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Abstract—Regression testing tasks of test case prioritization, test suite reduction/minimization, and regression test selection are
typically centered around criteria that are based on code coverage, test execution costs, and code modifications. Researchers have
developed and evaluated new individual criteria; others have combined existing criteria in different ways to form what we—and some
others—call hybrid criteria. In this paper, we formalize the notion of combining multiple criteria into a hybrid. Our goal is to create a
uniform representation of such combinations so that they can be described unambiguously and shared among researchers. We envision
that such sharing will allow researchers to implement, study, extend, and evaluate the hybrids using a common set of techniques and
tools. We precisely formulate three hybrid combinations, Rank, Merge, and Choice, and demonstrate their usefulness in two ways.
First, we recast, in terms of our formulations, others’ previously reported work on hybrid criteria. Second, we use our previous results
on test case prioritization to create and evaluate new hybrid criteria. Our findings suggest that hybrid criteria of others can be described
using our Merge and Rank formulations, and that the hybrid criteria we developed most often outperformed their constituent individual
criteria.
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1 INTRODUCTION

Regression testing activities of test case prioritization [3],
[63], test suite reduction (also called minimization) [21],
[25], [28], [36], [68], and regression test selection [41] are
typically centered around criteria that determine “which
test cases to select” or “which test case to execute next.”
In test case prioritization, test cases are ordered based
on a certain criterion and test cases with highest priority
are executed first to achieve a performance goal. In test
suite reduction/minimization (in the rest of the paper,
for simplicity, we will use the term “reduction”), test
cases that become redundant over time are removed
from the test suite to create a smaller set of test cases. In
regression test selection, a subset of test cases is selected
from a larger original suite.

For example, Rothermel et al. select test cases that
yield the greatest statement coverage [50]; Sprenkle et
al. select test cases that cover each executed statement at
least once [58]; in both of these examples, the selection
criteria are embodied in code coverage criteria – covering
program statements. Other criteria consider program
modifications [59] and cost [56]. There are numerous
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other examples of criteria used for prioritization [3], [9],
[12], [14]–[16], [29], [33], [63], [71], reduction [2], [21],
[22], [25], [28], [31], [39], [48], [53], [65], [68], and selection
[41] (Yoo and Harman provide an extensive survey of
regression techniques [69]).

Several researchers combine multiple criteria and
show that the combination is more useful than the
individual criteria. For instance, Jeffrey et al. [30] use
branch as a primary criterion and all-uses as a secondary
criterion for test suite reduction – if a test is redundant
with respect to the primary criterion, it may still be
included in the reduced test suite if it is not redundant
with respect to the secondary criterion. Similarly, Lin
et al. [36] combine a primary criterion of branch with
a secondary criterion of def-use for test suite reduction.
They employ the secondary criterion only when the use
of the primary criterion returns multiple test cases that
satisfy its coverage requirement. On the other hand,
Black et al. [2] simultaneously use two criteria (“all-uses”
and “error detection rates from previous runs”) for test suite
reduction by combining them using binary integer linear
programming. Other researchers1 also combine criteria
in different ways and report that such combinations are
useful. However, researchers use different representa-
tions, if any, to formulate and describe the multiple crite-
ria. Also, very few have empirically compared their new
combination with prior published ones. Although there

1. Of the 593 research papers that we examined for this research, a
total of 44 papers have combined criteria in different ways [1]–[4], [7],
[8], [10], [11], [14], [17]–[19], [21], [23]–[28], [30], [32], [34]–[38], [40]–
[42], [44], [45], [47], [52], [54], [60], [61], [63], [64], [66]–[68], [70], [72],
[73].
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are many reasons why researchers do not perform such
comparisons (e.g., lack of tools and shared artifacts), we
feel that one big reason for not doing so is the lack
of a standard representation to formulate, describe, and
understand the new multi-criteria.

In this paper, we formalize the notion of combining
multiple criteria together into what we call a hybrid. We
create a uniform representation of such combinations so
that they may be described unambiguously. We envision
that researchers who use our representation will be able
to share these descriptions with others, perhaps in a
shared repository, and thereby facilitate replication and
comparative studies between hybrids. We see increasing
interest in using hybrid criteria for regression testing
(71% of the 44 papers were published in the last 5 years),
so we feel that this research is both timely and relevant.

Because hybrid criteria may be obtained by combining
individual criteria in various ways, our representation
needs to be very general. To allow generality, we use the
functional paradigm – individual criteria are represented
as operands and their combination is represented as an
operator. We use function composition, and its well-
known semantics, to compose different criteria together,
giving us great flexibility in how we can combine and
use the criteria, including “hybrids of hybrids” via
nested compositions of functions.

We describe 3 ways of combining criteria: (1) Rank (2)
Merge, and (3) Choice. In Rank, the criteria being com-
bined are ranked in order of importance; the first criterion
is applied first; a user-supplied function determines if
the second and all subsequent criteria, in order, need
to be used. Depending on the situation, Rank may use
several criteria but they must be applied one-by-one, in
order of importance. A more important criterion must be
applied before one of less importance is applied. Merge,
on the other hand, allows for multiple criteria to be
considered simultaneously; all criteria are combined first
and the combination is used. Finally, Choice selects only
one from a set of equally important criteria using a user-
supplied selection function. We acknowledge that these
3 ways of combining criteria are by no means complete.
They are meant to serve as a starting point for more work
in the field; indeed, we expect to create additional ways
to combine criteria; this is a subject for future research.

We demonstrate the usefulness of our 3 formulations
in two ways. First, we recast others’ previously reported
work on combining multiple criteria for regression test-
ing in terms of our hybrid formulation. Second, we use
our past empirical results on test case prioritization [3] to
demonstrate the creation and evaluation of new hybrid
criteria. In previous work, we used individual criteria.
We demonstrate how one would combine the individual
criteria and evaluate new hybrid criteria, explaining the
strengths and weaknesses of the combinations.

Our paper makes the following contributions:
1) We formalize the notion of combining multiple

criteria for regression testing, giving researchers a
new way to represent such combinations.

2) Although we provide 3 examples of operators, our
overall function-based representation is general,
allowing future researchers to create new hybrid
criteria.

3) We clearly place others’ past work in terms of Rank
and Merge operators.

4) We show examples of how one could combine
criteria in the domain of web and graphical-user
interface (GUI)-based applications.

5) We empirically evaluate the benefits of combining
criteria for these domains.

Our findings suggest that others’ prior reported work
can be described in terms of only 2 of our operators: Rank
and Merge. This gives us a fair amount of confidence that
these are important operators for hybrid formulations.
We also observed that the hybrid criteria we developed
most often outperformed their constituent individual
criteria.

The remainder of this paper is organized as follows:
Section 2 summarizes existing work on combining mul-
tiple criteria. Section 3 presents our three formulations
of hybrid. Section 4 demonstrates the use of our formu-
lations. Finally, Section 5 concludes with a discussion of
future work.

2 BACKGROUND AND RELATED WORK

The use of hybrid criteria (also called “multi-criteria”
[41], “multi-objective techniques” [68], and “breaking
ties” [36]) has been motivated by multiple researchers
over the years. Most of these researchers agree that
locating faults is a complex process; the use of a single
criterion severely limits the ability of the resulting regres-
sion test suite to locate faults [41]. Multiple contextual
factors that are impossible to account for via a single
criterion, for instance, the characteristics of an applica-
tion, modifications made since the last testing cycle, and
original test suite, may influence whether a particular
criterion is well suited for a particular regression testing
situation. Multiple criteria have the potential to improve
the effectiveness of regression testing techniques over
those with a single criterion. A large number of studies
have successfully shown this to be true [1]–[4], [7], [8],
[10], [11], [14], [17]–[19], [21], [23]–[28], [30], [32], [34]–
[38], [40]–[42], [44], [45], [47], [52], [54], [60], [61], [63],
[64], [66]–[68], [70], [72], [73]. Further, Harman motivates
the use of multiple criteria for both our paper and
future work [20]. He generalizes the regression testing
problem into a multi-objective problem and provides a
list of criteria that are useful in industry. While different
criteria may have different weights, he recommends
using Pareto optimization when weights won’t work.
The paper provides many opportunities for future work
such as experimentation.

In this section, we review a representative sample of
these existing techniques that use multiple criteria for
various regression testing tasks, i.e., reduction [2], [21],
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[25], [30], [36], [68], prioritization [3], [63], and selection
[41].

As early as 1993, Harrold et al. [21] recognized, in
what subsequently became known as the “HGS2 paper”,
that multiple criteria may be used simultaneously for
test suite reduction. Although the “HGS algorithm” has
mostly been used with a single criterion, their original
paper explicitly mentions how it may be used with
multiple criteria. They outline three situations for using
two criteria: (a) test cases that satisfy the first criterion
form a proper subset of test cases that satisfy the second
criterion, (b) test cases that satisfy the first criterion over-
lap with test cases that satisfy the second criterion, and
(c) there is no overlap between test cases that satisfy the
two criteria. They mention how their algorithm may be
used in these situations. However, they do not evaluate
their multi-criteria approach.

Jeffrey and Gupta [30] develop an approach that
uses multiple criteria for test suite reduction. In their
approach, if a test is deemed redundant by the first
criterion, they check whether the test is also redundant
according to the second criterion. If not, then the test is
included in the reduced suite. They conduct experiments
using the seven Siemens programs and the Space program.
In their experiments, they use the criteria branch cover-
age, all-uses, and subpaths of length 3. They measure
reduction in test suite size, loss in fault detection ef-
fectiveness, and additional-faults-to-additional-tests ra-
tio. They also conduct another experiment using four
Java programs (bst, avl, heap, sort), where each program
contains a single method operating on a data structure.
In this experiment, they use black-box criteria as primary
and branches and def-use coverage as secondary criteria.
They report that using multiple criteria helps identify
tests that expose different faults, and that multiple cri-
teria increase the fault detection effectiveness of the
reduced suite.

