface Systems

0098-5589/01/$10.00 © 2001 IEEE

MEMON ET AL.: HIERARCHICAL GUI TEST CASE GENERATION USING AUTOMATED PLANNING 145

(PATHS) takes these goals as input and generates such
sequences of events automatically. These sequences of
events or “plans” become test cases for the GUI. PATHS
first performs an automated analysis of the hierarchical
structure of the GUI to create hierarchical operators that are
then used during plan generation. The test designer
describes the preconditions and effects of these planning
operators, which are subsequently input to the planner.
Hierarchical operators enable the use of an efficient form of
planning. Specifically, to generate test cases, a set of initial
and goal states is input into the planning system; it then
performs a restricted form of hierarchical plan generation to
produce multiple hierarchical plans. We have implemented
PATHS and we demonstrate its effectiveness and efficiency
through a set of experiments.

The important contributions of the method presented in
this paper include the following;:

e We make innovative use of a well-known and used
technique in Al, which has been shown to be capable
of solving problems with large state spaces [12].
Combining the unique properties of GUIs and
planning, we are able to demonstrate the practicality
of automatically generating test cases using planning.

e Our technique exploits structural features present in
GUIs to reduce the model size, complexity, and to
improve the efficiency of test case generation.

e Exploiting the structure of the GUI and using
hierarchical planning makes regression testing ea-
sier. Changes made to one part of the GUI do not
affect the entire test suite. Most of our generated test
cases are updated by making local changes.

e Platform specific details are incorporated at the very
end of the test case generation process, increasing
the portability of the test suite. Portability, which is
important for GUI testing [13], assures that test cases
written for GUI systems on one platform also work
on other platforms.

e Our technique allows reuse of operator definitions
that commonly appear across GUIs. These defini-
tions can be maintained in a library and reused to
generate test cases for subsequent GUIs.

The next section gives a brief overview of PATHS using
an example GUI. Section 3 briefly reviews the fundamentals
of Al plan generation. Section 4 describes how planning is
applied to the GUI test case generation problem. In
Section 5, we describe a prototype system for PATHS and
give timing results for generating test cases. We discuss
related work for automated test case generation for GUIs in
Section 6 and conclude in Section 7.

2 OVERVIEW

In this section, we present an overview of PATHS through
an example. The goal is to provide the reader with a high-
level overview of the operation of PATHS and highlight the
role of the test designer in the overall test case generation
process. Details about the algorithms used by PATHS are
given in Section 4.

GUIs typically consist of components such as labels,
buttons, menus, and pop-up lists. The GUI user interacts

Bew...

—~eennl File

Edit

U
Look in: P
private
EpUb“C <4— Select
File name: I

Files of type: ITe)d DO 'I Cancell

Fig. 1. The example GUL.

with these components, which in turn generate events.
For example, pushing a button Preferences generates
an event (called the Preferences event) that opens a
window. In addition to these visible components on the
screen, the user also generates events by using devices
such as a mouse or a keyboard. For the purpose of our
model, GUIs have two types of windows: GUI windows
and object windows. GUI windows contain GUI compo-
nents, whereas object windows do not contain any GUI
components. Object windows are used to display and
manipulate objects, e.g., the window used to display text
in MS WordPad.

Fig. 1 presents a small part of the MS WordPad’s GUI.
This GUI can be used for loading text from files, manip-
ulating the text (by cutting and pasting), and then saving
the text in another file. At the highest level, the GUI has a
pull-down menu with two options (File and Edit) that
can generate events to make other components available.
For example, the File event opens a menu with New, Open,
Save, and SaveAs options. The Edit event opens a menu
with Cut, Copy, and Paste options, which are used to cut,
copy, and paste objects, respectively, from the main screen.
The Open and SaveAs events open windows with several
more components. (Only the Open window is shown; the
SaveAs window is similar.) These components are used to
traverse the directory hierarchy and select a file. Up moves
up one level in the directory hierarchy and Select is used
to either enter subdirectories or select files. The window is
closed by selecting either Open or Cancel.

The central feature of PATHS is a plan generation
system. Automated plan generation has been widely
investigated and used within the field of artificial intelli-
gence. The input to the planner is an initial state, a goal
state, and a set of operators that are applied to a set of
objects. Operators, which model events, are usually
described in terms of preconditions and effects: conditions
that must be true for the action to be performed and
conditions that will be true after the action is performed. A
solution to a given planning problem is a sequence of

146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.2, FEBRUARY 2001

BN Exploring M= E3

(] Root .. .
&.03 private /v This is the text that must be modified. '
- -[E Documentdoc

1 Courses
E -1 Figures
E.Jggtes);mples / This needs to be modified.
&) repont.do
- public
2] doc? doe:
=0 Hml T This is the text.
-1 gif L
=) Y

(@)

X Exploring [M[=] E3

{1 Roat . -
=20 private 1| This is the text that must be modified. .
R £l Documentdoc

-1 Courses
_w| This needs to be modified. .
‘

This is the final text.

. {1 Figures
- =0 Latex
=1 Samples
L[] report.doc

(b)

Fig. 2. A task for the planning system. (a) The initial state and (b) the
goal state.

instantiated operators that is guaranteed to result in the
goal state when executed in the initial state.' In our example
GUI, the operators relate to GUI events.

Consider Fig. 2a, which shows a collection of files stored
in a directory hierarchy. The contents of the files are shown
in boxes and the directory structure is shown as an
Exploring window. Assume that the initial state
contains a description of the directory structure, the location
of the files and the contents of each file. Using these files
and WordPad’s GUI, we can define a goal of creating the
new document shown in Fig. 2b and then storing it in file
new.doc in the /root/public directory. Fig. 2b shows that
this goal state contains, in addition to the old files, a new
file stored in /root/public directory. Note that new.doc
can be obtained in numerous ways, e.g., by loading file
Document .doc, deleting the extra text and typing in the
word final, or by loading file doc2.doc and inserting
text, or by creating the document from scratch by typing in
the text.

Our test case generation process is partitioned into two
phases, the setup phase and plan-generation phase. In the first
step of the setup phase, PATHS creates a hierarchical model
of the GUI and returns a list of operators from the model to
the test designer. By using knowledge of the GUI, the test
designer then defines the preconditions and effects of the
operators in a simple language provided by the planning
system. During the second or plan-generation phase, the

1. We have described only the simplest case of Al planning. The
literature includes many techniques for extensions, such as planning under
uncertainty [14], but we do not consider these techniques in this paper.

TABLE 1
Roles of the Test Designer and PATHS during
Test Case Generation

Phase Step | Test Designer PATHS
Setup 1 Derive Hierarchical
GUI Operators
2 Define Precondi-
tions and Effects of
Operators
Plan 3 Identify a Task 7
Generation
4 Gencerate Test
Cases for T

test designer describes scenarios (tasks) by defining a set of
initial and goal states for test case generation. Finally,
PATHS generates a test suite for the scenarios. The test
designer can iterate through the plan-generation phase any
number of times, defining more scenarios and generating
more test cases. Table 1 summarizes the tasks assigned to
the test designer and those automatically performed by
PATHS.

