GUI Ripping: Reverse Engineering of Graphical User Interfaces for Testing

Atif Memon Ishan Banerjee, Adithya Nagarajan
Department of Computer Science Department of Computer Science
and Fraunhofer Center for University of Maryland
Experimental Software Engineering College Park, Maryland, USA
University of Maryland {ishan, sadithyp@cs.umd.edu

College Park, Maryland, USA
atif@cs.umd.edu

Abstract trols that represent everyday objects such as menus, but-
tons, lists, and windows. Recognizing the importance of
Graphical user interfaces (GUIs) are important parts of GUIs, software developers are dedicating large parts of the
today’s software and their correct execution is required to code to implementing GUIs [12]. The correctness of this
ensure the correctness of the overall software. A popular code is essential to the correct execution of the overal sof
technique to detect defects in GUIs is to test them by exeware. A popular technique to detect defects in software is
cuting test cases and checking the execution results. Testesting[3, 2, 23]. During testingtest casesre created and
cases may either be created manually or generated auto-executed on the software. Test cases may either be created
matically from a model of the GUI. While manual testing manually by a tester [10, 27, 8] or automatically by using a
is unacceptably slow for many applications, our experience model of the software derived from its specifications [20].
with GUI testing has shown that creating a model that can In all our work to date [20, 17, 21, 16, 18, 19, 15, 12, 14],
be used for automated test case generation is difficult. we have observed that software specifications are rarely in
We describe a new approach to reverse engineer a modeR form to be used for automated GUI testing.
represented as structures called a GUI forest, event-flow GUI testing requires that test cases (sequences of GUI
graphs and an integration tree directly from the executable eventsthat exercise GUWwidget$ be generated and exe-
GUI. We describe “GUI Ripping”, a dynamic process in cuted on the GUI [13]. However, currently available tech-
which the software’s GUI is automatically “traversed” by niques for obtaining GUI test cases are resource intensive,
opening all its windows and extracting all their widgets requiring significant human intervention. The most popular
(GUI objects), properties, and values. The extracted infor technique to test GUIs is by usimgpture/replay tool$10].
mation is then verified by the test designer and used to auto-When using a capture/replay tool, a human tester interacts
matically generate test cases. We present algorithms éor th with the application under testAUT); the capture compo-
ripping process and describe their implementation in a tool nent of the tool stores this interaction in a file that can be re
suite that operates on Java and Microsoft Windows’ GUIs. played later using the replay component of the tool. Our ex-
We present results of case studies which show that ourPerience has shown that generating a typical test case with
approach requires very little human intervention and is es- 50 events for different widgets takes 20-30 minutes using
pecially useful for regression testing of software thataxim ~ capture-replay tools.
ified frequently. We have successfully used the “GUI Rip- A few automated GUI test case generation techniques

per” in several large experiments and have made it avail- have been proposed [20]. However, they all require cre-
able as a downloadable tool. ating a model of the GUI — a significant resource intensive

step that intimidates many practitioners and preventshe a
plication of the techniques. In this paper, we present atech
nigque, calledGUI Rippingto reverse engineer the GUI's
model directly from theexecutingGUI. Once verified by
the test designer, this model is then used to automatically
Graphical user interfaces (GUIs) are one of the most im- generate test cases. GUI ripping has numerous other ap-
portant parts of today’s software [13]. They make software plications such as reverse engineering of COTS GUI prod-
easy to use by providing the user with highly visual con- ucts to test them within the context of their use, porting and

1 Introduction

controlling legacy applications to new platforms [22], and cess is efficient, in that it is very fast and requires little h
developing model checking tools for GUIs [6]. For space man intervention. We also show that relative to other tgstin
reasons, in this paper, we will provide details relevanhto t activities, ripping consumes very little resources. Weals
testing process. observe that automated testing would not be possible with-
GUI ripping is a dynamic process that is applied to outthe help of the GUI Ripper.
an executing software’s GUI. Starting from the software’s ~ The specific contributions of our work include the fol-
first window (or set of windows), the GUI is “traversed” lowing.
by opening all child windows. All the window'svidgets
(building blocks of the GUI, e.g., buttons, text-boxesgith
properties(e.g., background-color, font), andlues(e.qg.,
red, Times New Roman, 18pt) are extracted. Developing
this process has several challenges that required us to de-
velop novel solutions. First, the source code of the softwar
may not always be available; we had to develop techniques
to extract information from the executable files. Second, In the next section, we present a formal model of the
there are no GUI standards across different platforms andGuUI specifications that are obtained by the GUI Ripper. In
implementations; we had to extract all the information via Section 3, we present the design of the ripper and provide
low-level implementation-dependent system calls, which an algorithm that can be used to implement the ripper. In
we have found are not always well-documented. Third, Section 4 we discuss the MS Windows and Java implemen-
some implementations may provide less information than tations of the GUI Ripper. In Section 5, we empirically
necessary to perform automated testing; we had to relyevaluate our algorithms on several large and popular soft-
on heuristics and human intervention to determine missingware. We then conclude with a discussion of related work
parts. Finally, the presence inffeasible pathin GUIs pre- in Section 6, and ongoing and future work in Section 7.
vents full automation. For example, some windows may
be available only after a valid password has been provided.2 GUI Model
Since the GUI Ripper may not have access to the password,
it may not be able to extract information from such win-

dows. We had to provide another process and tool support Dur|n.g GUI ripping, & reprefsentatlon .Of .the GUI that
. models its structure and execution behavior is created from
to visually add parts to the extracted GUI model.