Sampath et al. [52] combine multiple criteria for test
suite reduction. In their work, they propose two hybrids.
In one case, they merge the program coverage and usage
based requirements and supply the combined matrix to
the HGS algorithm. In the second case, they use the
HGS algorithm with program-coverage-based criteria as
primary, and usage-based criteria as tie breakers, i.e., to
select one of several test cases that the primary criterion
may consider equivalent. They use statement, method
and conditional coverage as the program-coverage-based
criteria, and “base requests,” “base requests and name,”
“base requests and name-value,” “sequences of base
requests of size 2,” and “sequences of base requests and
name of size 2” as usage-based criteria. They evaluate
their approach using one web application with seeded
faults. Their findings show that using usage-based cri-
teria as tie breakers produces more effective test suites
with respect to program coverage and fault detection,

2. Abbreviated from the researchers’ last names: Harrold, Gupta,
Soffa.

than without using them.
Lin and Huang [36] perform regression test suite

reduction with their Reduction with Tie-Breaking (RTB)
approach that extends the HGS algorithm [21] and the
“GRE algorithm” [5], [6] by using two criteria. When ties
are encountered between test cases as per the primary
criterion, their technique uses a secondary criterion to
break ties. In the evaluation of their approach, they
use the seven Siemens programs with seeded faults, and
the Space program with natural faults. Their primary
criterion is branch coverage, and secondary criterion is
def-use pair coverage. They measure reduction in test
suite size, loss of fault detection effectiveness, and faults-
to-test ratio in their experiments. They find that by
integrating RTB with HGS [21] and GRE [6], the fault
detection effectiveness can be improved slightly without
significantly affecting the size of the reduced suites.

Walcott et al. [63] present an approach for time-aware
test case prioritization using two criteria, (1) execution
time and (2) code coverage (in particular, block and
method coverage). Their approach uses a genetic al-
gorithm to prioritize the regression test suites based
on these two criteria. In their experiments, they use
two applications, Gradebook and JDepend with mutation
faults. They find that their time-aware prioritizations
outperform other prioritization techniques.

Yoo and Harman [68] perform test suite reduction
using a genetic algorithm that uses two- and three-
objective formulations. They use code coverage and
execution time in the two-objective formulation, and
add fault detection as the third objective in the three-
objective formulation. Their goal is to select a Pareto
efficient subset of the test suite based on satisfying the
multiple criteria. They compare their genetic algorithm
to a baseline additional-greedy algorithm. They supply the
results from the additional greedy algorithm as the initial
population to the genetic algorithm. They empirically
examine five subject applications seeded with faults, flex,
grep, gzip, sed, and space, obtained from SIR [55]. For
three of these applications, they observe that the multi-
objective genetic algorithm finds solutions not reported
by the additional-greedy algorithm, whereas for the
other systems, the genetic algorithm could not improve
upon the solutions of additional-greedy.

Black et al. [2] perform test suite reduction using a
combination of two criteria: (1) all-uses and (2) error
detection rates from previous runs of regression test-
ing. They develop a binary integer linear programming
model based on the two criteria. Weights on the criteria
allow one criterion to take precedence over the other.
Their experiments on seven programs from the Siemens
suite that are seeded with faults find that this approach
successfully selects test cases that reveal faults in subse-
quent versions of the program.

Hsu et al. [25] perform test suite reduction using mul-
tiple criteria modeled as an integer linear programming
problem. They propose three policies by which the crite-
ria can be combined: (a) weighted, (b) prioritized, and (c)
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hybrid. In the weighted policy, they give a weight to each
criterion/objective and consider all the criteria together
during reduction. In the prioritized policy, they assign
priorities to criteria and select them one at a time for
prioritization. The third policy, hybrid, divides objectives
into groups with weights on the individual objectives,
and assigns priorities to the groups. In their experiments,
they evaluated their approach using the seven programs
from the Siemens suite, and three additional programs,
flex, LogicBlox, and Eclipse, also from SIR [55]. They used
a combination of seeded and real faults in these systems.
They report that their approach converged to a solution
quickly for most reduction problems, and it performed
well or better than the HGS [21] algorithm in terms of
size of the minimized test suite and time to generate the
test suite.

Mirarab et al. [41] perform test case selection using
two coverage-based criteria. The criteria they use are (1)
maximize total coverage of software elements of all test
cases and (2) maximize the minimum coverage across
all software elements. These two criteria are used to
formulate the test selection problem as an integer lin-
ear programming problem. They also propose a greedy
algorithm that seeks to maximize the minimum sum
of coverage across all software elements. They use five
open source Java programs from SIR [55] that contain
mutation faults. They find that their proposed technique
is quite effective at detecting faults when compared to
other approaches, such as a Bayesian Network-based,
time-aware test case prioritization [63] and method
coverage-based techniques.

In our previous work [3], we present a hybrid ap-
proach for test case prioritization using two criteria, (1)
frequency-based criteria and (2) a combinatorial crite-
rion, 2-way. We prioritize test cases by one criterion and
change to a second criterion when the average percent of
faults detected (APFD) does not increase after a specified
number of test cases. In our evaluation, we use one web
application with seeded faults. We found that in several
cases, the hybrid prioritized test orders outperformed
the test orders prioritized by individual criteria.

A large fraction of the 44 “hybrid papers” that we ex-
amined in detail for this research mention the benefits of
using multiple criteria over a single criterion for regres-
sion testing. However, each paper uses its own notation,
if any, when formulating the multiple criteria regression
testing problem. Also, very few have empirically com-
pared their new approach with any prior approaches.
Although there are many reasons why researchers do not
perform such comparisons, we feel that one big reason
for not doing so is the lack of standard representations
available to researchers to formulate and describe their
new multi-criteria approaches. In this paper, we provide
a starting point for doing so. We describe a new way
to represent multi-criteria approaches. To exemplify its
use, we recast previous approaches in terms of this
representation. Moreover, we walk the reader through
a detailed example of how we use the representation to

extend our own prior work on test case prioritization of
event-driven systems.

3 DEFINING HYBRID CRITERIA

In this section we formally define the three ways in
which we develop hybrid criteria for performing regres-
sion testing tasks. Because our hybrid criteria are ob-
tained by combining individual criteria in various ways,
we formulate the hybrid using the functional paradigm.
This allows us to use function composition, and its well-
known semantics, to compose different criteria together,
giving us great flexibility in how we can combine and
use the criteria.

We use a running example, seen in Table 1, of a test
suite to demonstrate the use of our function formulation
as well as the hybrid combinations. The suite contains
5 test cases, each is a sequence of events; the table
shows the various measured characteristics of these test
cases, including the events, statements, and branches
they cover, their execution time, length, and faults they
detect. Without loss of generality, we assume that these
are represented as matrices (e.g., coverage matrix S for
statements covered) and as vectors of values (e.g., L for
length of the test cases). These two representations of
test cases are commonly used by software testing tools
[62] as well as researchers [74].

To provide focus, we will restrict our primary thread
of discussion to the problem of test case prioritization.
At certain points in the discussion, however, we will
discuss extensions to test suite reduction and regression
test selection. We feel that this approach helps to simplify
the flow of this paper.

3.1 Representing Stand-alone Criteria
We start by defining existing conventional, stand-alone
(non-hybrid) criteria as functions. Because of our focus
on test case prioritization, one of the key components
of our formulation is a function next() that takes three
parameters: (1) the sequence of test cases selected thus
far, (2) the complete test suite, (3) a matrix (or vector)
encoding the relationship between all test cases and the
metric being used to compute the prioritized order (e.g.,
statement coverage) paired with a function g() to be used
for the computation. The output of next() is a set of test
cases that are next in the prioritized order.

A typical usage of next() would start with an empty
sequence as the first parameter; next() would return
the highest priority test cases; these would be used in
the second invocation as the first parameter to obtain
the next most important test cases; subsequent iterative
invocations would pass—as the first parameter—all or-
dered test cases obtained thus far to obtain the next
important test cases; the iterations will continue until all
tests have been ordered.

Consider our running example of Table 1. Suppose
we want to prioritize our 5 test cases using the classical
additional statement coverage prioritization [50] technique,
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TABLE 1: Five example test cases, their coverage and other metrics, and faults detected.

Test Cases Events Covered Statements Covered Branches Exec. Length Faults Detected
ID
T1

T2

T3

T4

T5

e1 e2 e3

0 1 1
1 0 1
1 1 0
0 0 1
1 1 0

s1 s2 s3 s4 s5

1 0 1 1 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 0 0 0

b1 b2

0 0
0 0
1 1
1 0
0 1

(sec.)
0.5
0.1
0.8
0.1
0.9

(# events)
5
3
2
5
6

f1 f2 f3 f4 f5

0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0

E S B X L F

which “iteratively selects a test case that yields the greatest
statement coverage, then adjusts the coverage information on
all remaining test cases to indicate their coverage of statements
not yet covered, and repeats this process until all statements
covered by at least one test case have been covered”. When
multiple test cases cover the same number of statements
not yet covered, a random choice of one test case is
made. We define function g() for additional coverage
prioritization shown in Figure 1.

Require: Seq //the test cases ordered so far
Require: Suite //the complete test suite
Require: Cov //the coverage matrix or vector

1: x ← coverage elements covered by tests in Seq
2: if isMatrix(Cov) then
3: t ← delete columns for x from Cov
4: if hasNoColumns(t) then
5: return φ
6: end if
7: else
8: t ← Cov
9: end if

10: y ← delete rows for tests in Seq from t
11: updateScores()
12: if hasNoRows(y) then
13: return φ
14: end if
15: Set ← findall tests that cover largest elements in y
16: return Set

Fig. 1: g() for additional coverage prioritization

Let us use this g() to prioritize the test cases
in our running example. Our first invocation is
next([], {T1, T2, T3, T4, T5}, (S, g())), which returns T1,
the test case that covers the maximum number,
in this case 4, of statements. Our next invocation
is next([T1], {T1, T2, T3, T4, T5}, (S, g())), which returns
{T2, T4}, the two test cases that cover the remaining
statement s2. We randomly pick test case T4, and invoke
next([T1, T4], {T1, T2, T3, T4, T5}, (S, g())), which returns
an empty set, indicating that all statements have been
covered. We can then add the remaining test cases
{T2, T3, T5} in any order.