For our example GUI, the simplest approach in Step 1
would be for PATHS to identify one operator for each
GUI event (e.g., Open, File, Cut, Paste). (As a naming
convention, we disambiguate with meaningful prefixes
whenever names are the same, such as Up.) The test
designer would then define the preconditions and effects
for all the events shown in Fig. 3a. Although conceptually
simple, this approach is inefficient for generating test cases
for GUISs as it results in a large number of operators. Many
of these events (e.g., File and Edit) merely make other
events possible, but do not interact with the underlying
software.

An alternative modeling scheme, and the one used in
this work, models the domain hierarchically with high-level
operators that decompose into sequences of lower level
ones. Although high-level operators could in principle be
developed manually by the test designer, PATHS avoids
this inconvenience by automatically performing the abstrac-
tion. More specifically, PATHS begins the modeling process
by partitioning the GUI events into several classes. The
details of this partitioning scheme are discussed later in
Section 4. The event classes are then used by PATHS to
create two types of planning operators—system-interaction
operators and abstract operators.

GUI Events = {File, Edit,
New, Open, Save, SaveAs,
Cut, Copy, Paste,
Open.Up, Open.Select, Open.Cancel, Open.Open,
SaveAs.Up, SaveAs.Select, SaveAs.Cancel, SaveAs.Save}.

(@)

Planning Operators = {
File_New, File_Open, File_Save, File_SaveAs,
Edit_Cut, Edit_Copy, Edit_Paste}.

(b)

Fig. 3. The example GUI: (a) original GUI events and (b) planning
operators derived by PATHS.

TABLE 2

Operator-Event Mappings for the Example GUI
Operator Name | Operator Type | GUI Events
FILE_ NEW Sys. Interaction <File, New>
FILE_OPEN Abstract <File, Open>
FILE_SAVE Sys. Interaction <File, Save>
FILE_SAVEAS Abstract <File, SaveAs>
EDIT_CUT Sys. Interaction <Edit, Cut>
EDIT_COPY Sys. Interaction <Edit, Copy>
EDIT_PASTE Sys. Interaction <Edit, Paste>

The system-interaction operators are derived from those
GUI events that generate interactions with the underlying
software. For example, PATHS defines a system-interaction
operator EDIT_CUT that cuts text from the example GUI’s
window. Examples of other system-interaction operators
are EDIT_PASTE and FILE_SAVE.

The second set of operators generated by PATHS is a set
of abstract operators. These will be discussed in more detail
in Section 4, but the basic idea is that an abstract operator
represents a sequence of GUI events that invoke a window
that monopolizes the GUI interaction, restricting the focus
of the user to the specific range of events in the window.
Abstract operators encapsulate the events of the restricted-
focus window by treating the interaction within that
window as a separate planning problem. Abstract operators
need to be decomposed into lower level operators by an
explicit call to the planner. For our example GUI, abstract
operators include File_Open and File_SaveAs.

The result of the first step of the setup phase is that
the system-interaction and abstract operators are deter-
mined and returned as planning operators to the test
designer. The planning operators returned for our
example are shown in Fig. 3b.

In order to keep a correspondence between the original
GUI events and these high-level operators, PATHS also
stores mappings, called operator-event mappings, as shown in
Table 2. The operator name (column 1) lists all the operators
for the example GUI Operator type (column 2) classifies
each operator as either abstract or system-interaction.
Associated with each operator is the corresponding
sequence of GUI events (column 3).

The test designer then specifies the preconditions and
effects for each planning operator. An example of a
planning operator, EDIT_CUT, is shown in Fig. 4.
EDIT_CUT is a system-interaction operator. The operator
definition contains two parts: preconditions and effects. All
the conditions in the preconditions must hold in the GUI
before the operator can be applied, e.g., for the user to
generate the Cut event, at least one object on the screen
should be selected (highlighted). The effects of the Cut
event are that the selected objects are moved to the
clipboard and removed from the screen. The language used
to define each operator is provided by the planner as an
interface to the planning system. Defining the preconditions
and effects is not difficult as this knowledge is already built
into the GUI structure. For example, the GUI structure
requires that Cut be made active (visible) only after an
object is selected. This is precisely the precondition defined
for our example operator (EDIT_CUT) in Fig. 4. Definitions

MEMON ET AL.: HIERARCHICAL GUI TEST CASE GENERATION USING AUTOMATED PLANNING 147

(B DOLUNIETIT = ¥yuium
File Edit

I_I\I_

Menul

=L NLE] L= L

e
|

Crl+
Cirl+C
Crl+

m

Copy
Paste

Menu2

Operator :: EDIT_CUT
Preconditions:
EXISTS Obj in Objects
Selected(Ob)).

Effects:
FORALL Obj in Objects
Selected(Obj) =
ADD inClipboard(Obj)
DEL onScreen(Obj)
DEL Selected(Ob).

Fig. 4. An example of a GUI planning operator.

of operators representing events that commonly appear
across GUIs, such as Cut, can be maintained in a library
and reused for subsequent similar applications.

The test designer begins the generation of particular
test cases by inputing the defined operators into PATHS
and then identifying a task, such as the one shown in
Fig. 2 that is defined in terms of an initial state and a goal
state. PATHS automatically generates a set of test cases
that achieve the goal. An example of a plan is shown in
Fig. 5. (Note that TypeInText () is an operator repre-
senting a keyboard event.) This plan is a high-level plan
that must be translated into primitive GUI events. The
translation process makes use of the operator-event
mappings stored during the modeling process. One such
translation is shown in Fig. 6. This figure shows the
abstract operators contained in the high-level plan are
decomposed by 1) inserting the expansion from the
operator-event mappings and 2) making an additional
call to the planner. Since the maximum time is spent in
generating the high-level plan, it is desirable to generate a
family of test cases from this single plan. This goal is
achieved by generating alternative subplans at lower
levels. These subplans are generated much faster than
generating the high-level plan and can be substituted into

Abstract System-Interaction Abstract
Operator Operator Operator
(keyboard)
File_Open File_SaveAs
(“public”, TY(R‘;iIn'LTf)X* (public”,
*doc2.doc") “new.doc")

Fig. 5. A plan consisting of abstract operators and a GUI event.

