
MobiGUITAR – A Tool for Automated
Model-Based Testing of Mobile Apps

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana
Department of Electrical Engineering and Information Technologies

University Federico II of Naples, Via Claudio 21, Naples, Italy
E-mails: {domenico.amalfitano, anna.fasolino, porfirio.tramontana}@unina.it

Bryan Dzung Ta, Atif M. Memon
Department of Computer Science

Univ. of Maryland, College Park, MD, USA
E-mails: {bryanta, atif}@cs.umd.edu

Abstract—As mobile devices become increasingly smarter and
more powerful, so too must the engineering of their software.
User-interface driven system testing of these devices is gaining
popularity, with each vendor releasing some automation tool(s).
We feel that these tools are inappropriate for amateur program-
mers, an increasing fraction of the app developer population.
We present MobiGUITAR for automated GUI-driven testing of
Android apps. MobiGUITAR is based on observation, extraction,
and abstraction of the run-time state of GUI widgets. The
abstraction is a scalable state-machine model that, together with
test coverage criteria, provides a way to automatically generate
test cases. We apply MobiGUITAR to 4 open-source Android apps,
automatically generate and execute 7,711 test cases, and report
10 new bugs. A number of bugs are “Android-specific,” stemming
from the event- and activity-driven nature of Android.

Keywords: Software testing, GUI testing, Android testing.

I. INTRODUCTION & CONTRIBUTIONS

Given all the recent attention to mobile platforms, there
is little doubt that mobile will be the dominant personal
computing and internetworking platform for the foreseeable
future. It is widely believed that mobile platforms are largely
adopted because of the apps they offer [1], [2]. The issue of
app quality has already started to become important [3].

We focus on the popular Android system and on software
testing, one of the most frequently used QA techniques, even
in the mobile app context. A relevant family of techniques
and tools for automated testing of mobile apps focus on their
GUI to find bugs. They were recently classified into Random
testing, Model-based testing, and Model-learning testing tech-
niques [4]. Random testing generates random sequences of UI
events to the app under test. It has the advantage of being
a black-box technique that does not require any knowledge
of the app under test and can be easily implemented. As
an example, Monkey [5] and Dynodroid [6] are two tools
available for random testing of mobile apps. Model-based
techniques require a model of the app under test to generate
inputs. TEMA is a suite of tools proposed for model-based
testing of Android apps [7]. Model-learning testing techniques
test the application while they infer a model of the app under
test [4], [8]. To cope with the well-known model explosion
problem, they implement strategies to bound the input set,
which in turn may limit the coverage and fault detection
capability of the testing technique.

In past work, we already showed the feasibility of using a

model-learning technique for testing Android mobile apps [8].
In our previous work on conventional desktop applications [9],
we developed an automated model-based testing technique
based on reverse engineering that generates test cases to
execute directly on the software’s GUI.

We now develop a test generation technique based on a
reverse-engineered mobile app model. Our original model—
event-flow graph (EFG) [10]—was "stateless". This was a
deliberate design decision to avoid the state-space explosion
problem. Having a stateless model is no longer an option be-
cause mobile apps are extremely state sensitive, i.e., consider
the state-based life-cycle of the Android "Activity" classes,
which form the basis for Android app’s GUI. Moreover, we
can no longer use the original test adequacy criteria based on
the EFG. We need new ones that are state sensitive. Third,
our test-case generators, also based on EFGs, are unusable;
we need new ones that operate on state machines. Finally, in
prior work, we never needed to handle security when testing
desktop applications; we simply executed the test harness and
application as the same user. Because most mobile platforms
have enhanced security (e.g., each Android app by default
executes in its own sandbox), we need novel techniques for
our reverse engineering harness.

To overcome these challenges, our current work makes
several new intellectual contributions. We now model the state
of the app’s GUI; this helps us to more accurately model the
state-sensitive behavior of mobile apps. This approach is co-
herent with other similar ones already proposed in the context
of desktop Java apps [11] and Web applications [12], [13].
We define new test adequacy criteria that are based on state
machines. We have a new test generation technique that uses
the models and criteria to generate test cases automatically.
Finally, we provide fully automatic testing by working with
the security policies of mobile platforms.