We note that a simple function is needed to manage
all of the above invocations of next(), make the random
choices, and add remaining test cases. The pseudo-code
for this invocation function is shown in Figure 2. The
function starts with Seq=[], invokes next() (Line 4); if

Require: Seq //the test cases ordered so far
Require: Suite //the complete test suite
Require: e //the criterion and g() pair

1: y ← Seq
2: done ← FALSE
3: while not(done) do
4: x ← next(y, Suite, e)
5: if empty(x) then
6: done ← TRUE
7: else if singleElement(x) then
8: y ← append x to y
9: else

10: y ← append RandomElt(x) to y
11: end if
12: end while
13: y ← append unused elements of Suite to y
14: return y

Fig. 2: Invocation Function

it gets multiple test cases, it makes a random choice
(Line 10); it iterates until no more tests are returned
(Line 6). It finally appends the unused test cases to the
returned prioritized sequence (Line 13).

Our functional formulation allows us to quickly re-
alize alternative test case prioritization techniques by
developing new invocations and g() functions that we
can “plug into” the overall prioritization framework.
For example, in Line 13, if we order the remaining test
cases by reapplying additional coverage prioritization,
i.e., by resetting the coverage vectors for all of these test
cases to their initial values, and reapplying the algorithm
ignoring all previously prioritized test cases, we would
have an implementation of the prioritization technique
developed by Rothermel et al. [50].

In this example, we restrict the g() function to operate
on a single coverage matrix/vector. This allows us to
reuse the same g() function in many places. Our invo-
cation function provides high-level control over the use
of the next() function. This separation of roles between
the invocation and g() functions is deliberate; we will
continue to use this separation in the remainder of the
paper.

It is easy to see how the same formulation may
be modified for regression test selection and test suite
reduction. If we delete Line 13 in the invocation function,
Figure 2, the remaining unused test cases are discarded
from the selected suite in y. In this case, all the coverage
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elements are covered by the test cases already selected.
Hence, the final suite, stored in y, is the reduced form
of Suite because it covers exactly the same coverage
elements. Test suite minimization, on the other hand
requires a slightly more involved change. It requires
that we define a new, non-greedy g() function so that a
minimized suite is obtained. However, our fundamental
infrastructure remains the same.

3.2 Representing Second-Order Criteria

We now extend our formulation to consider multiple
criteria, developing what we term as second-order criteria.
As can be imagined, criteria may be combined in a
multitude of ways to form a hybrid. At this point, we
step back and consider the philosophy behind creating
hybrids for test case prioritization. The key idea behind
the hybrid is that it combines multiple criteria, yielding,
at every decision—which test case to select next—of the
prioritization algorithm, the strengths of the constituent
individual criteria. One possible hybrid is to order the
individual criteria (e.g., as primary, secondary, tertiary,
and so on), start with the primary, and use the secondary
only if the primary produces ties in test case selection,
i.e., multiple test cases satisfy the primary criterion. This
suggests a ranking type of hybrid. Another possibility is
to mathematically combine the individual criteria into a
single criterion. For instance, let us say that we want to
order tests by their ability to cover the sum of statement
and branch coverage, i.e., the most important test case
covers the most statements and branches combined. This
suggests that we need a hybrid that can combine criteria
together and apply the combination simultaneously. Fi-
nally, a third type of hybrid should allow a clear selection
between multiple criteria based on a selection function.

Building upon our above intuition, in this paper, we
develop three ways (1) Rank (2) Merge, and (3) Choice,
to combine criteria. As mentioned earlier, we recognize
that this set is not complete. Developing additional ways
is a subject for future research.
• Rank: Intuitively, the criteria being combined are ranked
in order of importance and applied in series. For exam-
ple, one implementation of Rank could use the first crite-
rion to prioritize the test cases; only when that criterion
fails (as determined by function g()) or produces ties, is
the second criterion used; if that too fails, the third, and
all subsequent criteria in order, are used.

Consider our previous example of additional
statement coverage prioritization. Let us modify
the prioritization approach so that statement
coverage is used as a primary criterion, but event
coverage, encoded in E , is used as a secondary
criterion. Our first invocation is modified to
next([], {T1, T2, T3, T4, T5}, Rank((S, g()), (E , g())). We
execute this invocation as follows: we first invoke
next([], {T1, T2, T3, T4, T5}, (S, g())), which is the base
case presented earlier. It returns T1. As before, we
invoke next([T1], {T1, T2, T3, T4, T5}, (S, g())), which

returns {T2, T4}. Because we have a tie, we use our
second criterion, event coverage in an invocation
next([T1], {T2, T4}, (selectRows({T1, T2, T4}, E), g())),
where selectRows(subsetOfRows,Matrix) gives the
submatrix, consisting only of the specified subset
of rows from the matrix. This invocation returns T2

because it covers event e1 not covered by T1. We
then invoke next([T1, T2], {T1, T2, T3, T4, T5}, (S, g())),
which returns an empty set. This causes us to
use our secondary criterion again and we invoke
next([T1, T2], {T1, T2, T3, T4, T5}, (E , g())), which also
returns an empty set because all events have been
covered by T1 and T2. Because we have no more
criteria, we are free to select the remaining test cases
{T3, T4, T5} in any order.

Let us suppose that we had specified test
case length as a tertiary criterion, invoking
next([], {T1, T2, T3, T4, T5}, Rank((S, g()), (E , g()), (L, g())).
Ties between {T3, T4, T5} would be resolved by the
tertiary criterion, picking the longest test case first,
namely T5, followed by T4, and T3.

In this example, we showed several important things.
First, a user specifies the rank order of the criteria using
a Rank() function. Second, each criterion is associated
with its own computation function g(). In our case, we
were able to use the same function for all criteria but this
may not always be the case. Third, the evaluation of the
invocation of next() involving Rank() is performed in a
top-down manner, where each individual criterion with
its associated function is invoked individually in order.
Fourth, we seamlessly mixed the use of our matrix and
vector representations because of the way we defined
g(). This may not always be possible – at the very
least, one may need to provide ways to convert between
types of representations, e.g., vector and matrix. Finally,
the less important criteria are used by the invocation
function only when the more important ones have failed
to provide an adequate solution. In our example, ties
and empty set returns were considered to be inadequate
solutions. Similar tie-breaking approaches have been
proposed in the past [36], [52].

As before, the overall computation is controlled by an
invocation function. The pseudo-code for the invocation
function that we used in the above example is shown
in Figure 3. The code selects the first element from the
Rank specification (Line 5), and invokes next() using that
element (Line 8). If a single test case is returned (Line 9),
then it is appended to the test sequences ordered so far
(Line 10). The while loop of Line 3 continues in this
way as long as a single element is always returned. If
multiple (or no) elements are returned by the call at
Line 8, then the next element in the Rank specification
is tried (Line 13). If there are no more elements in Rank,
then the remaining test cases are added to y in any
order (Line 23). If there are additional elements in Rank
(lines 17-18), then the tie between the elements in x is
resolved by temporarily reducing the suite to only the
elements involved in the tie (Line 17) and preparing
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Require: Seq //the test cases ordered so far
Require: Suite //the complete test suite
Require: Rank //the Rank() specification

1: y ← Seq
2: done ← FALSE
3: while not(done) do
4: s ← Suite
5: e ← first element in Rank
6: resolved ← FALSE
7: while (not(resolved) && not(done)) do
8: x ← next(y, s, e)
9: if singleElement(x) then

10: y ← append x to y
11: resolved ← TRUE
12: else
13: e ← next element in Rank
14: if null(e) then
15: done ← TRUE
16: else
17: s ← x
18: Cov(e) ← selectRows(y ∪ x, Cov(e))
19: end if
20: end if
21: end while
22: end while
23: y ← append unused elements of Suite to y
24: return y

Fig. 3: The RankH(cx,cy,...,cz) Invocation Function

the coverage matrix (vector) part of e, represented as
Cov(e), (Line 18). Once the tie is resolved, i.e., when
the invocation of next() at Line 8 (the algorithm will
go back to Line 8 next) returns a single element (Line
9) causing resolved to become TRUE or there are no
more criteria in the Rank specification (Line 14) causing
done to become TRUE, the inner while loop terminates.
The algorithm loops back to the while loop at Line 3,
which reinitailizes s to the full suite at Line 4. The
outer loop will terminate when all elements in Rank
are exhausted. Any unused elements from Suite can
be added in any order. The particular way we used the
Rank hybrid approach in these two examples, with our
specific implementation of g() for criteria cx, cy, . . . , cz ,
will be termed as RankH(cx,cy,...,cz) in the remainder of
this paper.

One can come up with multiple formulations of Rank
by varying the criteria, the g() functions, and the in-
vocation function. Consider, for example, an alternative
invocation function that prioritizes test cases by starting
with the first specified criterion; it computes the APFD
increase of the last 10% of test cases already prioritized.
If there is a zero increase, it switches to the next specified
criterion until all tests have been ordered or no criteria
are left, in which case the remaining tests may be added
in any order (this approach was in fact used in earlier
work [3]).

More formally, given a test suite T , an ordered se-
quence of criteria 〈c1, c2, c3, . . . , cm〉, and a boolean func-
tion F(), our formulation of Rank may be represented
as a function R(T, 〈c1, c2, c3, . . . , cm〉,F()) that returns a
set/sequence of test cases {t1, t2, t3, . . . , tn} satisfying the
following properties:

1) ti ∈ T , for all (1 ≤ i ≤ n).
2) ti � tj , for all (1 ≤ i ≤ n) and (i ≤ j ≤ n). The �

operator means that when ti was ordered/selected
by criterion cx and tj was ordered/selected by
criterion cy then it must necessarily be the case
that x ≤ y, for (1 ≤ x ≤ m) and (1 ≤ y ≤ m).
This condition is important for Rank because earlier
tests in the test order must use the criteria that have
been specified as more important by the user.