We use GUI ripping to extract both the structure and ex- the ex_ecutmg GUI. In this sgcnon, we describe this repre-

: . : sentation and formally describe the models used for testing

ecution behavior of the GUI — both essential for automated Since develobing aeneral reverse engineering solutions fo
testing. We represent the GUI’s structure aSll forest bing g 9 g

. ; .) all types of GUIs is difficult, we focus on an important sub-
and its execution behavior asent-flow graphsand anin- yp P

tegration treg[21]. Each node of the GUI forest represents class of GUIs described next.
a window and encapsulates all the widgets, properties and2 1 Whatis a “GUI"?
values in that window; there is an edge from nade node ')
y if the window represented by is opened by perform-
ing an event in the window represented by nade.g., by
clicking on a button. Intuitively, event-flow graphs and the
integration tree show thigow of eventén the GUI. We pro-
vide details of these structures in Section 2.

We have implemented our algorithm in a software called
the GUI Ripper We use the GUI Ripper as a central part
of two large software systems called GUITARnd DART
(Daily Automated Regression Tester) to generate, execute
verify GUI test cases, and perform regression testing [15].
We provide details of two instances of the GUI Ripper, one
for Microsoft Windows and the other for Java Swing ap-
plications. We then empirically evaluate the performance
of the ripper on four Java applications with complex GUIs,
Microsoft's WordPad, Yahoo Messenger, and Winzip. The
results of our empirical studies show that the ripping pro-

e We provide an efficient algorithm to extract a soft-
ware’s GUI model without the need for its source code.

e We describe a new structure calle®dll forest

e We provide implementation details of a new tool that
can be applied to a large number of MS Windows and
Java Swing GUIs.

GUIs, by their very nature, are hierarchical. This hier-
archy is reflected in the grouping of events in windows, di-
alogs, and hierarchical menus. A typical GUI user focuses
on events related by their functionality by opening a partic
ular window or clicking on a pull-down menu. For example,
all the “options” in MS Internet Explorer can be set by in-
teracting with events in one window of the software’s GUI.

The important characteristics of GUIs include their
graphical orientation, event-driven input, hierarchitalic-
ture, the widgets they contain, and the properties (at&#)u
of those widgets. Formally, the class of GUIs of interest
may be defined as follows:

Definition: A Graphical User Interface (GUI)is a hi-
erarchical, graphical front-end to a software system tbat a
cepts as input user-generated and system-generated,events
from a fixed set of events and produces deterministic graph-
lhttp://guitar.cs.und. edu ical output. A GUI contains graphicalidgets each widget

has a fixed set gbroperties At any time during the execu- I 11| Labell

tion of the GUI, these properties have discrete values, the | ... R =1 Align_|aiNone
set of which constitutes the state of the GUI. O _ Caption|Files of fype:

The above definition specifies a class of GUIs that have Eg;gfded Fo (oo sce
a fixed set of events with deterministic outcome that can Share Buttont

.) ; ; o

be_perfo_rm_ed on widgets with discrete valued properties. o] ™ opn | /c:;ﬁmn:a,,ce/
This definition would need to be extended for other GUI Enabled TRUE
classes such as web-user interfaces that have synchroniz: Fleseiype ™ [wod] Cancel o e
tion/timing constraints among objects, movie players that
show a continuous stream of video rather than a sequence o (a)

discrete frames, and non-deterministic GUIs in which it is gate= {(Label1, Align, alNone), (Label1, Caption, “Filesof type:”),
not possible to model the state of the software in its egtiret (Labell, Color, clBtnFace), (Labell, Font, (tfont))(Forml, WState,

. . wsNormal), (Form1, Width, 1088), (Form1, Scroll, TRJE), (Button1,
and hence the effect of an event cannot be predicted. This c;pion, cancel), (Button1, Enabled, TRUE), (Button, Visible, TRUE),
paper focuses on techniques to reverse engineer the class ¢ (Button1, Height, 65), ...} (b)

GUIs defined above.

2.2 GUI Forest Figure 1. (@) Open window, (b) its Partial State

The first GUI representation that we obtain during the
ripping process is called the GUI forest. Intuitively, the
GUI forest represents the structure of the GUI's windows the window, as well aall of the properties and their values
(as nodes of the forest), and the hierarchical relationshipfor each of those widgets. The state of gen window,
between windows (as edges). Each node encapsulates thpartially shown in Figure 1(b), contains all the propertés
state of a window that constitutes the window’s widgets, all the widgets irOpen.
their properties, and values. The windows of the GUI form a hierarchy — once the
We model a GUI window as a set afidgets(e.g., but- software is invoked, the user is presented wittog:level
tons, labels, text fields) that constitute the window, a $et o window (or set of windows). All other windows of the
properties(e.g., background color, size, font) of these wid- GUI are invoked from one of the top-level windows or from
gets, and a set ofalues(e.g., red, bold, 16pt) associated their descendents. In general, the relationships among win
with the properties. Each window will contain certain types dows may be represented by a set of directed acyclic graphs
of widgets with associated properties. At any point during (DAGS), since multiple windows may invoke a window.
its execution, the window can be described in terms of the However, each DAG can be converted into a tree by copy-
specific widgets that it currently contains and the values of ing nodes. A tree model simplifies our algorithms based on
their properties. More formally, we model a window at a tree traversals. Note that since most GUIs have a single top-
particular timet in terms of: level window, in most cases, the forest reduces to a single
tree. Formally, we define a GUI forest as:
Definition: A GUI forestis a triple< W, T, & >, where
W is the set of windows in the GUI arld C W is a des-
ignated set of windows called theop- | evel windows.
£ is the set of directed edges: there is an edge from node
For example, consider th@en window shown in Fig- # t0 nodey if the window represented by is opened by
ure 1(a). This window contains several widgets, two of Performing an eventin the window represented by nede
which are explicitly labeled, namelgut t on1 andLa- O
bel 1; for each, a small subset of properties is shown. Note ~ Different types of GUI forests may be obtained depend-
that all widget types have a designated set of properties andng on the types of windows that the GUI contains. For