148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.2, FEBRUARY 2001

Abstract Abstract
Operator Operator
File_Open File_SaveAs
(public”, —>] PR Cpublic”,

“doc2.doc") “hew.doc")

Decomposition

Mapping ?-
p> -

Planner

Select
("doc2.doc")

{ ")

Planner

Decomposition

Mﬂpw Planner
(“new.doc")

Low-level Test Case

||| File H" Open H" Select("public”) #—) (“df:
=

(“final")

Fig. 6. Expanding the higher level plan.

the high-level plan to obtain alternative test cases. One
such alternative low-level test case generated for the same
task is shown in Fig. 7. Note the use of nested invocations
to the planner during abstract-operator decomposition.
The hierarchical mechanism aids regression testing since
changes made to one component do not necessarily
invalidate all test cases. The higher level plans can still be
retained and local changes can be made to subplans specific
to the changed component of the GUI. Also, the steps in the
test cases are platform independent. An additional level of
translation is required to generate platform-dependent test
cases. By using a high-level model of the GUI, we have the
advantage of obtaining platform-independent test cases.

3 PLAN GENERATION

We now provide details on plan generation. Given an
initial state, a goal state, a set of operators, and a set of
objects, a planner returns a set of steps (instantiated
operators) to achieve the goal. Many different algorithms
for plan generation have been proposed and developed.
Weld presents an introduction to least-commitment
planning [15] and a survey of the recent advances in
planning technology [16].

Formally, a planning problem P(A, D, I,G) is a 4-tuple,
where A is the set of operators, D is a finite set of objects, I
is the initial state, and G is the goal state. Note that an
operator definition may contain variables as parameters;
typically an operator does not correspond to a single
executable action but rather to a family of actions: one for
each different instantiation of the variables. The solution to
a planning problem is a plan: a tuple < 5,0, L, B >, where
S is a set of plan steps (instances of operators, typically
defined with sets of preconditions and effects), O is a set of
ordering constraints on the elements of S, L is a set of
causal links representing the causal structure of the plan,

Abstract Abstract
Operator Operator
File_Open File_SaveAs
(“public”, > Ty(Eiﬁ:gl—%XT (“public”,

“doc2.doc") “new.doc")

Decomposition

Planner

r Select
) I ("doc2.doc”)

Decomposition

M Planner
("new.doc")
Low-level Test Case

I 3 1 o 73 S B S e 8

TypeInText
(“final")

Select
("new.doc")

Fig. 7. An alternative expansion leads to a new test case.

and B is a set of binding constraints on the variables of the
operator instances in S. Each ordering constraint is of the
form S; < S; (read as “S; before S;”) meaning that step 5;
must occur sometime before step S; (but not necessarily
immediately before). Typically, the ordering constraints
induce only a partial ordering on the steps in S. Causal
links are triples < S;, ¢, S; >, where S; and S; are elements
of S and c is both an effect of S; and a precondition for S;.>
Note that corresponding to this causal link is an ordering
constraint, i.e., S; < §;. The reason for tracking a causal link
< S5;,¢,5;> 1is to ensure that no step “threatens” a
required link, ie., no step S; that results in —c¢ can
temporally intervene between steps S; and S;.

As mentioned above, most Al planners produce partially-
ordered plans, in which only some steps are ordered with
respect to one another. A total-order plan can be derived
from a partial-order plan by adding ordering constraints.
Each total-order plan obtained in such a way is called a
linearization of the partial-order plan. A partial-order plan
is a solution to a planning problem if and only if every
consistent linearization of the partial-order plan meets the
solution conditions.

Fig. 8a shows the partial-order plan obtained to realize
the goal shown in Fig. 2 using our example GUL In the
figure, the nodes (labeled S;, Sj, Sk, and ;) represent the
plan steps (instantiated operators) and the edges represent
the causal links. The bindings are shown as parameters of
the operators. Fig. 8b lists the ordering constraints, all
directly induced by the causal links in this example. In
general, plans may include additional ordering constraints.
The ordering constraints specify that the DeleteText ()
and TypeInText () actions can be performed in either

2. More generally, c represents a proposition that is the unification of an
effect of S; and a precondition of S;.

MEMON ET AL.: HIERARCHICAL GUI TEST CASE GENERATION USING AUTOMATED PLANNING 149

5

DeleteText
(“needs Lo be modilied”)

5i 5t
FILE_OPEN
(“Samples”, “report.doc™)

FILE_SAVEAS
(“public”, “new.doc™)

Sk
TypelnText
(“is the final text™)

@

Ordering Constraints
8; <8 8; <S5 ;<85 S < S,

(b)
FILLE_OPEN DeleteText
(“Samples”, “report.doc”) (“needs to be modified”)

TypelnText FILE_SAVEAS
(“is the final text™) (“public”, “new.doc™)

TypeInText
(“is the final text™)

DeleteText
(“needs to be modified”)
©

Fig. 8. (a) A partial-order plan, (b) the ordering constraints in the plan,
and (c) the two linearizations.

FILE_OPEN
(“Samples”, “report.doc™)

FILE_SAVEAS
(“public”, “new.doc™)

order, but they must precede the FILE_SAVEAS () action
and must be performed after the FILE_OPEN () action. We
obtain two legal orders, both of which are shown in Fig. 8c
and, thus, two high-level test cases are produced that may
be decomposed to yield a number of low-level test cases.

In this work, we employ recently developed planning
technology that increases the efficiency of plan generation.
Specifically, we generate single-level plans using the
Interference Progression Planner (IPP) [17], a system that
extends the ideas of the Graphplan system [18] for plan
generation. Graphplan introduced the idea of performing
plan generation by converting the representation of a
planning problem into a propositional encoding. Plans are
then found by means of a search through a graph. The
planners in the Graphplan family, including IPP, have
shown increases in planning speeds of several orders of
magnitude on a wide range of problems compared to earlier
planning systems that rely on a first-order logic representa-
tion and a graph search requiring unification of unbound
variables [18]. IPP uses a standard representation of actions
in which preconditions and effects can be parameterized:
Subsequent processing performs the conversion to the
propositional form.> As is common in planning, IPP
produces partial-order plans.

IPP forms plans at a single level of abstraction.
Techniques have been developed in Al planning to generate
plans at multiple levels of abstraction called Hierarchical
Task Network (HTN) planning [19]. In HTN planning,
domain actions are modeled at different levels of

3. In fact, IPP generalizes Graphplan precisely by increasing the
expressive power of its representation language, allowing for conditional
and universally quantified effects.

abstraction and, for each operator at level n, one specifies
one or more “methods” at level n — 1. A method is a single-
level partial plan and we say that an action “decomposes”
into its methods. HTN planning focuses on resolving
conflicts among alternative methods of decomposition at
each level. The GUI test case generation problem is unusual
in that, in our experience at least, it can be modeled with
hierarchical plans that do not require conflict resolution
during decomposition. Thus, we are able to make use of a
restricted form of hierarchical planning, which assumes that
all decompositions are compatible. Hierarchical planning is
valuable for GUI test case generation as GUIs typically have
a large number of components and events and the use of a
hierarchy allows us to conceptually decompose the GUI
into different levels of abstraction, resulting in greater
planning efficiency. As a result of this conceptual shift,
plans can be maintained at different abstraction levels.
When subsequent modifications are made to the GUI, top-
level plans usually do not need to be regenerated from
scratch. Instead, only subplans at a lower level of abstrac-
tion are affected. These subplans can be regenerated and re-
inserted in the larger plans, aiding regression testing.