3) For all (1 ≤ i ≤ n), whenever ti was or-
dered/selected by criterion cx, (1 ≤ x ≤ m), then
F(ti, cx) returns TRUE and for all 1 ≤ l < x,
F(ti, cl) returns FALSE. This condition states that
later criteria in the specified order may be used
only in the situation that earlier ones have “failed”,
as determined by the user-supplied function F().

• Merge: Intuitively, this way to combine multiple criteria
considers all the criteria simultaneously to order the tests.
For example, one implementation of Merge could use an
operator to combine all the matrices (vectors) into one
compound matrix (vector) and uses that single compound
matrix (vector) to order the test cases. This could be
achieved, for example, by the operator ArrayFlatten (we
will abbreviate this to AF) in Mathematica3 which, among
other operations, joins two or more matrices horizontally
to make a new matrix. Obviously, the number of rows
in all matrices being concatenated must be the same for
a sensible resulting matrix.

If we apply AF to S and B in our running
example, we get a matrix with 7 columns.
We can then use this matrix in an invocation
next([], {T1, T2, T3, T4, T5}, Merge((S,B), g();AF )).
In effect, the most important test case in the
prioritized order would be one that covers the
maximum sum of the number of statements and
branches. This turns out to be T3. The next invocation
next([T3], {T1, T2, T3, T4, T5}, Merge((S,B), g();AF ))
yields {T2, T4}, because T2 and T4 both cover s2 and s4,
statements not covered by T3. A random choice between
these two test cases, say T4, covers all statements and
branches; the remaining tests can be added in any order.

Consider the Merge specification in the first invoca-
tion, i.e., Merge((S,B), g();AF )). The invocation func-
tion splits g();AF and applies the function AF to the
two matrices S and B, as AF ({S,B}). The result is then
used as a single matrix by g().

This handling of the Merge specification, especially the
function processing that combines all matrices to yield a
single matrix gives us great flexibility in defining differ-
ent types of hybrid criteria. For example, consider the

3. http://reference.wolfram.com/mathematica/ref/ArrayFlatten.html
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invocation next([], {T1, T2, T3, T4, T5}, Merge((S,B), g();
AF ◦ (#1 × 2, #2 × 3)&)). Here the merging is done
by the composed function AF ◦ (#1 × 2, #2 × 3)&. It is
executed as follows. The second function in the com-
position, i.e., (#1 × 2, #2 × 3)& is a pure function4 that
explicitly names its two parameters as #1 and #2; these
are substituted by the matrices S and B, essentially
resulting in the invocation (S ×2,B×3). This invocation
multiplies each element in S by 2, and each element
in B by 3, and returns a pair of matrices. Using the
semantics of function composition, these two matrices
are then passed as parameters to AF, which combines
them to produce a single matrix. This type of Merge is
useful when weighting criteria differently. In our example
above, branch coverage gets a higher weight, i.e., 3 than
statement coverage, which gets a weight of 2.

Our particular implementation of Merge together with
AF and our specific implementation of g() for criteria
cx, cy, . . . , cz , will be represented as MergeU(cx,cy,...,cz)

in the remainder of this paper. We will use the some-
what cumbersome notation MergeU(cx:x,cy:y,...,cz :z) if we
associate numeric weights (x, y, . . . , z) with the criteria
(cx, cy, . . . , cz).

More formally, given a test suite T , a set of crite-
ria {c1, c2, c3, . . . , cm}, and a merging function G(), our
formulation of Merge may be represented as a function
M(T, {c1, c2, c3, . . . , cm},G()) that returns a set/sequence
of test cases {t1, t2, t3, . . . , tn} satisfying the following
properties:

1) ti ∈ T , for all (1 ≤ i ≤ n).
2) ti 
 tj , for all (1 ≤ i ≤ n) and (i ≤ j ≤ n). The


 operator means that G(ti, {c1, c2, c3, . . . , cm}) ≤
G(tj , {c1, c2, c3, . . . , cm}), i.e., ti “is deemed to be better
than or same as” tj as determined by G(). It is
important to note that the merging function is able
to simultaneously consider all criteria.

Note that our definition of merge does not force the
merge operation to take a set of criteria/objectives and
produce a single hybrid – some implementations of
merge may do this, however, this is not a necessity. In
case the set of criteria/objectives cannot be managed into
a single criterion (as in pareto optimality [68]), they may
be left as separate. All merge requires is the ability to
compute a function that considers all the criteria.
• Choice: Intuitively, our third and final way to combine
criteria selects one of a set of criteria using a selection
function. Note that unlike Rank, each criterion has the
opportunity for selection based on coverage criteria;
moreover, a previously selected criterion may be rese-
lected by the selection function. The invocation function
that implements Choice uses all matrices (vectors) that are
specified in Choice in parallel in separate next() invoca-
tions; the individual outcomes of all these next()’s are
recorded. An additional step computes the “goodness”
of each result. The choice with the highest goodness
is selected as the output. The process is repeated for

4. Mathematica-like usage

the remaining unordered tests until all tests have been
ordered.

Consider, for example, an invocation function that pri-
oritizes test cases by selecting the 10% that yield the best
increase in APFD; i.e., the goodness is the APFD increase.
The function continues to select test cases in 10% blocks
until all tests have been ordered. In the remainder of this
paper, we will represent this prioritization technique by
ChoiceT (cx,cy,...,cz) for criteria cx, cy, . . . , cz .

Consider another instance of Choice – let us suppose,
in our running example, that we want to order test
cases so that those that cover the maximum percentage
of criteria elements, for any of the three criteria: event,
statement, and branch, are run first. That is, the goodness
is measured by the percentage of elements covered by
each test case for each criterion. Test case t3 covers
100% branches; no other test case covers 100% of
any of the coverage elements. Hence t3 is run first.
Next, t1 covers 80% of the statements; it is run next.
Tests t2 and t5 cover 66.66% of events; they come
next. Finally t4 comes last. Our series of invocations
are next([], {t1, t2, t3, t4, t5}, (Choice(E ,S,B), g()))
that returns t3, followed by
next([t3], {t1, t2, t3, t4, t5}, (Choice(E ,S,B), g()))
that returns t1, followed by
next([t3, t1], {t1, t2, t3, t4, t5}, (Choice(E ,S,B), g()))
that returns {t2, t5}.

Formally, given a test suite T , a set of criteria
{c1, c2, c3, . . . , cm}, and a function H(), our formu-
lation of Choice may be represented as a function
C(T, {c1, c2, c3, . . . , cm},H()) that returns a set/sequence
of test cases {t1, t2, t3, . . . , tn} satisfying the following
properties:

1) ti ∈ T , for all (1 ≤ i ≤ n).
2) All tests are ordered/selected by a single criterion

cx, (1 ≤ x ≤ m), the one that performed the best
as determined by H().

Note that if the merging function G() in our formal
treatment of the merge hybrid is carefully constructed
as a selection function that simply drops all of the non-
selected (non-chosen) criteria, then the choice hybrid
may, in principle, be viewed as a special case of merge.
However, because the spirit of our choice formulation is
to consider only a single criterion and that of merge is
to consider all criteria, we discuss them separately.

3.3 Representing Higher-Order Criteria
We now combine Rank, Choice and Merge to form higher-
order criteria. We first motivate the need for higher-
order criteria. Consider our example of Merge with S
and B; recall that we had selected T3 first, then had a tie
between T2 and T4; finally, we added the remaining tests
in any order. This left us with a less than satisfactory
solution, where more than half of the test cases were
ordered arbitrarily. To help remedy this situation, let us
say that we wanted to add a secondary criterion, E , that
would be used as a tie breaker as well as to order the
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remaining test cases. We could come up with something
like Rank((Merge((S,B), g();AF )), (E , g())). Our overall
call would look like:

next(
[],
{T1, T2, T3, T4, T5},
Rank(

(Merge((S,B), g();AF )),
(E , g())

)
).

That is, our first criterion is a Merge hybrid of
statement and branch coverage. If this hybrid fails
to order the test cases, we use event coverage as
a tie breaker, which is why we Rank these criteria.
To execute our higher-order criterion, we design
our invocation function to use the RankH(cx,cy,...,cz)

invocation function shown in Figure 3. The first element
in the Rank specification is extracted (Line 5). Instead
of being a base case, as we have seen in earlier
examples, it is a second-order criterion Merge. This
criterion is used in a next() call (Line 8), which expands
to next([], {T1, T2, T3, T4, T5}, Merge((S,B), g();AF )),
which turns out to be a call that we have seen handled
in Merge earlier. Its output is T3. The next invocation
next([T3], {T1, T2, T3, T4, T5}, Merge((S,B), g();AF ))
returns {T2, T4}, which is a tie, to be handled by
Rank. In the code for RankH , e now becomes (E , g())
(Line 13), s is {T2, T4} (Line 17), and the matrix E
is reduced to rows corresponding to T3, T2, and T4

(Line 18); let us denote this matrix by E [2, 3, 4]. The
subsequent invocation of next() (Line 8) expands
to next([T3], {T2, T4}, (E [2, 3, 4], g())), which returns
{T2, T4} because both T2 and T4 cover event e3, not
covered by T3. In this case event coverage was not a
good tie breaker.

This foregoing example illustrates that we can recur-
sively compute the next() functions by using the tree-like
specification that combines Rank, Merge, and Choice.

4 DEMONSTRATIONS
We demonstrate the usefulness of our representation in
three ways. First, in Section 4.1, we qualitatively show
the usefulness of our formulation and operators for
the hybrid problem by recasting others’ previous uses of
multiple criteria in terms of our formulation and three
operators. Second, in Section 4.2, we qualitatively show
the usefulness of our formulation and operators for the
hybrid problem by developing new hybrid criteria; we reuse
results from our previous empirical study to understand
the performance of individual criteria and combine some
of them [3]; at the same time, we demonstrate how
one would formulate hybrid criteria in practice. Finally,
in Section 4.3, we empirically evaluate the effectiveness
of hybrid-criteria prioritization by empirically evaluating
the new criteria; additional evidence of this has been
provided by other researchers who have used multiple
criteria for test case prioritization.