e widgetsW = {ws,ws,...,w;}, i.e., the widgets that
the window currently contains,

e propertiesP = {p1, p2..., pm } Of the widgets, and

e valuesV = {vy,vs..., v, } Of the properties.

all properties can take values from a designated set. the purpose of testing, we distinguish between two differen
The set of widgets and their properties can be used totypes of windowsmodalwindows andnodelessvindows.
create a model of thetateof the window. Definition: A modal windowis a GUI window that,
Definition: Thestateof a window at a particular timeis once invoked, monopolizes the GUI interaction, restrigtin
the setS of triples { (w;, p;, vx)}, wherew; € W, p; € P, the focus of the user to a specific range of events within the
andv, € V. O window, until the window is explicitly terminated. O
A description of thecomplete statevould contain infor- The language selection window is an example of a modal

mation about the types all the widgets currently extantin ~ window in MS Word — when the user performs the event

Figure 2. Examples of GUI Forests.

Set Language, a window entitledLanguage opens NEw
and the user spends time selecting the language, and finall
explicitly terminates the interaction by either perforgin
K orCancel .

Other windows in the GUI are calledodeless windows
that do not restrict the user’s focus; they merely expand the
set of GUI events available to the user. For example, in the
MS Word software, performing the eveRépl ace opens
a modeless window entitleRepl ace.

Figure 2 shows some examples of GUI forests. The
shaded nodes represent modal windows and unshade [conest o rrnrer]
nodes represent modeless windows. Dashed boxes grot
windows that open simultaneously. Figure 2(a) shows the
simplest case of a GUI in which window 1 is a modal win-
dow; three events in window 1 are used to open three win-
dows 2, 3 and 4, where 2 and 4 are modal, and 3 is mode
less. Figure 2(b) shows a more complex case of a GUI in
which window 1 contains an event that opens two windows
2 and 3 simultaneously, where 2 is modal and 3 is mode-
less. Figure 2(c) shows a case where the software presen
two top-level windows to the user. Window 1 is modal and
2 is modeless. Figure 2(d) shows another case with multi-
ple top-level windows, i.e., 1, 2 and 3. Windows 1 and 2
contain events that open two windowsi(5} and {6, 7}
respectively) simultaneously.

Figure 3 shows the GUI forest (in this case a single tree)
for MS WordPad. Note that the window that is presented
to the user when WordPad is launched is called “top-level”
and forms the root of the tree. All other windows are either
invoked from top-level or from one of the child windows.
For example, the window “connect to printer” is invoked
from “page setup-2” which in turn is invoked from “page
setup-1".

PASTE SPECIAL

OPTIONS

TOP-LEVEL

[earnsiaed |

PAGE SETUP - 2 INSERT OBJECT

[DATE AND TIME|

PRINTER

[cHANGE ICON]

[open | [repace |

Figure 3. GUI Forest (Tree) for MS WordPad.

the GUI that can be tested in isolation. The ripping process
extracts additional information from the GUI such as event
types to develop these structures. We now describe some of
this information and structures.

To develop units of testing, we exploit the GUI's hierar-
chy to identify groups of GUI events that can be analyzed in
isolation. One hierarchy of the GUI and the one used in this
research is obtained by examining the structure of modal
windows in the GUI.

At all times during interaction with the GUI, the user
interacts with events within a modal dialog. This modal
dialog consists of a modal window and a set of mode-
less windows that have been invoked, either directly or in-
directly by X. The modal dialog remains in place unkl
is explicitly terminated. Intuitively, the events withihe
modal dialog form &UI component

Definition: A GUI component is an ordered pair
2.3 Flow of Events (RF,UF), whereR.F represents a modal window in terms

of its events andl{ F is a set whose elements represent mod-

The GUI forest in its raw form is not useful for test case eless windows also in terms of their events. Each element
generation. We collect additional information during rip- of /¥ is invoked either by an event idF or RF. O
ping to develop new structures that model the GUI's exe- Note that, by definition, events within a component do
cution behavior that we call itBow of events Moreover, not interleave with events in other components without the
for testing, we need to develamits of testingi.e., parts of components being explicitly invoked or terminated.

Event Types
Component) Restricted | Unrestricted| System Menu
Terminal .

Focus Focus Interaction Open
Main 1 11 2 69 6
FileNew 2 0 0 2 0
FileOpen 2 0 0 18 0
FilePrint 2 0 0 3 0
FilePage Setup 2 1 0 21 0

Table 1. Some GUI Components of WordPad.

Since components are defined in terms of modal wi
dows, a classification of GUI events is used to identify cor
ponents. The first class of events, calledtricted-focus
eventsopenmodal windows For exampleSet Lan-
guage in MS Word is a restricted-focus event. The se
ond class, calledinrestricted-focus eventsopen mode-
less windows For exampleRepl ace in MS Word is an
unrestricted-focus evenfermination eventsclose modal
windows; common examples inclu@& andCancel .