4 PLANNING GUI Test CASES

Having described Al planning techniques in general, we
now present details of how we use planning in PATHS to
generate test cases for GUIs.

4.1 Developing a Representation of the GUI and Its

Operations

In developing a planning system for testing GUIs, the first
step is to construct an operator set for the planning
problem. As discussed in Section 2, the simplest approach
of defining one operator for each GUI event is inefficient,
resulting in a large number of operators. We exploit certain
structural properties of GUIs to construct operators at
different levels of abstraction. The operator derivation
process begins by partitioning the GUI events into several
classes using certain structural properties of GUIs. Note that
the classification is based only on the structural properties
of GUIs and, thus, can be done automatically by PATHS
using a simple depth-first traversal algorithm. The GUI is
traversed by clicking on buttons to open menus and
windows; for convenience, the names of each operator are
taken off the label of each button/menu-item it represents.
Note that several commercially available tools also perform
such a traversal of the GUI, e.g., WinRunner from Mercury
Interactive Corporation.

The classification of GUI events that we employ is as
follows:

e Menu-open events open menus, i.e., they expand the
set of GUI events available to the user. By definition,
menu-open events do not interact with the under-
lying software. The most common example of menu-
open events are generated by buttons that open pull-
down menus, e.g., File and Edit.

e Unrestricted-focus events open GUI windows that do
not restrict the user’s focus; they merely expand the
set of GUI events available to the user. For example,

150

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.2, FEBRUARY 2001

in the MS PowerPoint software, the Basic Shapes
are displayed in an unrestricted-focus window. For
the purpose of test case generation, these events can
be treated in exactly the same manner as menu-open
events; both are used to expand the set of GUI events
available to the user.

Restricted-focus events open GUI windows that have
the special property that once invoked, they mono-
polize the GUI interaction, restricting the focus of the
user to a specific range of events within the window,
until the window is explicitly terminated. Preference
setting is an example of restricted-focus events in
many GUI systems; the user clicks on Edit and
Preferences, a window opens and the user then
spends time modifying the preferences and, finally,
explicitly terminates the interaction by either click-
ing OK or Cancel.

System-interaction events interact with the underlying
software to perform some action; common examples
include cutting and pasting text and opening object
windows.

The above classification of events are then used to create
two classes of planning operators.

System-interaction operators represent all sequences of
zero or more menu-open and unrestricted-focus
events followed by a system-interaction event.
Consider a small part of the example GUI: one
pull-down menu with one option (Edit) which can
be opened to give more options, i.e., Cut and Paste.
The events available to the user are Edit, Cut, and
Paste. Edit is a menu-open event while Cut and
Paste are system-interaction events. Using this
information, the following two system-interaction
operators are obtained:

EDIT_CUT = <Edit, Cut>
EDIT_PASTE = <Edit, Paste>

The above is an example of an operator-event
mapping that relates system-interaction operators
to GUI events. The operator-event mappings fold the
menu-open and unrestricted focus events into the
system-interaction operator, thereby reducing the
total number of operators made available to the
planner, resulting in greater planning efficiency.
These mappings are used to replace the system-
interaction operators by their corresponding GUI
events when generating the final test case.

In the above example, the events Edit, Cut, and
Paste are hidden from the planner and only the
system-interaction operators, namely EDIT_CUT
and EDIT_ PASTE, are made available. This abstrac-
tion prevents generation of test cases in which Edit
is used in isolation, i.e., the model forces the use of
Edit either with Cut or with Paste, thereby
restricting attention to meaningful interactions with
the underlying software.*

4. Test cases in which Edit stands in isolation can be created by 1)
testing Edit separately, or 2) inserting Edit at random places in the
generated test cases.

Abstract operators are created from the restricted-
focus events. Abstract operators encapsulate the
events of the underlying restricted-focus window
by creating a new planning problem, the solution to
which represents the events a user might generate
during the focused interaction. The abstract opera-
tors implicitly divide the GUI into several layers of
abstraction, so that test cases can be generated for
each GUI level, thereby resulting in greater effi-
ciency. The abstract operator is a complex structure
since it contains all the necessary components of a
planning problem, including the initial and goal
states, the set of objects, and the set of operators. The
prefix of the abstract operator is the sequence of
menu-open and unrestricted-focus events that lead
to the restricted-focus event. This sequence of events
is stored in the operator-event mappings. The suffix
of the abstract operator represents the restricted-
focus user interaction. The abstract operator is
decomposed in two steps: 1) using the operator-
events mappings to obtain the abstract operator
prefix and 2) explicitly calling the planner to obtain
the abstract operator suffix. Both the prefix and
suffix are then substituted back into the high-level
plan. For example, in Fig. 6, the abstract operator
FILE_OPEN is decomposed by substituting its prefix
(File, Open) using a mapping and suffix (ChDir,
Select, Open) by invoking the planner.

Fig. 9a shows a small part of the example GUI: a
File menu with two options, namely Open and
SaveAs. When either of these events is generated, it
results in another GUI window with more compo-
nents being made available. The components in
both windows are quite similar. For Open, the user
can exit after pressing Open or Cancel; for
SaveAs, the user can exit after pressing Save or
Cancel. The complete set of events available
is Open, SaveAs, Open.Select, Open.Up,
Open.Cancel, Open.Open, SaveAs.Select,
SaveAs .Up, SaveAs.Cancel, and SaveAs.Save.
Once the user selects Open, the focus is restricted to
Open.Select, Open.Up, Open.Cancel, and
Open.Open. Similarly, when the user selects
SaveAs, the focus is restricted to SaveAs.Select,
SaveAs.Up, SaveAs.Cancel and SaveAs.Save.
These properties lead to the following two abstract
operators:

File_Open = <File, Open>, and
File_SaveAs = <File, SaveAs>.