4.1 Recasting Previous Work

Because we want our demonstration to be as complete as
possible, we did an extensive systematic-mapping-like
search to find others’ previous work on hybrid crite-
ria for performing regression testing tasks. We started
with a search of the digital libraries, defined inclu-
sion/exclusion criteria, performed focused targeted ex-
amination of likely researchers in the field, and finally
identified 44 papers. More specifically, we searched the
IEEE and ACM digital libraries for the terms “test
case prioritization”, “test suite prioritization”, “test suite
reduction”, “test case reduction”, “test suite minimiza-
tion”, “test case minimization”, “test case selection”,
and “test suite selection”. We merged all the results
to eliminate overlaps; this gave us 593 papers. Because
we did not want to compromise on the quality of our
search, we manually examined each paper. We manually
excluded all papers that did not use hybrid. Finally, after
a resource intensive process of elimination, we were left
with 44 papers that we studied in great detail. Of these
44 papers, we now recast work of Walcott et al. [63], Yoo
and Harman [68], Harrold et al. [21], Jeffrey et al. [30],
Sampath et al. [52], Lin et al. [36], Hsu and Orso [25],
Black et al. [2], and Mirarab et al. [41] in terms of our new
representation. Finally, we also recast our own previous
work [3], in which we developed a hybrid criterion for
test case prioritization. Because all this work has already
been summarized in Section 2, we mention parts that are
relevant to our representation.
Walcott et al. [63] first select tuples of test cases based
on execution time and then use these tuples as the
first generation of solutions for a genetic algorithm that
evaluates the fitness of these tuples with respect to code
coverage. Since they apply the criteria in series, their
approach would fall under our classification of Rank.
Though in their paper they present a single genetic
algorithm that uses two criteria, since the criteria are
applied in series (for the interested reader, in their Figure
2, lines 1 through 5 represent selecting test cases based
on execution time, and lines 6 through 21 correspond
to selecting test cases based on code coverage), we treat
their algorithm as having two g() functions. In particular,
the first invocation of next() could be written as

next([], {T1, ..., Ti, ..., Tn},
Rank((ExecT, gExecT ()), (C, gc())),

where the function gExecT () is a function that selects
tuples based on execution time, ExecT is the vector
that contains execution time of each test case, func-
tion gc() is the genetic algorithm that Walcott et al.
apply to select the prioritized test order, and C is the
matrix containing the mapping between the test cases
and the code covered. The gExecT () function selects test
tuples from the test suite that can be executed within
a predetermined maximum execution time. The genetic
algorithm in the gc() function uses a fitness function
that assigns fitness values to each test tuple based the
percentage of program code covered by the tuple and
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the time at which each test case covers its associated
program code. The algorithm also provides for applying
crossover and mutation to create new hybrid test tuples.
In one set of experiments, they use method coverage and
in another set of experiments they use block coverage.
In the subsequent invocation of next(), test cases that are
selected based on completing execution within a pre-
determined maximum time are passed to the genetic
algorithm, gc, for ordering.
Yoo and Harman [68] present a hybrid algorithm for
Pareto efficient test suite reduction is an implementation
of Merge. In particular, the first invocation of the next()
function could be written as

next([], {T1, ..., Ti, ..., Tn},
Merge((ExecT, C), ghybrid())),

where ExecT refers to the mapping between test cases
and execution time, C refers to a mapping between code
coverage and test cases, the ghybrid function in their
approach uses an additional-greedy algorithm and a ge-
netic algorithm (NGSA-II). In the subsequent invocation
of next(), again, all the criteria are considered together to
select the next test to add to the test order.
Harrold et al. [21] propose three ways in which multiple
selection criteria can be applied for test suite reduction.
The first case they propose is when test cases, TS1, from
criterion, C1 are a subset of test cases, TS2, from another
criterion, C2. In this case, they propose applying the
reduction algorithm on TS1 to obtain a reduced suite.
Then, they propose using this reduced suite as the initial
reduced suite and applying the reduction technique on
the test cases from TS2 that cover requirements beyond
those covered by the initial reduced suite. A similar
approach is followed when the two test sets TS1 and TS2

have some overlap but one is not a subset of the other.
In this case, first the reduction algorithm is applied on
TS1, then the intersection between the reduced suite and
TS2 is used as the initial reduced suite when applying
the algorithm on TS2. The third situation they propose is
when TS1 and TS2 do not have any common elements,
however, what they propose in this case is not an ap-
plication of multiple criteria since the reduced suites are
computed independently for the two test suites. For the
first and second case, since the reduction algorithm is
applied in series on the two test sets obtained from two
criteria, the hybrid approaches of Harrold et al. [21] are
an application of our Rank approach. The first invocation
of next() could be written as

next([], {T1, ..., Ti, ..., Tn},
Rank((C1, ghgs()), (C2, ghgs())),

where C1 and C2 are the two criteria that are used
during test suite reduction and the ghgs() function refers
to the HGS reduction algorithm proposed in their work.
In the subsequent invocation of next(), the reduction
algorithm will be applied on the tests from C2 that
cover requirements beyond the reduced suite selected
by applying C1.
Jeffrey et al. [30] use two or more criteria in their test
suite reduction approach called Reduction with Selective

Redundancy. When a test case is deemed redundant by
one criterion, they study the requirement coverage of the
test with respect to a second criterion. If the test covers
some uncovered requirements of the second criterion,
the test is added to the reduced test suite. Since the
criteria are applied in series, Jeffrey et al.’s approach
can be viewed as an implementation of our Rank hy-
brid formalization. In their experiments they use branch
coverage, all-uses coverage and subpaths of length 3
coverage. The first invocation of the next() function, in
this case, would be

next([], {T1, ..., Ti, ..., Tn},
Rank((B, grsr()), (U, grsr()), (SP, grsr())),

where B, U, SP are the mappings between test cases
and branch, all-uses and subpaths of length 3 criteria,
respectively; grsr is the selective redundancy algorithm
proposed in their work. In the subsequent invocation of
next(), test cases that are redundant by branch coverage,
will be evaluated with respect to all-uses coverage.
Sampath et al. [52] propose an application of both of
our Merge and Rank formalizations. We discuss the Rank
hybrid formalization here. They apply the two sets of
criteria in series. In their experiments, they use method
coverage as the program coverage-based criterion. They
use usage-based-criteria derived for web applications,
such as base requests, base requests and name, base re-
quests and name-value pairs, sequences of base requests
of size 2, and sequences of base requests and name of
size 2. The first invocation of the next() function in this
case would be next([], {T1, ..., Ti, ..., Tn},

Rank((M, gmod−hgs()), (base, gmod−hgs())),
where the literals M and base refer to the mapping
between the test cases and methods, and base requests,
respectively. The function gmod−hgs refers to their imple-
mentation of the modified HGS algorithm [21]. Similar
invocations can be written when method coverage is
combined with the other usage-based criteria. A subse-
quent invocation of next() would take the test cases that
are tied with respect to method coverage and evaluate
them for breaking ties with respect to base requests
coverage.
Lin et al. [36]’s approach is an application of our
Rank hybrid formalization. In their experiments, they
use branch coverage as the primary criterion and def-
use pair coverage as the secondary criterion. The first
invocation of the next() function, in this case would be

next([], {T1, ..., Ti, ..., Tn},
Rank((B, gm−hgs()), (DU, gm−hgs())),

where the B and DU are the mappings between the test
cases and the branches, def-use pairs that are covered,
respectively. The function gm−hgs refers to the Modified-
HGS algorithm that they implement which incorporates
tie-breaking into Harrold et al.’s [21] reduction algo-
rithm. They also augment another reduction algorithm,
the GRE algorithm [5], [6] with their tie breaking mech-
anism, so another g() function that they use is the
gm−gre() function. In a subsequent invocation of next(),
test cases that are tied with respect to branch coverage
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will be evaluated with respect to def-use coverage to
break the ties.
Hsu and Orso [25] encodes multi-criteria test suite
reduction as a binary integer linear programming (ILP)
problem. They propose three policies based on which
criteria can be combined. They consider two types of
criteria, absolute and relative criteria. An absolute crite-
rion (e.g., maintain branch coverage) introduces a con-
straint on the reduction, while a relative criterion (e.g.,
minimize test execution time) presents an objective. They
propose three ways in which criteria can be combined,
namely, weighted policy, prioritized policy and hybrid
policy. Note that their policies are applied only to the
relative criteria or objectives.

In the weighted policy, a weight is given to each
objective and all the objectives are considered at once
during test suite reduction. Their weighted policy is an
implementation of our Merge formalization. In their ex-
periments they use the absolute criterion, “maintain code
coverage”, and the relative criteria, “minimize number
of test cases”, “minimize execution time”, “maximize
number of error revealing test cases”. The next() function
invocation for their weighted approach can be written as

next([], {T1, ..., Ti, ..., Tn},
Merge((C, NumTests, ExecT ime,ErrorTests),
gmints())),

where C, ExecT ime, ErrorTests correspond to the map-
ping between test cases and the criteria, code cover-
age, execution time and errors revealed. NumTests is
a vector representing number of test cases. Function
gmints refers to their reduction algorithm that encodes
the problem as an ILP problem and feeds to several
ILP solvers. In a subsequent invocation of next(), all the
criteria are again used together to determine the next
test case for the minimized test suite.

On the other hand, their prioritized policy assigns
priorities to each objective and selects them one at a time
in combination with the absolute criterion to perform the
test suite reduction. Therefore, their prioritized policy is
an implementation of a higher order hybrid, where a
Merge is performed between the absolute criterion and
the relative criteria, upon which a Rank formalization
is applied to handle the priorities. The next() function
invocation for their weighted approach can be written
as

next([], {T1, ..., Ti, ..., Tn},
Rank(

Merge((C, NumTests), gmints),
Merge((C, ExecT ime), gmints),
Merge((C, ErrorTests), gmints)

)).
Finally, their hybrid policy divides objectives into

groups and assigns priorities to groups. Weights are
assigned to objectives within the group. Their weighted
policy is thus a higher order hybrid of our Union and
Rank approaches. They do not experimentally evaluate
the weighted policy. To illustrate the formalization of their
hybrid policy, here we consider a situation where the

relative criterion “minimize number of test cases” is in
one group, and the relative criteria “minimize execution
time” and “maximize number of error revealing test
cases” are in another group, and the first group has
priority over the second group. Note that the absolute
criterion must be used in combination with each group
of relative criteria when minimizing the test suite. The
next() function invocation for their hybrid policy can be
written as

next([], {T1, ..., Ti, ..., Tn},
Rank(

(Merge((C, NumTests), gmints()))
(Merge((C, ExecT ime, ErrorTests), gmints()))

)
).