The GUI contains other types of events that do not op
or close windows but make other GUI events availab
These events, calleghenu-open eventsare used to open
menus. They expand the set of GUI events available to
user. Menu-open events do not interact with the underlyi
software. Note that the only difference between menu-og
events and unrestricted-focus events is that the lattem o
windows that must be explicitly terminated. The most cor
mon example of menu-open events are generated by |
tons that open pull-down menus. For example, in MS Wol
Fi | e andSendTo are menu-open events.

Finally, system-interaction eventsnteract with the un-
derlying software to perform some action; common exal
ples include th&opy event used for copying objects to th
clipboard.

Table 1 lists some of the components of WordPad. Ee
row represents a component and each column shows
different types of events available within each compone
Mai n is the component that is available when WordPad
invoked. Other components’ names indicate their functic
ality. For exampleFi | eQpen is the component of Word-
Pad used to open files.

Event-flow Graphs: A GUI component’s flow of events
may be represented as a flow graph. Intuitivelyeaent-
flow graphrepresents all possible interactions among t
events in a component. An event-flow graph is created
identifying the events in a GUI component. For every eve
e, the events that can be performed immediately aftare
identified. They are linked witb using thefollows relation.

Definition: An event-flow graptior a componen€ is
a 4-tuple<V, E, B, | > where:

1. Vis a set of vertices representing all the events in t
component. Each €V represents an event (ii.

EXPAND BY DEFAULT
LEFT-CLICK
ya
RINTER INF
LEFT—C;W

y
LISTBOX
ELECT RO

Figure 4. Partial Event-flow Graph for a Com-
ponent of MS WordPad.

2. ECV x Visasetof directed edges between vertices.
Evente; follows e; iff e; may be performed imme-
diately aftere;. An edge(v,,v,) € E iff the event
represented by, follows the event represented by.

3. B C Vis a set of vertices representing those events of
C that are available to the user when the componentis
first invoked.

4.1 CV is the set of restricted-focus events of the com-
ponent.

O

An example of an event-flow graph for the “connect to
printer” component of MS WordPad is shown in Figure 4.
The nodes represent events in the component and the edges
show thef ol | ows relationship.

Integration Tree: Once all the components of the GUI
have been represented as event-flow graphs, the remaining
step is to identify event flows among components. A struc-
ture called arintegration treeis constructed to identify in-
teractions (invocations) among components.

Definition: Component’, invokes component’,, if
C, contains a restricted-focus eventthat invokes”,. O

Intuitively, the integration tree shows the invokes rela-
tionship among all the components in a GUI. Formally, an
integration tree is defined as:

Definition: An integration tree is a 3-tuple <
N,R,B >, where\ is the set of components in the GUI
andR € N is a designated component called tiigi n
component.5 is the set of directed edges showing the in-
vokes relation between components, i(€l,, Cy) € B iff
C, invokesC,,. O

Note that a software’s integration tree is very different
from its GUI forest; each node in a GUI forest represents a
window whereas a node in an integration tree represents a
group of windows (called a component, as defined earlier).

Test-case GenerationGUI test cases are sequences of
GUI events [12]. Once we have the event-flow graphs and
integration tree, we generate test cases by traversing thes

PROCEDUREDFS- Tr ees(DFS-ForestF)
R [* Set of all root nodes in the forest */ 1

FORALL root € R bO 2

DFS- Tr ee- Recur si ve(root) 3
PROCEDUREDFS- Tr ee- Recur si ve(Noden

W =get - chi | d- nodes(n) 4

W I* Set of child nodes of the node being visited *b6
FORALL W& W DO 6
DFS- Tr ee- Recur si ve(w) 7

Figure 5. Visiting Each Node of a Forest of
Directed Trees

DFS- Tr ee- Recur si ve visits the tree rooted at node
Alist W of all the child nodes of the nodgs obtained (line

4). Then a recursive visit for the sub-trees rooted at each of
the child nodes is performed (lirge-7).

We tailor the algorithm of Figure 5 to handle GUI traver-
sal. The resulting algorithm is shown in Figure 6. Two
proceduresDFS- GUI and DFS- GUI - Recur si ve tra-
verse the GUI of the application and extract its structure.
The functionaccess-t op- 1| evel - wi ndows (line 1)
returns the list otop-level windowsin the application un-
der test (AUT). Recall that top-level windows of an applica-
tion are those windows that become visible when the appli-
cation is first launched. A GUI tree is constructed for each
of the top-level window by invoking the procedubfS-

QU - Recur si ve. The trees are constructed in the set

structures and enumerating the events encountered. A largé/Z. At the termination of the algorithniji{Z contains
number of test cases can be obtained quickly in this man-the GUI forest of the application.

ner. We useest coverage criteriao guide the test case

Note that linesA—7 of Figure 5 has been replaced with

generation process. A detailed discussion of test coveragdines5-12in Figure 6. This is because, for a directed tree,
is beyond the scope of this paper. The interested reader ighe children of a node can be obtained by invoking the pro-

referred to Memon et al. [21] for details.

cedureget - chi | d- nodes. However, for a GUI appli-

In the next section, we describe the algorithms of the cation, a node is a GUI window. It may contain several

GUI ripping process.