In addition to the above two operator-event map-
pings, an abstract operator definition tem-
plate is created for each operator as shown in Fig. 9b.
This template contains all the essential components
of the planning problem, i.e., the set of operators that
are available during the restricted-focused user
interaction and the initial and goal states, both
determined dynamically at the point before the call.
Since the higher-level planning problem has already
been solved before invoking the planner for the
abstract operator, the preconditions and effects of

MEMON ET AL.: HIERARCHICAL GUI TEST CASE GENERATION USING AUTOMATED PLANNING 151

Loakin S -
|1 private

File "1 public

' File name Open |

Dew...
Open
Save
Sawve As

Files of type: Text D 7| \Gancel

Abstract Operator Template
Operator Name: File Open
Initial State: determined at run time
Goal State: determined at run time
Operator List:

{Up, Select, Open, Cancel}

File_Open
SaveAs

Look in:

_private
1 public

File name:

Abstract Operator Template
Operator Name: File_SaveAs
Initial State: dctcrmined at run time
Goal State: determined at run ime
Operator List:

{Up, Select, Save, Cancel}

Savel
Files of type: TE"‘D'j' Cancell

w

File_SaveAs
(@) (b)

I >»| File Open >» .. |

Decomposition

High
Level Pla

Planner

[scect p—>

Mapping

Sub Plan

Fig. 9. (a) Open and SaveAs windows as abstract operators, (b) abstract
operator templates, and (c) decomposition of the abstract operator using
operator-event mappings and making a separate call to the planner to
yield a subplan.

the high-level abstract operator are used to
determine the initial and goal states of the subplan.
At the highest level of abstraction, the planner will
use the high-level operators, i.e., File_Open and
File_SaveAs to construct plans. For example, in
Fig. 9c, the high-level plan contains File_Open.
Decomposing File_Open requires 1) retrieving the
corresponding GUI events from the stored operator-
event mappings (File, Open) and 2) invoking the
planner, which returns the subplan (Up, Select,
Open). File_Open is then replaced by the sequence
(File, Open, Up, Select, Open).
The abstract and system-interaction operators are given
as input to the planner. The operator set returned for the
running example is shown in Fig. 3b.

4.2 Modeling the Initial and Goal State and
Generating Test Cases

The test designer begins the generation of particular test
cases by identifying a task, consisting of initial and goal
states (see Fig. 2). The test designer then codes the initial
and goal states or uses a tool that automatically produces
the code.” The code for the initial state and the changes
needed to achieve the goal states is shown in Fig. 10. Once
the task has been specified, the system automatically

5. A tool would have to be developed that enables the user to visually
describe the GUI’s initial and goal states. The tool would then translate the
visual representation to code, e.g., the code shown in Fig. 10.

font
font
font
font

This Times Normal 12pt)

is Times Normal 12pt)

the Times Normal 12pt)

text. Times Normal
12pt)

Initial State:
isCurrent (root)
contains (root private)
contains(private Figures)
contains(private Latex)
contains (Latex Samples)
contains (private Courses)

(

(

(

contains (private Thesis) Document .doc and report.doc
contains (root public)
contains (public html)
contains (html gif)
containsfile(gif doc2.doc)
containsfile(private
Document .doc)
containsfile (Samples
report.doc)
currentFont (Times Normal
12pt)
in(doc2.doc This)
in(doc2.doc is)
in(doc2.doc the)
in{(doc2.doc text.)
isText (This)
igText (is)

Goal State:
containsfile(public new.doc)
in(new.doc This)

in(new.doc is)

in(new.doc the)

in(new.doc final)

in(new.doc text.)
after(This is)

after(is the)

after (the final)

after(final text.)

font (This Times Normal 12pt)
font (is Times Normal 12pt)
font (the Times Normal 12pt)
font (final Times Normal

isText (the) 12pt)
isText (text) font (text. Times Normal
after (This is) 12pt)

after (is the)
after (the text.)

Fig. 10. Initial State and the changes needed to reach the Goal State.

generates a set of test cases that achieve the goal. The
algorithm to generate the test cases is discussed next.

4.3 Algorithm for Generating Test Cases
The test case generation algorithm is shown in Fig. 11. The
operators are assumed to be available before making a call
to this algorithm, i.e., Steps 1, 2, and 3 of the test case
generation process shown in Table 1 must be completed
before making a call to this algorithm. The parameters (lines
1..5) include all the components of a planning problem and
a threshold (T) that controls the looping in the algorithm.
The loop (lines 8..12) contains the explicit call to the planner
(®). The returned plan p is recorded with the operator set,
so that the planner can return an alternative plan in the next
iteration (line 11). At the end of this loop, planList contains
all the partial-order plans. Each partial-order plan is then
linearized (lines 13..16), leading to multiple linear plans.
Initially, the test cases are high-level linear plans (line 17).
The decomposition process leads to lower level test cases.
The high-level operators in the plan need to be expanded/
decomposed to get lower level test cases. If the step is a
system-interaction operator, then the operator-event map-
pings are used to expand it (lines 20..22). However, if the
step is an abstract operator, then it is decomposed to a
lower level test case by 1) obtaining the GUI events from the
operator-event mappings, 2) calling the planner to obtain
the subplan, and 3) substituting both these results into the
higher level plan. Extraction functions are used to access the
planning problem’s components at lines 24..27. The lowest
level test cases, consisting of GUI events, are returned as a
result of the algorithm (line 33).

As noted earlier, one of the main advantages of using the
planner in this application is to automatically generate
alternative plans for the same goal. Generating alternative

152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.2, FEBRUARY 2001

lines
Algorithm :: GenTestCases(

A = Operator Set; D = Set of Objects; 1,2

I = Initial State; G = Goal State; 3,4

T = Threshold) { 5

planList « {}; ¢ + 0; 6, 7
/¥ Successive calls lo the planner (),
modifying the operators before each call */

WHILE ((p == ®(A, D,1,G)) | = NO_PLAK) 8

&& (¢ < T) Do { 9
TnsertInlist(p, planList); 10
A < RecordPlan(A, p); ¢+ +} 11, 12

linearPlans + {};/* No linear Plans yet */ 13

/* Linearize all partial order plans */

FORALL e € planList DO { 14
L «+ Linearize(e); 15
InsertInList(L, linearPlans)} 16

testCases « linearPlans; 17

/* decomposing the testCases */

FORALL tc € testCases DO { 18
FORALL C € Steps(tc) D0 { 19

IF (C == systemInteractionOperator) THEN { 20
newC ¢ lookup(Mappings, C); 21
REPLACE C WITH newC IN tc} 22

ELSEIF (C == abstractOpcrator) THEN { 23
AC <+ OperatorSet(C); GC + Goal(C); 24, 25
IC + Initial(C); DC + ObjectSet(C); 26, 27
/¥ Generate the lower level test cases */
newC ¢+ APPEND(lookup(Mappings, C),

GenTestCases(AC, DC, IC,GC, T)); 28
FORALL nc € newC DO { 29
copyOfte + tc; 30
REPLACE C WITH nc IN copyOftc; 31
APPEND copyOftc T0 testCases}}}} 32
RETURN(testCases)} 33

Fig. 11. The complete algorithm for generating test cases.

plans is important to model the various ways in which
different users might interact with the GUI, even if they are
all trying to achieve the same goal. Al planning systems
typically generate only a single plan; the assumption made
there is that the heuristic search control rules will ensure
that the first plan found is a high quality plan. In PATHS,
we generate alternative plans in the following two ways:

1. Generating multiple linearizations of the partial-
order plans. Recall from the earlier discussion that
the ordering constraints O only induce a partial
ordering, so the set of solutions are all linearizations
of S (plan steps) consistent with O. We are free to
choose any linear order consistent with the partial
order. All possible linear orders of a partial-order
plan result in a family of test cases. Multiple
linearizations for a partial-order plan were shown
earlier in Fig. 8.