Black et al. [2] represent the test suite reduction problem
using a binary ILP representation. They propose a single
objective model that minimizes a test suite based on
def-use association coverage, however, they note that
if two or more test cases cover the same set of def-
use associations, only one test is selected. To overcome
the risk of removing an error-revealing test case, they
also present a bi-objective model that minimizes a test
suite based on def-use coverage and the ability of a
test case to reveal an error. They note that any other
criteria can also be used in the models. The problem can
be formulated such that one part of the objective can
take precedence over the other using a weight between
0 and 1. The value of the weight determines to what
extent each of the objectives contribute to the composite
objective function. Since their goal is to satisfy both the
criteria at the same time, their approach is an application
of our Merge approach. The next() function invocation for
their approach can be written as

next([], {T1, ..., Ti, ..., Tn},
Merge((Uses, ErrorTests), gilp())),

where Uses and ErrorTests refers to the mapping
between test cases and the criteria, all-uses and error
revealing ability of the test, respectively. The function
gilp refers to the algorithms that were used to compute
the minimized test suite using Integer Linear Program-
ming. A subsequent invocation of next() will select test
cases with the goal of satisfying both all-uses and error-
revealing-ability criteria.
Mirarab et al. [41] use two criteria to perform multi-
criteria test case selection. They place limits on the
number of test cases that can be selected. The two criteria
they use are code coverage-based criteria, which are fed
to an ILP solver that selects the final test suite. Since
the goal is to satisfy both the criteria, their approach
is an implementation of Merge. Specifically, the next()
function invocation for their approach can be written as

next([], {T1, ..., Ti, ..., Tn},
Merge((Dsum, Dmin), gilp())),

where Dsum and Dmin are their code coverage-based
criteria. The Dsum criteria seeks to maximize coverage
of all program elements, and the Dmin criteria seeks
to maximize the minimum coverage across all program

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



12

elements. The function gilp refers to the ILP solver that
produces the final test suite. A subsequent invocation
of next() will select test cases with the goal of satisfying
both the Dsum and Dmin criteria.
In our previous work [3], we proposed a hybrid ap-
proach based on a schedule in which we prioritize by
one criteria until the first 10 percent block of test cases is
encountered with no increase in effectiveness, and then
switch to a second criterion. Since we are applying the
criteria in series and switching from the first to second
after observing no improvement in effectiveness from the
first, our hybrid approach is an implementation of Rank.
We use a frequency criterion as the first criterion, and
a combinatorial criterion, 2way, as the second criterion.
The next() function invocation can be written as

next([], {T1, ..., Ti, ..., Tn},
Rank((Freq, gschedule()), (2way, gschedule())),

where Freq and 2way represent the mapping between
test cases and the frequency and 2way coverage, while
the function gschedule refers to the schedule-based algo-
rithm based on which we select test cases for prioritiza-
tion. A subsequent invocation of next() will use the 2way
criterion, when a 10% block of tests are selected by the
frequency criterion that do not contribute to increase in
fault detection effectiveness.

We see that we were able to successfully recast all the
above work in terms of Merge or Rank to combine criteria;
we did not need to use Choice. We have not presented a
detailed analysis of the 44 papers that employ hybrid
criteria because of space reasons. However, we have
studied all 44 papers in great detail and conclude that
15 use Rank ( [3], [10], [14], [19], [21], [24], [28], [30],
[34], [36], [52], [63], [70], [72], [73]), 27 use Merge ( [1],
[2], [4], [7], [8], [11], [17], [18], [23], [25]–[27], [32], [35],
[37], [38], [40]–[42], [44], [45], [47], [54], [60], [66]–[68]),
but none use Choice. It may be that no prior studies
examine �Choice because it is expensive under certain
circumstances. For instance, re-computing the data based
on all of the metrics for every criteria at each step may
be expensive. Moreover, 2 papers use a higher-order
hybrid of Merge followed by Rank [61], [64]. We believe
that this is a positive result because although our 3
operators were not directly influenced by the previous
papers (indeed, we first created the formulations and
later recast others’ work in terms of the 3 operators),
we were still successful in recasting all others’ previous
work. In future work, we will examine why the Choice
hybrid has never been used.

4.2 Developing New Hybrid Criteria
4.2.1 Background
In previous work [3], we develop and empirically eval-
uate several criteria for test case prioritization. In this
section, we use the artifacts from this previous work
to experiment with hybrid techniques. Due to space
constraints, we do not provide all details of the previous
results. However, in an effort to make this paper self

contained, we provide sufficient details needed for this
current work. The interested reader is referred to past
reported work for full details [3].

We list some of the criteria in Table 2. Because we deal
with web and GUI applications, our criteria consider
GUI windows and web GET/POST requests. For web ap-
plications, we model an event as a POST or GET request
together with its set of parameters and their values. For a
GUI application, we model an event as the execution of
a termination user action, such as OK or Cancel together
with the settings of any other widgets in the window,
such as the status of a check-box, selected radio button
from a group of radio buttons, the text string in a text-
field; the widgets that can be assigned such settings form
the parameters and the particular settings form the values.

We applied these criteria on test suites of 7 event-
driven systems; 4 GUI and 3 web applications. Appli-
cations Calc, Paint, SSheet and Word are GUI appli-
cations, while Book, CPM and Masplas are web-based
applications. Table 3 shows the main characteristics of
the subject applications, test cases, and fault matrices.
The applications range in size from 1000 to 19000 lines
of code. They contain a large number of windows and
parameter-values. The test cases for the GUI applications
(between 250 to 300 tests) are generated from a model
of the GUI. Web application usage logs are converted
into test cases for the web applications [53]. Faults
are manually seeded into the applications by graduate
and undergraduate students who were familiar with
Java, Servlets, and JavaServer Pages (JSP) [53], [57]. The
seeded faults fall under five categories, namely, data
store faults (faults that exercise application code that
interacts with the data store), logic faults (faults that
are introduced due to logic errors in application code),
appearance faults (faults in application code that alter
the way the user views the page), link faults (faults that
change the location pointed by a hyperlink), and form
faults (faults that exist in name-value pairs and actions in
forms). The number of faults varies in each application,
from 29 to 182 faults.

4.2.2 Creating the Hybrids
The criteria of Table 2 serve as individual criteria for this
current work. Because we have empirically evaluated
them in previous work, this gives us some intuition on
how to combine them to create the hybrids. (We discuss
this intuition in section 4.2.3.) Specifically, we define 5
new criteria:
• MergeU(2−way,1−way) combines 2-way and 1-way,

giving both equal weight.
• MergeU(2−way:2,1−way:1) combines 2-way and 1-way,

such that 2-way gets twice the weight of 1-way.
• MergeU(2−way:1,1−way:2) combines 2-way and 1-way,

such that 1-way gets twice the weight of 2-way.
• RankH(2−way,PV−LtoS ,Action−LtoS ,UniqWin)

combines 2-way, PV-LtoS, Action-LtoS, and UniqWin
such that 2-way is used as the primary criterion;
only when it is tied, PV-LtoS is used to break the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



13

No. Criterion Coverage Elements
1 1-way Number of previously uncovered parameter-values
2 2-way Number of previously uncovered 2-way interactions between parameter-values
3 PV-LtoS Number of parameter-values (descending)
4 PV-StoL Number of parameter-values (ascending)
5 Action-StoL Number of windows/requests (ascending)
6 Action-LtoS Number of windows/requests (descending)
7 UniqWin Number of unique windows/requests (descending)
8 MFPS Number of most frequently present windows/requests sequence of size 2 (descending)
9 Weighted-Freq The number of present windows/requests sequences of size 2 which is scaled by weights for each

sequence based on the number of times that a sequence appears in the test suite (descending)

TABLE 2: Test case prioritization criteria.

Calc Paint SSheet Word Book CPM Masplas
Application Type GUI GUI GUI GUI Web Web Web
Programming Language(s) Java Java Java Java JSP, HTML Java servlets, HTML Java servlets, HTML

MySQL File-based datastore MySQL
Windows 2 11 9 12 9 65 18
Parameter-values 85 247 188 156 415 4166 646
LOC 9916 18376 12791 4893 7615 9401 999
Classes 141 219 125 104 11 75 9
Methods 446 644 579 236 319 173 22
Branches 1306 1277 1521 452 1720 1260 108
Total no. of tests 300 300 300 250 125 890 169
Largest count of actions in a
test case 47 51 50 50 160 585 69
Average count of actions in a
test case 14.5 19.7 19 27.8 29 14 7
No. of seeded faults 175 182 79 96 40 135 29
Min. no. faults found by a test 0 0 0 0 6 0 1
Avg. no. faults found by a test 9.4 1.6 4 24 21.43 4.67 4.62
Max. no. faults found by a test 48 64 71 87 32 33 15

TABLE 3: Composition of the applications and test suites in our study.

tie; the tie-breaking chain continues to Action-LtoS
and UniqWin.

• ChoiceT (PV−StoL,Action−StoL,UniqWin,MFPS)

combines PV-StoL, Action-StoL, UniqWin, MFPS
such that only one is applied at any time based on
a selection criterion.

• Higher order hybrid criteria that first apply
MergeU(2−way,1−way) and then use PV-
LtoS, Action-LtoS, and UniqWin to break ties.
Similarly, first MergeU(2−way:2,1−way:1) and
MergeU(2−way:1,1−way:2) are applied and the
other three criteria are used to break ties.

We implemented the different criteria in C++ and
Python. A script then calls the individual methods to
compute the scores based on the criteria. We now de-
scribe each hybrid in detail, starting with our intuition
for creating each.