3 Design of the GUI Ripper

The process of GUI Ripping consists of two steps. First,
the GUI of the application is automatically traversed asd it
structure is extracted by a tool, which we call tB&l Rip-

widgets, which in turn, may invoke one or more GUI win-
dows. To obtain a list of all GUI windows that can be in-
voked from a GUI windowg, we must query each afs
constituent widgets.

The procedureDFS- GUI - Recur si ve performs a
depth-first search of the GUI tree rooted at the GUI win-
dowg. In line 5 the call toget - wi dget -1 i st -and-

per. Second, since the implementation may be wrong (afterPT OPer ti es returns a list)V of the constituent wid-

all, that's what is being tested), the extracted infornmatio
may be incorrect; the tester visually inspects the extdacte

gets in the GUI windowg. The functioni denti fy-
execut abl e- wi dget s in line 6 searches the s&v and

GUI structure and makes corrections so that the structured®turns a list of widgets which invoke other GUI windows.

confirm to software specifications.
We first describe the algorithm used for the GUI Ripper

This is because not all of the widgets i invokes other
GUI windows.

and then discuss the role of the human tester in inspecting A widgete that invokes other GUI windows is executed

and correcting the extracted structure. We will use a top-

by execut e- wi dget in line 8. When executece may

down approach to describe our ripping algorithm. Since we invoke one or more GUI windows. The functiget -

use a depth-first traversal (DFS) of the GUI to extract its
structure, we will start with a generalized DFS algorithm,
tailor an instance of the algorithm for GUIs, and then finally

describe specific details of the Windows and Java imple-

mentations. We will use stubs in the high-level algorithms
that we will later describe in subsequent sections.

GUI Traversal and Extraction Algorithm: As dis-
cussed earlier in Section 2, the GUI of an application is

structured as a forest. We obtain this structure by perform-

ing adepth-first traversal of the hierarchical structure of

the GUI. We start with a generalized depth-first search al-

gorithm [5] shown in Figure 5 and adapt it for GUIs.
The procedur®FS- Tr ees takes as input a forest, rep-

i nvoked- gui - wi ndows in line 9 returns the list of GUI
windows invoked bye. Note that each of the GUI windows
cin the setC are child nodes of the nodgin the GUI tree.
The GUI treeGUZ is updated in lin€l0. This is done by
inserting each GUI Window from C as a child node of the
GUIl windowg. Lines11-12performs a recursive search of
the sub-tree rooted at each of the invoked GUI winaow

When the procedurl®FS- GUI - Recur si ve returns to
DFS- GUl , the tree rooted at the top-level windaws con-
structed. At the completion of the procedDieS- GUI , the
complete GUI forest of the application under test is avail-
able inGUT.

The algorithm described in Figure 6 is general and can

resented as a set of trees. It performs a DFS traversal startbe applied to any GUI defined in Section 2. In Section 4, we

ing from the root of each tree (lines-3). The procedure

will describe how the high-level functions used in the algo-

GUT I* GUI tree of application under test */ Windows Applications: Before detailing the Windows

PROCEDUREDFS- GUI (Application A implementation, we describe some windows-specific de-
T =access-top-1 evel -wi ndows(A) 1 tails. The Windows Operating System providebhandle
GUT =T 2 for all GUI windows and widgets. The handle is an identi-
/* T is set of top-level windows in the application */ fier, which uniquely identifies the GUI window or widget.
FORALLt€ 7 DO 3 Using the Windows APIApplication Programmers Inter-

DFS- GUI - Recur si ve(t) 4 face it is possible to perform GUI operations such as enu-
merating the visible GUI windows, enumerating the wid-

PROCEDUREDFS- GQUI - Recur si ve(Window g gets embedded in a GUI window and detecting the invoca-
W =get-wi dget-1list-and-properties(g)5 tion of a new GUI window.

* Wis the set of all widgets in the Window */ Lines 1-2. The Windows Ripper needs to identify the
&=identify-executabl e-w dgets(W) 6 top-level windows of an application. This is a manual pro-
¥ From WV identify executable widgets */ cess, where the tester points-and-clicks on the top-level
FORALL e€ £ DO 7 windows. The GUI Ripper, which executes as a background

execut e-w dget () 8 process, records the windows handle of the top-level win-

/* Execute the widget e */ dows.

C =get-invoked- gui - wi ndows(e) 9 Lines 3—4.A Recursive depth-first search is initiated for

GUT =GUI Ug 10 each top-level window using its window handle.

FORALL € € C DO _ 11 Line 5. The procedureget - wi dget - | i st - and-

DFS- GUI - Recur si ve(c) 12 properti es returns the list ol the widgets in the spec-