2. Repeating the planning process, forcing the planner
to generate a different test case at each iteration.

5 EXPERIMENTS

A prototype of PATHS was developed and several sets of
experiments were conducted to ensure that PATHS is
practical and useful. These experiments were executed on
a Pentium-based computer with 200MB RAM running

TABLE 3
Some WordPad Plans Generated for the Task of Fig. 2
Plan | Plan | Plan
No. Step | Action
1 1 FILE-OPEN(“private”, “Document.doc™)
2 DELETE-TEXT(“that”)
2 DELETE-TEXT(“must”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)
2 1 FTLE-OPEN(“public”, “doc2.doc”)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 DELETE-TEXT(“needs”)
2 DELETE-TEXT(“to”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)
3 1 FILE-OPEN(“public”, “doc2.doc”)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 DELETE-TEXT(“to”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
2 SELECT-TEXT(“needs”)
3 EDIT-CUT(“needs”)
4 FILE-SAVEAS(“public”, “new.doc”)
4 1 FILE-NEW (“public”, “new.doc”)
2 TYPE-IN-TEXT(“This", Times, Italics, 12pt)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)

Linux OS. A summary of the results of some of these
experiments is given in the following sections:

5.1 Generating Test Cases for Multiple Tasks

PATHS was used to generate test cases for Microsoft’s
WordPad. Examples of the generated high-level test cases
are shown in Table 3. The total number of GUI events in
WordPad was determined to be approximately 325. After
analysis, PATHS reduced this set to 32 system-interaction
and abstract operators, i.e., roughly a ratio of 10 : 1. This
reduction in the number of operators is impressive and
helps speed up the plan generation process, as will be
shown in Section 5.2.

Defining preconditions and effects for the 32 operators
was fairly straightforward. The average operator definition
required five preconditions and effects, with the most
complex operator requiring 10 preconditions and effects.
Since mouse and keyboard events are part of the GUI, three
additional operators for mouse and keyboard events were
defined.

Table 4 presents the CPU time taken to generate test
cases for MS WordPad. Each row in the table represents a
different planning task. The first column shows the task
number, the second column shows the time needed to
generate the highest-level plan, the third column shows the
average time spent to decompose all subplans, and the
fourth column shows the total time needed to generate the

MEMON ET AL.: HIERARCHICAL GUI TEST CASE GENERATION USING AUTOMATED PLANNING 153

TABLE 4
Time Taken to Generate Test Cases for WordPad

Task | Plan Sub | Total
No. | Time | Plan | Time

(sec) | Time | (sec)
1 0.40 0.04 0.44
2 3.16 0.00 3.16
3 3.17 0.00 3.17
4 3.20 0.01 3.21
5 3.38 0.01 3.39
6 3.44 0.02 3.46
7 4.09 0.04 4.13
8 8.88 0.02 8.90
9 40.47 0.04 | 40.51

test case (i.e., the sum of the two previous columns). These
results show that the maximum time is spent in generating
the high-level plan (column 2). This high-level plan is then
used to generate a family of test cases by substituting
alternative low-level subplans. These subplans are gener-
ated relatively faster (average shown in column 3),
amortizing the cost of plan generation over multiple test
cases. Plan 9, which took the longest time to generate, was
linearized to obtain two high-level plans, each of which was
decomposed to give several low-level test cases, the shortest
of which consisted of 25 GUI events.

The plans shown in Table 3 are at a high level of
abstraction. Many changes made to the GUI have no effect
on these plans, making regression testing easier and less
expensive. For example, none of the plans in Table 3
contain any low-level physical details of the GUI. Changes
made to fonts, colors, etc. do not affect the test suite in any
way. Changes that modify the functionality of the GUI can
also be readily incorporated. For example, if the WordPad
GUI is modified to introduce an additional file opening
feature, then most of the high-level plans remain the same.
Changes are only needed to subplans that are generated by
the abstract operator FILE-OPEN. Hence, the cost of initial
plans is amortized over a large number of test cases.

We also implemented an automated test execution
system, so that all the test cases could be automatically
executed without human intervention. Automatically ex-
ecuting the test cases involved generating the physical
mouse/keyboard events. Since our test cases are repre-
sented at a high level of abstraction, we translate the high-
level actions into physical events. The actual screen
coordinates of the buttons, menus, etc. were derived from
the layout information.

5.2 Hierarchical vs. Single-Level
Test Case Generation

In our second experiment, we compared the single-level test
case generation with the hierarchical test case generation
technique. Recall that in the single-level test case generation
technique, planning is done at a single level of abstraction.
The operators have a one-to-one correspondence with the
GUI events. On the other hand, in the hierarchical test case
generation approach, the hierarchical modeling of the
operators is used.

TABLE 5
Comparing the Single-Level with the Hierarchical Approach
Single level Hierarchical
Task | Plan Time Plan Time
No. | Length | (sec.) Length | (sec.)
1 18 8.93 3 0.11
2 20 47.62 4 0.18
3 24 189.87 5 0.14
4 26 331272 || 6 7.18
5 - - 3 0.1
6 - - 4 13.01

“” indicates that no plan was found in one hour.

Results of this experiment are summarized in Table 5.
We have shown CPU times for six different tasks. Column 1
shows the task number; Column 2 shows the length of the
test case generated by using the single-level approach and
Column 3 shows its corresponding CPU time. The same
task was then used to generate another test case but this
time using the hierarchical operators. Column 4 shows the
length of the high-level plans and Column 5 shows the time
needed to generate this high-level plan and then decompose
it. Plan 1, obtained from the hierarchical algorithm, expands
to give a plan length of 18, ie. exactly the same plan
obtained by running its corresponding single-level algo-
rithm. The timing results show the hierarchical approach is
more efficient than the single-level approach. This results
from the smaller number of operators used in the planning
problem.

This experiment demonstrates the importance of the
hierarchical modeling process. The key to efficient test case
generation is to have a small number of planning operators
at each level of planning. As GUIs become more complex,
our modeling algorithm is able to obtain increasing number
of levels of abstraction. We performed some exploratory
analysis for the much larger GUI of Microsoft Word. There,
the automatic modeling process reduced the number of
operators by a ratio of 20:1.

6 RELATED WORK

Current tools to aid the test designer in the testing process
include record/playback tools [20], [21]. These tools record
the user events and GUI screens during an interactive
session. The recorded sessions are later played back
whenever it is necessary to recreate the same GUI states.
Several attempts have been made to automate test case
generation for GUIs. One popular technique is program-
ming the test case generator [22]. For comprehensive
testing, programming requires that the test designer code
all possible decision points in the GUI However, this
approach is time consuming and is susceptible to missing
important GUI decisions.