4.2.3 MergeU(2−way,1−way), MergeU(2−way:2,1−way:1),
and MergeU(2−way:1,1−way:2)

In our past work, we observed that 2-way was consis-
tently among our top three prioritization criteria. The
2-way criterion selects test cases that cover the most
uncovered 2-way parameter-value interactions between
windows. On the other hand, 1-way sometimes outper-
formed the 2-way criterion. We hypothesize that while
covering all inter-window event interactions is valuable
that covering all events early is also important and that
we should examine this further. We thus combine 1-

way and 2-way into a hybrid criterion. By considering
both 1-way and 2-way, in some cases, we give priority
to variety of windows covered (as selected by 1-way) in
addition the pairwise interactions between windows (as
selected by 2-way). Merge is our most natural choice for
this combination because it simultaneously considers the
criteria – it gives importance to a test case that covers
the maximum number of previously uncovered pairs of
events and the maximum number of events. This leads
us to our first hybrid criterion MergeU(2−way,1−way). The
first invocation of the next() function for this hybrid
could be written as

next([], {T1, ..., Ti, ..., Tn},
Merge((M1way, M2way), ggreedy())),

where M1way refers to the mapping between test cases
and the 1-way interactions they cover, M2way refers to a
mapping between test cases and the 2-way interactions
they cover, the ggreedy function is our greedy prioritiza-
tion algorithm.

However, because 2-way is our best performing cri-
terion, we would not like 1-way to “drag it down.”
Hence, we give 2-way more importance by assigning
it a higher weight; we assign the weight 2 to 2-
way and 1 to 1-way; this leads us to our second cri-
terion, MergeU(2−way:2,1−way:1). We also observe that
the number of criteria elements for 2-way far exceed
those for 1-way. This is because 2-way considers pairs
of parameter-values, whereas 1-way considers only indi-
vidual parameter-values. If we have n parameter-values,
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then 2-way may, in principle need to consider
(
n
k

)
pairs.

By combining 2-way with 1-way, we run the risk of “over-
whelming” 1-way because of the much larger influence
of 2-way. This is why we develop our third criterion –
MergeU(2−way:1,1−way:2)that assigns the weight 1 to 2-
way and 2 to 1-way.

Merge, as used above, takes matrix representations
of the individual criteria, and performs a horizontal
concatenation, with weights if needed, to obtain a single
matrix for prioritization.

4.2.4 RankH(2−way,PV−LtoS ,Action−LtoS ,UniqWin)

In our past work, we also observed that 2-way led to a
large number of ties between test cases. In such cases,
we were selecting one of the tied test cases by random
selection. We hypothesize that the results may be better
if we used one or more secondary criteria to break ties
as done by [36], [52].

We now combine 2-way with PV-LtoS, Action-LtoS, and
UniqWin. Criterion PV-LtoS orders test cases in descend-
ing order of the number of parameter-values in the
tests, Action-LtoS orders test cases in descending order
of the number of windows, and UniqWin orders tests in
descending order of number of unique windows covered
by the test. The criteria PV-LtoS and Action-LtoS are
among the top three best criteria in several of our subject
applications. For example, PV-LtoS is among the top
three best criteria in 4 out of the 7 subject applications,
Action-LtoS in 1 out 7. The criterion UniqWin is also in
the top three in 1 out of the 7 applications, though it
performs poorly in other applications.

Our hybrid formulation is based on Rank, where 2-
way is the primary criterion and PV-LtoS, Action-LtoS,
and UniqWin are used as tie breakers, in that order. The
first invocation of next() for this hybrid could be written
as

next([], {T1, ..., Ti, ..., Tn},
Rank((M2way, ggreedy()), (MPV -LtoS , ggreedy()),
(MAction-LtoS , ggreedy()), (MUniqWin, ggreedy())),

where M2way , MPV -LtoS , MAction-LtoS , MUniqWin-LtoS

refers to the mapping between the test cases and 2-way
interactions they cover, the number of parameter-values,
number of actions, and number of unique windows
they cover, respectively. The function ggreedy() refers our
greedy prioritization algorithm.

4.2.5 ChoiceT (PV−StoL,Action−StoL,UniqWin,MFPS)

Our past results also showed that the criteria PV-StoL,
Action-StoL, UniqWin, and MFPS individually did poorly.
We hypothesize that these criteria are useful when or-
dering parts of the test suite; however, when applied
individually across the entire test suite, are unable to
perform. This is because the criteria individually cover
characteristics of the source code that do not contribute
to increase in fault detection effectiveness, e.g., PV-
StoL gives priority to tests that cover small number of
parameter-values, but, covering few parameter-values
is likely to translate to poor code coverage. However,

by using a combination of the criteria, different char-
acteristics are covered as the test suite is ordered, thus
cumulatively resulting in an increase in fault detection
effectiveness.

We now combine PV-StoL, Action-StoL, UniqWin, and
MFPS in such a way that each is used only on a small
(10%) part of the test suite at a time. This naturally leads
to an application of Choice. In our instantiation of Choice,
which we call Choice(PV−StoL,Action−StoL,MFPS), we use
a schedule-based approach. We select the most effective
test order every 10% of the test suite. We hypothesize
that as tests are selected, the remaining tests could be
stronger with respect to a different criterion, and should
thus be evaluated under the auspices of other criteria.
The goodness of every 10% of the test suite is determined
by the APFD value of the partial test suite.

The first invocation of next() for this hybrid could be
written as

next([], {T1, ..., Ti, ..., Tn},
Choice((MPV -StoL, MAction-StoL,
MUniqWin, MMFAS), ggreedy()),

where MPV -StoL, MAction-StoL, MUniqWin, MMFAS refer
to the mapping between the test cases and the number
of parameter-values covered, number of actions covered,
number of unique windows covered, and number of
times the most frequently present sequence is covered,
respectively, and the ggreedy() function refers our greedy
prioritization algorithm.

4.2.6 Higher-order hybrid criteria
In our pilot studies of the above hybrid formulations,
we noticed that in many instances, criteria
MergeU(2−way,1−way), MergeU(2−way:2,1−way:1), and
MergeU(2−way:1,1−way:2) create a large number of ties.
In such situations, instead of breaking ties at random, we
use PV-LtoS, Action-LtoS, UniqWin, in that order, to break
the ties, thus, creating what are effectively second-order
hybrid criteria similar to that discussed in Section 3.2.
The formulation is one of Rank, with the first criterion
itself being a Merge hybrid of 2-way and 1-way, weighted
appropriately. For MergeU(2−way,1−way), we obtain
RankH(MergeU(2−way,1−way),PV−LtoS ,Action−LtoS ,UniqWin),
i.e., if the criterion MergeU(2−way,1−way) produces ties,
than the remaining criteria are used in order to break
ties. Similarly, for MergeU(2−way:2,1−way:1), we obtain
RankH(MergeU(2−way:2,1−way:1),PV−LtoS ,Action−LtoS ,UniqWin),
and for MergeU(2−way:1,1−way:2), we obtain
RankH(MergeU(2−way:1,1−way:2),PV−LtoS ,Action−LtoS ,UniqWin).

4.3 Stand-alone vs. Hybrid
We now study the effectiveness of the hybrid criteria
that we created in Section 4.2. Other researchers [2], [25],
[30], [36], [52], [63] have shown the benefits of using
hybrid criteria. Our goal in this section is not to show
that hybrids work significantly better than non-hybrids,
but, to provide closure to the hybrids we formulated in
Section 4.2 by providing an example of how to empiri-
cally measure and evaluate them.
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4.3.1 Metrics

We want to determine how the hybrid test orders com-
pare with non-hybrid test orders. To measure effective-
ness of a test order, we use the average percent of faults
detected (APFD) metric [49]. Although several metrics
exist to evaluate prioritized test orders [9], [13], [46], [51],
APFD is the most commonly used metric. As defined by
Rothermel et al. [49], for a test suite, T with n test cases,
if F is a set of m faults detected by T, then let TFi be
the position of the first test case t in T ′, where T ′ is an
ordering of T, that detects fault i. Then, the APFD metric
for T ′ is given as

APFD = 1 − TF1 + TF2 + TF3 + ... + TFm

mn
+

1
2n

(1)

Informally, APFD measures the area under the curve that
plots test suite fraction and the number of faults detected
by the prioritized test case order.

4.3.2 Methodology

We prioritize our given test cases using all hybrid and
standalone criteria, and calculate the APFD of each test
order. Because the prioritization algorithm uses random-
ness to order remaining test cases (those that are “left
over” after all coverage requirements are satisfied), we
repeat the prioritization 5 times so that the effect of
randomness is reduced in our results.

We report the results using box plots shown in Fig-
ures 4a, 4b, 4c, 4d, 4e, 4f, 4g. A box-plot is a concise repre-
sentation of multiple data distributions; each distribution
is shown as one box. The left and right edges of each box
mark the third and first quartiles respectively. The line
inside the box marks the median value (it sometimes
overlaps with the first/third quartile). The whiskers ex-
tend from the quartiles and cover 90% of the distribution.
The remaining data-points (10%) are considered outliers
and are shown as small circles beyond the whiskers. The
box plots show the prioritization criterion on the y-axis,
and their APFD values on the x-axis.

As observed in the box plots, the 5 runs produced the
same APFD result, creating flat box plots. This is because
even though the randomness creates different test orders,
the tests that are involved in the randomness are not
different in terms of finding additional faults to cause a
change in the APFD. Thus, the final APFD values do not
differ much, which leads to the flattened box plots seen
in the graphs.