ified GUI window and their state. It uses the Windows API
EnumChildWindowwhich takes a handle to the GUI win-
dow and returns a list of widgets (handles) embedded in it.
The handles are then queried for state information of the
widgets, such as visibility state, caption, etc.
rithm may be implemented using Windows and Java API. Line 6. ‘Executable’ widgets are those that represent
Manual Inspection: The automated ripping process is restricted-focus events, i.e., those that invoke other GUI
not perfect. Different idiosyncrasies of specific platferm windows. Thecaption propertyof a widget is examined
sometimes result in missing windows, widgets, and prop- to see if it ends with three dots ‘...". For Windows applica-
erties. For example, we cannot distinguish between modaltions, this signifies that the widget is executable.
and modeless windows in MS Windows; we cannot extract | ines 7—8. An 'executable’ widget is executed by emu-
the structures of ther i nt dialog in Java. Such platform |ating a user’s left-click mouse action. The Windows API
specific differences require human intervention. We previd SendMessagis used to send a message to the widget to
tools to edit and view the extracted information. We also emulate it.
provide a process called “spy” using which a test designer |ine 9. The procedureget - i nvoked- gui -
can manually interact with the AUT, open the window that \j ndows, returns the list of GUI windows that are actually
was missed by the ripper, and add it to the GUI forest at anjnyoked by an executable widget. This is implemented us-
appropriate location. ing a Windowshook A hook is a mechanism by which a
Generating the Event-flow Graph and Integration predefined user level functions is called by Windows, when-
Tree: During the traversal of the GUI, we also determine ever a specified GUI event occurs. In our case, this event is
the event type (discussed in Section 2) by using low-level the invoking of one or more GUI windows. If the widget
system calls. Once this information is available, we can jnyokes GUI windows¢, the handles of are sent by Win-

create the event-flow graphs and integration tree relgtivel gows to the hook procedure. This handle is then used to
easily using algorithms described in [12]. We omit details gnalyze the new window.

Figure 6. GUI Traversing and Extracting the
GUI of an application

of the algorithms here due to lack of space. Line 10. GUI windows that appear in response to exe-
cuting a widget are child windows of the window containing
4 Implementation the widget. The GUI tree being traversed is updated with

this structural information.

We now describe the platform-specific details of ourtwo Lines 11-12. The windows opened by the widget are
implementations of the GUI Ripper, one for MS Windows traversed. Each window is analyzed by the DFS-GUI-
GUIs and the other for Java Swing GUIs. We will fre- Recursive using its unique Windows handle.
quently refer back to the line numbers and high-level func- The Windows implementation of the GUI Ripper may
tions invoked in the algorithm of Figure 6. miss some widgets during the process of ripping. This

happens when a widget does not have a Windows handle
Widgets created by the application that bypass the Win-
dows drawing functions usually do not have handles and
are missed by the GUI Ripper. After Ripping is complete,

the tester may manually add the missed widgets using our]

Spy process.

Java Applications: Java applications do not have a han-
dle and hence cannot be ripped using the Windows Ripper.
The Java implementatioddva Ripper) is used to rip the
GUI structure of applications developed using Java. In ap-
plications developed using Java, GUI windows and widgets

are instances of Java classes. They are analyzed using Java

APls.

Lines 1-2.From the executable class file(s) of the AUT,
the GUI Ripper locates the file containing thmi n class.
Using this class, it launches the AUT as an object. The
Java APljava.awt.Frame.getFrames§ used to identify all
visible GUI windows (ripper’s and those belonging to the
AUT). The ripper ignores the windows belonging to itself.
The remaining windows are the top-level windows of the
AUT.

Lines 3—4. A recursive search is initiated for each top-
level window of the AUT using two threads. These are
theContr ol | er andSpy threads. The&py thread ana-
lyzes individual GUI windows and their widgets. T@en-
trol I er thread monitors the ripping process and identi-
fies the window to be analyzed by tBpy thread.

Line 5-6. The Spy thread analyzes each window
of the AUT and at the end of the analysis disposes the
window. The analysis of the window involves extract-
ing its constituent widgets and their properties. For this
we used methodgetComponentsf classContainerand
java.awt.Frames.getJMenuBaxj classMenuBar These
methods are then used recursively to get all the widgets
(buttons, menu items) that belong to the window. From this
array a set of clickable/executable widgets are identified.

Missed
Windows

Manual
Effort (mins)

5

Rip Time
(Sec)
29
42
40
89
5
6
6

Ripped

Windows Size (KB)

Application

15.1
245
53.8
72.8
148
90
159

TerpCalc
TerpPaint
TerpWord
TerpSpreadSheet
WordPad
Notepad

| Yahoo Messenger

~foo|~N|o|~

BININ[EINV|W|O

=
o

Table 2. Time for Ripping the GUI of Windows
and Java applications

Once all the windows of the AUT are analyzed the Java
Ripper generates the GUI forest.

5 Empirical Evaluation

We now empirically demonstrate that the ripping pro-
cess isefficientin that it is fast and requires very little re-
sources and manual effort, apffectivein that it produces
GUI structures that are complete and very close to correct.
We also show ripping as part of the overall GUI testing pro-
cess and compare the time it takes relative to other phases of
GUI testing. We have used the extracted GUI structures for
automatically generating GUI testing information as pért o
our GUITAR and DART systems [15].

Ripped Structures: We evaluated the performance of
the GUI Rippers on several MS Windows and Java Swing
applications. We used Microsoft WordPad, Yahoo Messen-
ger, and NotePad on the MS Windows platform. Our Java
test suite is part of an open-source office suite developed at
the Department of Computer Science of the University of
Maryland by undergraduate students of the senior Software
Engineering course. It is called TerpOfficand consists
of six applications out of which we use four — TerpWord,
TerpCalc, TerpPaint and TerpSpreadSheet.

This is achieved by selecting the widgets that belongs to the

AbstractButtorclass family.

Lines 7-8.For analyzing all the windows that belong to
the AUT they need to be invoked. & i ck event is exe-
cuted on the executable widgets. This is done by triggering
thecl i ck event using the Java ARIbClick() of classAb-
stractButton For example, clicking the menu iteNew on
an application will launciNewwindow.