A number of research efforts have addressed the
automation of test case generation for GUIs. Several finite-
state machine (FSM) models have been proposed to generate
test cases [23], [24], [25], [26]. In this approach, the software’s
behavior is modeled as a FSM where each input triggers a
transition in the FSM. A path in the FSM represents a test

154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.2, FEBRUARY 2001

case and the FSM’s states are used to verify the software’s
state during test case execution. This approach has been
used extensively for the test generation for testing hardware
circuits [27]. An advantage of this approach is that once the
FSM is built, the test case generation process is automatic. It
is relatively easy to model a GUI with an FSM; each user
action leads to a new state and each transition models a user
action. However, a major limitation of this approach, which
is an especially important limitation for GUI testing, is that
FSM models have scaling problems [28]. To aid in the
scalability of the technique, variations such as variable finite
state machine (VFSM) models have been proposed by
Shehady and Siewiorek. [28].

Test cases have also been generated to mimic novice
users [7]. The approach relies on an expert to manually
generate the initial sequence of GUI events and, then uses
genetic algorithm techniques to modify and extend the
sequence. The assumption is that experts take a more direct
path when solving a problem using GUIs, whereas novice
users often take longer paths. Although useful for generat-
ing multiple test cases, the technique relies on an expert to
generate the initial sequence. The final test suite depends
largely on the paths taken by the expert user.

Al planning has been found to be useful for generating
focused test cases [29] for a robot tape library command
language. The main idea is that test cases for command
language systems are similar to plans. Given an initial state
of the tape library and a desired goal state, the planner can
generate a “plan” which can be executed on the software as
a test case. Note that although this technique has similarities
to our approach, several differences exist: A major
difference is that in [29], each command in the language is
modeled with a distinct operator. This approach works well
for systems with a relatively small command language.
However, because GUIs typically have a large number of
possible user actions, a hierarchical approach is needed.

7 CONCLUSIONS

In this paper, we presented a new technique for testing GUI
software and we showed its potential value for the test
designer’s tool-box. Our technique employs GUI tasks,
consisting of initial and goal states, to generate test cases.
The key idea of using tasks to guide test case generation is
that the test designer is likely to have a good idea of the
possible goals of a GUI user and it is simpler and more
effective to specify these goals than to specify sequences of
events that achieve them. Our technique is unique in that
we use an automatic planning system to generate test cases
from GUI events and their interactions. We use the
description of the GUI to automatically generate alternative
sequences of events from pairs of initial and goal states by
iteratively invoking the planner.

We have demonstrated that our technique is both
practical and useful by generating test cases for the popular
MS WordPad software’s GUIL Our experiments showed that
the planning approach was successful in generating test
cases for different scenarios. We developed a technique for
decomposing the GUI at multiple levels of abstraction. Our
technique not only makes test case generation more
intuitive, but also helps scale our test generation algorithms

for larger GUIs. We experimentally showed that the
hierarchical modeling approach was necessary to efficiently
generate test cases.

Hierarchical test case generation also aids in performing
regression testing. Changes made to one part of the GUI
do not invalidate all the test cases. Changes can be made
to lower level test cases, retaining most of the high-level
test cases.

Representing the test cases at a high level of abstraction
makes it possible to fine-tune the test cases to each
implementation platform, making the test suite more
portable. A mapping is used to translate our low-level test
cases to sequences of physical actions. Such platform-
dependent mappings can be maintained in libraries to
customize our generated test cases to low-level, platform-
specific test cases.

We note some current limitations of our approach. First,
the test case generator is largely driven by the choice of
tasks given to the planner. Currently in PATHS, these tasks
are chosen manually by the test designer. A poorly chosen
set of tasks will yield a test suite that does not provide
adequate coverage. We are currently exploring the devel-
opment of coverage measures for GUIs. Second, we depend
heavily on the hierarchical structure of the GUI for efficient
test case generation. If PATHS is given a poorly structured
GUI then no abstract operators will be obtained and the
planning will depend entirely on primitive operators,
making the system inefficient. Third, our approach must
be used in conjunction with other test case generation
techniques to adequately test the software as is generally
the case with most test case generators.

One of the tasks currently performed by the test
designer is the definition of the preconditions and effects
of the operators. Such definitions of commonly used
operators can be maintained in libraries, making this task
easier. We are also currently investigating how to auto-
matically generate the preconditions and effects of the
operators from a GUI’s specifications.

ACKNOWLEDGMENTS

This research was partially supported by the US Air Force
Office of Scientific Research (F49620-98-1-0436) and by the
US National Science Foundation (IR1-9619579). Atif Memon
was partially supported by the Andrew Mellon Predoctoral
Fellowship.

The authors would like to thank the anonymous
reviewers of this article for their comments and Brian
Malloy for his valuable suggestions. A preliminary version
of the paper appeared in the Proceedings of the 21st
International Conference on Software Engineering, Los Angeles,
May 1999 [30].

REFERENCES

[1] B.A. Myers, “Why are Human-Computer Interfaces Difficult to
Design and Implement?” Technical Report CS-93-183, School of
Computer Science, Carnegie Mellon Univ., July 1993.

[2] W.L Wittel Jr. and T.G. Lewis, “Integrating the MVC Paradigm
into an Object-Oriented Framework to Accelerate GUI Application
Development,” Technical Report 91-60-06, Dept. of Computer
Science, Oregon State Univ., Dec. 1991.

MEMON ET AL.: HIERARCHICAL GUI TEST CASE GENERATION USING AUTOMATED PLANNING

(3]
(4

(5]

o]

(]

8]

[l

(10]

(1]

(12]

(13]

(14]

[15]
[1o]

(17

(18]

[19]

[20]

(21]

(22]
(23]

(24]

(25]

[20]

(27]

(28]

B.A. Myers, “User Interface Software Tools,” ACM Trans.
Computer-Human Interaction, vol. 2, no. 1, pp. 64-103, 1995.

D. Rosenberg, “User Interface Prototyping Paradigms in the 90’s,”
Proc. Conf. Human Factors in Computing Systems—Adjunct Proc.
(ACM INTERCHI '93), p. 231, 1993.

M.G. El-Said, G. Fischer, S.A. Gamalel-Din, and M. Zaki, “ADDI:
A Tool for Automating the Design of Visual Interfaces,” Computers
& Graphics, vol. 21, no. 1, pp. 79-87, 1997.

L. White, “Regression Testing of GUI Event Interactions,” Proc.
Int’l Conf. Software Maintenance, pp. 350-358, Nov. 1996.

DJ. Kasik and H.G. George, “Toward Automatic Generation of
Novice User Test Scripts,” Proc. Conf. Human Factors in Computing
Systems: Common Ground, M.]. Tauber, V. Bellotti, R. Jeffries,
J.D. Mackinlay, and J. Nielsen, eds., pp. 244-251, Apr. 1996.

R.M. Mulligan, M.W. Altom, and D.K. Simkin, “User Interface
Design in the Trenches: Some Tips on Shooting from the Hip,”
Proc. Conf. Human Factors in Computing Systems (ACM CHI '91),
pp- 232-236, 1991.