In addition, to compare all pairs of distributions,
we conduct a statistical analysis. On conducting the F-
test [43] , we found that the variances of the distributions
are not equal. Therefore, we perform Welch’s t-test [43]
on the APFD’s of the 5 test orders for each pair of
techniques to determine if two techniques that derive the
test order are significantly different in their means. The
null-hypothesis in each comparison is that the means
of the two distributed populations are equal. The p-
values from the t-test are shown in Table 4. In the next

# Criteria Pair book calc cpm masplas paint ssheet word
1 1way, MergeU-11-21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2way, MergeU-11-21 -NA- 0.14 0.00 0.01 0.24 0.18 0.21
3 1way, MergeU-11-22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 2way, MergeU-11-22 0.00 0.03 0.00 0.01 0.35 -NA- 0.49
5 1way, MergeU-12-21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 2way, MergeU-12-21 -NA- 0.02 0.00 0.00 0.22 0.00 0.21
7 Action-LtoS, RankH 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 PV-LtoS, RankH -NA- 0.00 0.00 0.00 0.00 0.25 0.00
9 UniqueWindows, RankH 0.98 0.27 0.00 0.00 0.00 0.00 0.01
10 2way, RankH -NA- 0.00 0.00 0.00 0.01 -NA- 0.00
11 PV-StoL, ChoiceT 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 Action-StoL, ChoiceT 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 MFAS, ChoiceT 0.01 0.00 0.00 0.00 0.00 0.00 0.00
14 UniqueWindows, ChoiceT 0.72 0.47 0.00 0.00 0.00 0.00 0.38
15 MergeU-11-21-RankH, RankH -NA- 0.03 0.07 0.00 0.07 0.18 0.00
16 MergeU-11-22-RankH, RankH -NA- 0.04 -NA- 0.00 0.01 -NA- 0.00
17 MergeU-12-21-RankH, RankH -NA- 0.05 -NA- 0.00 0.00 0.00 0.00
18 MergeU-11-21-RankH, MergeU-11-21 -NA- 0.31 0.21 0.00 0.36 1.00 0.28
19 MergeU-11-22-RankH, MergeU-11-22 0.02 0.05 0.18 0.18 0.69 -NA- 0.35
20 MergeU-12-21-RankH, MergeU-12-21 -NA- 0.24 0.75 0.75 0.20 0.55 0.82

TABLE 4: p-values of t-test applied to criteria

section, we discuss the performance of each of the hybrid
techniques when compared to the non-hybrids.

4.3.3 Results and Analysis.

• MergeU vs. non-hybrid criteria. Here we
compare the effectiveness of MergeU(2−way,1−way),
MergeU(2−way:2,1−way:1), MergeU(2−way:1,1−way:2)

hybrid techniques against the two non-hybrids, 1-way
and 2-way, that are used in the Merge algorithm. We
apply weights to the value of the 1-way and 2-way
coverage to develop the hybrid combinations. For
instance, MergeU(2−way:2,1−way:1) gives a weight of
2 for 2-way and a weight of 1 for 1-way; that is,
we multiple the number of 2-way combinations are
scaled to be counted twice while the number of 1-way
combinations are not scaled. The rows relevant to this
comparison are rows 5-9 in Figures 4a- 4g. The notation
MergeU 11 21 in the figures and Table 5 indicates
MergeU(2−way:2,1−way:1), the notation MergeU 11 22
indicates MergeU(2−way:2,1−way:1), and the notation
MergeU 12 21 indicates MergeU(2−way:1,1−way:2).

We see that in most applications, the variations of
MergeU are comparable to 2-way. In most cases, MergeU

is better than 1-way. For spreadsheet and book, where
1-way is better than 2-way, we find that the MergeU

techniques perform poorer than 1-way. The weights on
the two criteria do not appear to have an impact on the
effectiveness of the test orders.

The first six rows of Table 4 show the p-values of
comparing the MergeU test orders with 1-way and 2-
way. We use “NA” when the two distributions are
constant. From the first six rows of Table 4, we note
that there is a statistically significant difference between
the means of the Merge test suites and the non-hybrids
for the web applications (p-value < 0.05). For 3 out
of the 4 GUI applications, for MergeU(2−way,1−way),
MergeU(2−way:2,1−way:1), and MergeU(2−way:1,1−way:2)

the difference between them and 2-way is not significant.
For applications where the difference between the

means of the APFD is around 0.1% (e.g., in Paint the
pair (2-way, MergeU(2−way,1−way))) we find that the
difference is not significant (i.e., p-value > 0.05).
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Fig. 4: Standalone vs. Hybrid Results. x-axis shows APFD values; y-axis shows criteria.

• ChoiceT vs. Non-hybrid criteria. In this
section, we present the results of comparing the
ChoiceT (PV−StoL,Action−StoL,UniqWin,MFPS) hybrid test
order with the non-hybrid test orders generated from
the criteria PV-StoL, Action-StoL, UniqWin, and MFPS.
Rows 13-17 are the relevant data from Figures 4a, 4b-
4g for this comparison. From the graphs, we see
that the ChoiceT (PV−StoL,Action−StoL,UniqWin,MFPS)

hybrid technique performs better than the individual
non-hybrid criteria for all the subject applications.

From the rows 11-14 in Table 4, we see
that in most cases there is a statistically
significant difference between the means of the
ChoiceT (PV−StoL,Action−StoL,UniqWin,MFPS) and the
non-hybrid techniques of PV-StoL, Action-StoL,
UniqWin, and MFPS. These results suggest that the
ChoiceT (PV−StoL,Action−StoL,UniqWin,MFPS) hybrid test
criterion can be used to create effective test orders, when
the tester has prioritization criteria that individually
perform poorly.
• RankH vs. Non-hybrid criteria. Here we discuss the ef-
fectiveness of RankH(2−way,PV−LtoS ,Action−LtoS ,UniqWin)

hybrid criterion when compared the non-hybrids
of 2-way PV-LtoS Action-LtoS and UniqWin.
In Figures 4a- 4g, Rows 9-13 contain the data
relevant to this comparison. We see that the

RankH(2−way,PV−LtoS ,Action−LtoS ,UniqWin) hybrid
algorithm is comparable to 2-way and in most cases
is better than the other non-hybrid criteria. For Calc,
however, RankH(2−way,PV−LtoS ,Action−LtoS ,UniqWin)

performs poorer than 2-way by a small margin.
This could be because Calc was one of our smaller
applications with only 2 windows.

The means of 2-way and
RankH(2−way,PV−LtoS ,Action−LtoS ,UniqWin) as
seen in the row 10 in Table 4 show a
statistically significant difference. Thus, the
RankH(2−way,PV−LtoS ,Action−LtoS ,UniqWin) hybrid
technique can be used to generate effective test orders
with the help of intelligent tie breaking.
• Higher order hybrid criteria. For our higher order
hybrid criteria, where we combine MergeU and RankH ,
we observe that the hybrids (rows 2, 3, 4) do not perform
much better than the individual first order hybrid criteria
(rows 5, 6, 7, 12 in Figures 4a- 4g). Correspondingly, from
Table 4 rows 15 to 20 , we see that several of the pairs do
not show a statistically significant difference. We believe
the performance of hybrid criteria in our experiments
is an artifact of our data set and the faults seeded in
our subject applications. The MergeU criteria alone are
very effective, that we do not see an improvement on
applying the higher order criteria.
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• Summary. In summary, we find that our hybrids per-
form better than the non-hybrid criteria in most of our
subject applications. We note that the hybrids perform
better than a random ordering of the tests (row 1 in
graphs). Previous literature that we reviewed shows
the benefits of a variety of Merge and Rank hybrid
techniques. We also provide an example that explores the
Choice hybrid approach for the scenario when a tester
has several poorly performing criteria from which they
need to choose or combine. The formalizations that we
have previously proposed allow the easy application of
the individual criteria to create the hybrids that we study
here.

We note that in our subject applications and exper-
iments the APFD of the different hybrids is relatively
high, so the distinction between the criteria is not ob-
viously apparent. This result is an artifact of our ap-
plications and the faults seeded in them. Our focus in
this paper is primarily to show how the hybrids can be
based on our formalizations and applied for the test case
prioritization problem.

In general, we find that no one particular hybrid cri-
terion performs best across all our subject applications.
In our experiments, we find that a hybrid criterion that
combines several individual criteria performs better than
a single criterion, because we do not consider time costs
in the evaluation metrics, and hybrid criteria will usually
be more expensive than a single criterion because they
consider several factors during prioritization.

5 CONCLUSIONS AND FUTURE WORK

We formalized the notion of “hybrid criteria” by creating
a uniform representation to precisely describe them. As
a starting point, we represented 3 hybrids: (1) Rank
that gives primary, secondary, and n-order precedence
to different criteria, (2) Merge that applies multiple cri-
teria simultaneously, and (3) Choice that selects between
multiple criteria.

Our 3 demonstrations showed several things. First,
that others’ past work can be described using the Merge
and Rank formulations. Second, our empirical study on
several GUI and web applications for the problem of
test case prioritization using Merge, Rank and Choice
formulations showed the ease at which our formalization
can be used. Third, we show scenarios in which hybrid
criteria are beneficial.

In future work, we anticipate that many techniques
that use a single criterion will be revisited in order
to evaluate the application of multiple criteria. Future
work may also examine the relationship of multiple
criteria to different techniques (i.e., test case generation,
regression test selection, test suite reduction, and test
case prioritization) on applications with different char-
acteristics so that there is a better understanding of the
relationship of multiple criteria in different scenarios. We
anticipate that future work may identify new types of
hybrid combinations beyond Rank, Merge, and Choice.

We may also explore combining these operators with
the goal of finding an optimal hybrid approach that
maximizes some user-specified criteria. We assumed that
there are no dependencies between test cases. This is a
common assumption in most regression testing litera-
ture. However, we can generalize by relaxing this as-
sumption. Additional constraints will need to be added
that ensure certain test cases are run before others that
depend on their results. Finally, we anticipate that the
framework provides a step toward helping researchers
to create shared tools and artifacts that use a uniform
representation.
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APPENDIX

Table 5 shows the papers we studied as part of the
recasting of previous work on hybrid criteria for per-
forming regression testing tasks. The papers in the table
are categorized by ‘Merge’, ‘Rank’, ‘Higher-order hybrid’
(note that we did not find previous work that was
an application of our ‘Choice’ formalization). For each
paper referenced in Column 1, we list the keywords in
Column 2 that capture the essence of the hybrid method
that is presented and the criteria that are combined to
create the hybrid in Column 3.
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