Lines 9-10. The new windows that are visible as
a result of event are detected using Java APl method
java.awt.Frame.getFrames(This method returns an array
of windows that are tracked by tt@nt r ol | er thread.
The GUI tree being traversed is updated with this informa-
tion.

Lines 11-12. With the help of theCont r ol | er and
Spy threads the analysis is recursively performed till all the
windows of the AUT are analyzed.

The first step of the ripping process, i.e., extracting the
GUI model from the GUI application, is fully automated.
It does not requiring any human interaction. Some GUI
windows may be missed by the ripper. The tester identifies
these windows to the ripper, which can now automatically
rip these missed windows.

Table 2 shows the results of ripping the applications. We
note that the time taken to rip Java applications is signifi-
cantly more than Windows applications, although the total
time in almost all cases is less than a minute. The time
taken to rip an application is directly proportional to the
number of windows it contains. This is because, opening
windows is a slow windowing process. For example, click-
ing theFile — Open causes a delay while the application
launches thé&ileOpendialog.

2http://www.cs.umd.edu/users/atif/ TerpOffice

o Rip | TestCase | Oracle oo il Faus information is generated as a result of running the target
Applicaion | Applcaton | Gefieration | Geperaion | (seq) | Detected software under a debugger. The event trace, represented as
TerpPaint 42 39 8975 344 2 scenario diagrams, is given as an input to a prototype tool
e dShest]89 5 Soiy 5 g SCED [11] that outputs state diagrams. The state diagrams
can be used to examine the overall behavior of a desired
Table 3. Time for Testing TerpOffice using class, object, or method. _
GUITAR. 1000 Test Cases. Several different types of representations have been used

to generate test information. Anderson and Fickas have
_) used preconditions/postconditions to represent softveare

Note that the ripper was able to detect a large fraction of 4irements and specifications [1, 7]. These representation
the total number of windows in all applications. Very few paye heen successfully used to generate test cases [24, 20].
windows were missed that had to be manually added later.gcheetz at al. have used a class diagram representation of
This process took several minutes. The size of the resultingihe system’s architecture to generate test cases using an Al
struc_:tures is s_hown. o _ _ planning system [25].

Aid to Testing GUI Applications: The GUI Ripper is There are various techniques used for testing GUIs
never used in isolation. We always use it as an importantjg 12]. One of our earlier techniques makes use of spec-
part of large testing tools. We nowldescribe twq such tools —jfications to generate test cases. In the PATHS [19, 16, 18]
GUITAR and DART. GUITAR [12] is a GUI testing frame- gystem we used an Al planner to generate test cases from
work that we have developed for automated GUI testing. Gy specifications. PATHS system uses a semi-automatic
DART [15] is a software that we use for repeated nightly annroach requiring substantial test designer particpati
testing of software that have a GUI. Our GUI ripping technique is different in that we focus

In both GUITAR and DART, a GUI tester extracts the o generating the specifications automatically thereby min
GUI structure of an application using the GUI Ripper, au- imizing test designers involvement.
tomatically generates test cases for the application based cpen et al. [4] develop a specification-based technique to
the extracted information, creates expected output (€Jacl est GUIs. Users graphically manipulate test specification

for the test cases, executes the test case on the applicatiofbpresented by finite state machines (FSM). They provide a
and determines if the tests ran successfully. Table 3 shows;is;,al environment for manipulating these FSMs.

the time taken to perform the entire process of ripping, gen- \ye have successfully used the GUI Ripper software in
erating 1000 test cases, generating oracle information anqarge GUI testing studies of our DART system [15]. The
replaying the test cases for three TerpOffice applications f Ripper was used to generate the GUI structure for sev-
one of our testing experiments. As can be seen from the ta 4 applications. Test cases aast oracle informatiogex-

ble, the ripping time is almost insignificant compared to the pected output) [17] were automatically generated from the
total time required for testing. As a side-note, the tabd®@al oy tracted information.

shows that we were able to successfully detect faults in the

three software. .
7 Conclusions and Future Work

We note that the GUI Ripper is our most valuable tool
in our software testing toolbox. If we did not have the GUI
Ripper, we would have spent significant effort in creating
the GUI model manually.

Automated testing of software that have a graphical user
interface (GUI) has become extremely important as GUIs
become increasingly complex and popular. A key step to
automatically test GUI software is test case generatian fro
a model of the software. Our experience with GUI testing
6 Related Work has shown that such models are very expensive to create

manually and software specifications are rarely available i

Moore [22] describes experiences with manual reversea form to derive these models automatically. We presented
engineering of legacy applications to build a model of the a new technique, called GUI ripping to obtain models of
user interface functionality. A technique to partially@ut the GUI's structure and execution behavior automatically.
mate this process is also outlined. The results show that aWe represented the GUI's structure a$sbl forest and
language-independent set of rules can be used to detect usdis execution behavior asvent-flow graphand anintegra-
interface components from legacy code. Developing suchtion tree We described the GUI ripping process, which is
rules is a nontrivial task, especially for the type of infeem applied to the executing software. The process opens all
tion that we need for software testing. the software’s windows automatically and extracts allrthei

Systa has used reverse engineering to study and analyzeriidgets, properties, and values. The execution model of
the run-time behavior of Java software [26]. Event trace the GUI was obtained by using a classification of the GUI's

events. Once the extracted information is verified by a test [14] A. M. Memon. Advances in GUI testing. lAdvances in

designer, it is used to automatically generate test cases. W

empirically showed that our approach requires very little
human intervention. We have implemented our algorithms [15]
in a tool called a “GUI Ripper” and have made it available
as a downloadable tool.