J. Nielsen, “Iterative User-Interface Design,” Computer, vol. 26,
no. 11, pp. 32-41, Nov. 1993.

M.M. Kaddah, “Interactive Scenarios for the Development of a
User Interface Prototype,” Proc. Fifth Int’l Conf. Human-Computer
Interaction, vol. 2, pp. 128-133, 1993.

A. Kaster, “User Interface Design and Evaluation—Application of
the Rapid Prototyping Tool EMSIG,” Proc. Fourth Int’l Conf.
Human-Computer Interaction, vol. 1, pp. 635-639, 1991.

H. Kautz and B. Selman, “The Role of Domain-Specific Knowl-
edge in the Planning as Satisfiability Framework,” Proc. Fourth
Int’l Conf. Artificial Intelligence Planning Systems (AIPS '98),
R. Simmons, M. Veloso, and S. Smith, eds., pp. 181-189, 1998.

A. Walworth, “Java GUI Testing,” Dr. Dobb’s]. Software Tools,
vol. 22, no. 2, pp. 30, 32, and 34, Feb. 1997.

M. Peot and D. Smith, “Conditional Nonlinear Planning,” Proc.
First Int’l Conf. Al Planning Systems, J. Hendler, ed., pp. 189-197,
June 1992.

D.S. Weld, “An Introduction to Least Commitment Planning,” Al
Magazine, vol. 15, no. 4, pp. 27-61, 1994.

D.S. Weld, “Recent Advances in Al Planning,” Al Magazine,
vol. 20, no. 1, pp. 55-64, 1999.

J. Koehler, B. Nebel,]. Hoffman, and Y. Dimopoulos, “Extending
Planning Graphs to an ADL Subset,” Lecture Notes in Computer
Science, vol. 1348, pp. 273, 1997.

A.L. Blum and M.L. Furst, “Fast Planning Through Planning
Graph Analysis,” Artificial Intelligence, vol. 90, no. 1-2, pp. 279-
298, 1997.

K. Erol, J. Hendler, and D.S. Nau, “HTN Planning: Complexity
and Expressivity,” Proc. 12th Nat'l Conf. Artificial Intelligence (AAAI
'94), vol. 2, pp. 1123-1128, Aug. 1994.

L. The, “Stress Tests For GUI Programs,” Datamation, vol. 38,
no. 18, p. 37, Sept. 1992.

M.L. Hammontree, J.J. Hendrickson, and B.W. Hensley, “Inte-
grated Data Capture and Analysis Tools for Research and Testing
a Graphical User Interfaces,” Proc. Conf. Human Factors in
Computing Systems, P. Bauersfeld, J. Bennett, and G. Lynch, eds.,
pp- 431432, May 1992.

L.R. Kepple, “The Black Art of GUI Testing,” Dr. Dobb’s |. Software
Tools, vol. 19, no. 2, p. 40, Feb. 1994.

JM. Clarke, “Automated Test Generation from a Behavioral
Model,” Proc. Pacific Northwest Software Quality Conf., May 1998.
T.S. Chow, “Testing Software Design Modeled by Finite-State
Machines,” IEEE Trans. Software Eng., vol. 4, no. 3, pp. 178-187,
Mar. 1978.

S. Esmelioglu and L. Apfelbaum, “Automated Test Generation,
Execution, and Reporting,” Proc. Pacific Northwest Software Quality
Conf., Oct. 1997.

P.J. Bernhard, “A Reduced Test Suite for Protocol Conformance
Testing,” ACM Trans. Software Eng. and Methodology, vol. 3, no. 3,
pp- 201-220, July 1994.

H. Cho, G.D. Hachtel, and F. Somenzi, “Redundancy Identifica-
tion/Removal and Test Generation for Sequential Circuits Using
Implicit State Enumeration,” Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, no. 7, pp. 935-945, July
1993.

R.K. Shehady and D.P. Siewiorek, “A Method to Automate User
Interface Testing Using Variable Finite State Machines,” Proc. 27th
Ann. Int’l Symp. Fault-Tolerant Computing (FTCS '97), pp. 80-88,
June 1997.

155

[29] A. Howe, A. von Mayrhauser, and R.T. Mraz, “Test Case
Generation as an Al Planning Problem,” Automated Software
Eng., vol. 4, pp. 77-106, 1997.

[30] A.M. Memon, M.E. Pollack, and M.L. Soffa, “Using a Goal-Driven
Approach to Generate Test Cases for GUIs,” Proc. 21st Int’l Conf.
Software Eng., pp. 257-266, May 1999.

Atif M. Memon received the BS and MS
degrees in computer science in 1991 and
1995, respectively. He enrolled at the University
of Pittsburgh in 1996 and is currently a PhD
candidate. He was awarded a Fellowship from
the Andrew Mellon Foundation for his PhD
research. His research interests include pro-
gram testing, software engineering, artificial
intelligence, plan generation, and code improv-
ing compilation techniques. He is a member of
the ACM and a student member of both the IEEE and the IEEE
Computer Society.

Martha E. Pollack received the AB degree
(1979) in linguistics from Dartmouth College and
the MSE (1984) and PhD (1986) degrees in
computer and information science from the
University of Pennsylvania. She is a professor
of computer science and director of the Intelli-
gent Systems Program at the University of
Pittsburgh. From 1985 until 1991, she was
employed at the Artificial Intelligence Center at
SRl International. Dr. Pollack is a recipient of the
Computers and Thought Award (1991), a US National Science
Foundation Young Investigator's Award (1992), and is a fellow of the
American Association for Atrtificial Intelligence (1996). She is also a
member of the editorial board of the Artificial Intelligence Journal and on
the advisory board of the Journal of Atrtificial Intelligence Research.
Dr. Pollack also served as program chair for [JCAI '97. Her research
interests include computational models of rationality, planning and
reasoning in dynamic environments, and assistive technology.

Mary Lou Soffa received the PhD degree in
computer science from the University of Pitts-
burgh in 1977. She is a professor of computer
science at the University of Pittsburgh. She
served as the graduate dean of arts and
sciences at the University of Pittsburghfrom
1991 through 1996. In 1999, she received the
Presidential Award for Excellence in Science,
Mathematics, and Engineering Mentoring. She
also was elected an ACM fellow in 1999. She
currently serves on the editorial board for ACM Transactions on
Programming Languages and Systems, IEEE Transactions of Software
Engineering, International Journal of Parallel Programming, Computer
Languages, and the South African Journal of Computing. She serves as
vice president for the Computing Research Association (CRA) and also
as cochair of the CRA’s Committee on the Status of Women in CSE.
She is currently a member-at-large for ACM SIGBoard. She has served
as conference chair, program chair, and program committee member for
conferences in both programming languages and software engineering.
Her research interests include optimizing and parallelizing compilers,
program analysis, and software tools for debugging and testing
programs. She is a member of the IEEE and the IEEE Computer
Society.