In the future, we will extend our implementation to han-
dle more MS Windows GUIs, Unix, and web applications.
We will also use the GUI ripper for performing usability
anlysis of GUIs. It will also be extended for measuring
specification conformanc of GUIs.

References

[1] J. S. AndersonAutomating Requirements Engineering Us-

(2]
(3]

ing Artificial Intelligence Technique$>h.D. thesis, Dept. of
Computer and Information Science, University of Oregon,
Dec. 1993.

I. Bashir and A. L. Goel Testing Object-Oriented Software,
Life Cycle SolutionsSpringer-Verlag, 1999.

B. Beizer. Black-Box Testing: Techniques for Functional
Testing of Software and Systendshn Wiley & Sons, 1999.

[4] J. Chen and S. Subramaniam. A GUI environment to ma-

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

nipulate fsms for testing GUI-based applications in java. |
Proceeding of the 34th Hawaii International Conferences on
System Science3an 2001.

T. Cormen, C. Leiserson, and R. Rivestiroduction to Al-
gorithms chapter 23.3, pages 477-485. Prentice-Hall of In-
dia Private Limited, September 2001.

M. B. Dwyer, V. Carr, and L. Hines. Model checking graph-

[16]

[17]

(18]

[19]

[20]

[21]

ical user interfaces using abstractions. In M. Jazayeri and [22]

H. Schauer, editorsEESEC/FSE '97 volume 1301 ofLec-
ture Notes in Computer Scienqeages 244-261. Springer /
ACM Press, 1997.

S. Fickas and J. S. Anderson. A proposed perspective shif
Viewing specification design as a planning problem. In
D. Partridge, editorArtificial Intelligence & Software En-
gineering pages 535-550. Ablex, Norwood, NJ, 1991.

H. Foster, T. Goradia, T. Ostrand, and W. Szermer. A \lisua
test development environment for GUI systems11ith In-
ternational Software Quality WeekEEE Press, 26-29 May
1998.

P. Gerrard. Testing GUI applications. EuroSTAR Nov
1997.

J. H. Hicinbothom and W. W. Zachary. A tool for automati-
cally generating transcripts of human-computer inteoacti

In Proceedings of the Human Factors and Ergonomics Soci-
ety 37th Annual Meetingolume 2 ofSPECIAL SESSIONS:
Demonstrationspage 1042, 1993.

K. Koskimies, T. Mnnist, T. Syst, and J. Tuomi. Autonate
support for modeling oo software. IEEE Softwarepages
87-94, Jan-Feb 1998.

A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces Ph.D. thesis, Department of
Computer Science, University of Pittsburgh, July 2001.

A. M. Memon. GUI testing: Pitfalls and procesdEEE
Computey 35(8):90-91, Aug. 2002.

(23]

[24]

[25]

[26]

[27]

Computers, ed. by Marvin V. Zelkowitzolume 57. Aca-
demic Press, 2003.

A. M. Memon, |. Banerjee, N. Hashmi, and A. Nagara-
jan. DART: A framework for regression testing nightly/dail
builds of GUI applications. IfProceedings of the Interna-
tional conference on software maintenance 2(®&ptember
2003.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a
goal-driven approach to generate test cases for GURdn
ceedings of the 21st International Conference on Software
Engineering pages 257-266. ACM Press, May 1999.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. IRroceedings of the ACM SIGSOFT
8th International Symposium on the Foundations of Software
Engineering (FSE-8)pages 30-39, NY, Nov. 8-10 2000.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Plan gen-
eration for GUI testing. IrfProceedings of The Fifth Inter-
national Conference on Atrtificial Intelligence Planningdan
Schedulingpages 226—-235. AAAI Press, Apr. 2000.

A. M. Memon, M. E. Pollack, and M. L. Soffa. A planning-
based approach to GUI testing. Pmoceedings of The 13th
International Software/Internet Quality Wedlay 2000.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical
GUI test case generation using automated planniidEE
Transactions on Software Engineerjr&y (2):144-155, Feb.
2001.

A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage
criteria for GUI testing. IrProceedings of the 8th European
Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE-Qages 256-267, Sept. 2001.
M. M. Moore. Rule-based detection for reverse engiimger
user interfaces. IfProceedings of the Third Working Con-
ference on Reverse Engineerjipgges 42—8, Monterey, CA,
8-10 Nov. 1996. IEEE.

R. M. Poston. Automating Specification-Based Software
Testing IEEE Computer Society, Los Alamitos, 1 edition,
1996.

M. Scheetz, A. V. Mayrhauser, E. Dahlman, and A. E. Howe.
Generating goal-oriented test cases.

M. Scheetz, A. V. Mayrhauser, R. France, E. Dahlman, and
A. E. Howe. Generating test cases from an oo model with
an ai planning system. IRroceedings in the Twenty-Third
Annual International Computer Software and Applications
ConferenceMarch 2000.

T. Systa. Dynamic reverse engineering of java software
Technical report, University of Tampere, Finland, Box 607,
33101 Tampere, Finland, 2001. http://www.fzi.de/Ecoep99
WS-Reengineering/papers/tarjan/ecoop.html.

A. Walworth. Java GUI testingDr. Dobb’s Journal of Soft-
ware Tools 22(2):30, 32, 34, Feb. 1997.