We realize all our contributions as a conceptual framework
called MobiGUITAR for automated mobile app testing. We
have implemented MobiGUITAR in a tool chain that executes
on Android. Our first tool in the chain is an enhanced version
of AndroidRipper [8] that automatically reverse engineers the
state-machine model from the executing app. Our other tools
create abstractions of the machine, generate test cases, and
replay the test cases.

Digital Object Indentifier 10.1109/MS.2014.55 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

II. OVERVIEW OF MobiGUITAR

We now present an overview of MobiGUITAR, focusing on
the process it employs to perform fully automatic testing of
AardDict, an app from our evaluation study subjects (Sec-
tion III). MobiGUITAR is based on three primary steps: (1)
Ripping that dynamically traverses an app’s GUI and creates
its state-machine model, (2) Generation that uses the model
and test adequacy criteria to obtain tests that are sequences of
events, and (3) Execution that replays the tests.

Ripping: This step obtains a state-machine model of the
app’s GUI to be used for test generation. Because one of
our original goals is full automation, we create the model
via an automated reverse engineering technique called GUI
Ripping that has roots in our previous reported work on GUI
testing [9]. The difference between our previous and current
work is that we now obtain a state-machine model of the GUI
instead of an event-flow graph, and that we use algorithms
better suited for mobile platforms; our previous work was for
desktop applications.

Our ripper starts by launching the app in a given start state,
obtaining a list of events that can be performed on the GUI
in this state, and adding this list, each as a separate task, to
a “task list,” which it uses to fire events. An element in the
task list is removed and fired. New states are encountered and
the GUI’s focus changes as the events are fired. Whenever the
current state changes, the list of new fireable events is obtained
and appended to the task list in such a way that the path from
the start state is prepended to each event. Hence, formally, a
task is a sequence of events that always begins with an event
fireable in the start state.

This process of using a task list essentially realizes a
"breadth-first" traversal of the app’s GUI. During this process,
a tree of GUI states may be maintained. In practice, the number
of encountered states may be extremely large, making the GUI
tree and traversal inefficient. For the purpose of test generation,
several GUI states may be viewed as "equivalent" using a given
criterion and merged. In practice, this turns the GUI tree into
a directed graph model as the same state may be encountered
in multiple ways by the Ripper. The Ripper determines the
equivalence between encountered GUI states on the basis of
the properties of their constitutive objects. Equivalent states
comprise of equivalent objects having the same values of their
ids and type properties.

Application of the ripper algorithm to AardDict yields the
state machine of Figure 1. The state and event IDs have
been compacted because of space. The diagram of the state
machine demonstrates several points. First, we see that the user
interaction space is quite flexible in that there are many paths
and loops in this machine. For instance, the user can perform
many event sequences switching between states a5, a45, a58,
a46, and a61; the user can then go back to the start state and
navigate to a3, a17, a53, and a2; and still go back to the start
state; and so on. This flexibility creates a ripe situation for
failures that result from specific event sequences. Second, we
show a special shape, namely exit; this is not a GUI state;

START STATE

a2

e1

a3

e2

e3

a5

e4

e5
e6

EXIT

e7

e8

e9

e10

e11
e12

e13

e14

e15

a17

e16

e17

e18

e19

e20

e21

e22

e23

e24

e25

e26

e27

e28

e29

e30

e31

e32

e33

e34

e35

e36

e37

e38

e39

e40

e41

e42
e43

a45

e44

a46

e45

e46

e47

e48
e49

e50

e51

a53

e52e53
e54

a56

e55

e56

a58

e57

e58

e59

a61

e60

e61
e62

e63

e64

e65
e66
e67

e68

e69

e70

e71

e72

e73

e74
e75

e76
e77
e78
e79

e80

e81
e82
e83

e84

e85

e86
e87

e88

e89

e90

e91

e92
e93

Fig. 1. The abstract state machine for AardDict.

rather, it is meant to show that the app was terminated, via
events e7, e8, e40, e68, or e88.

Generation: This step obtains test cases, each modeled as
a sequence of GUI events. As can be imagined, the number
of all possible event sequences that may be executed on any
non-trivial app’s GUI is extremely large (in principle infinite
because of loops). The test generation strategy needs to sample
from this space. Our state machine allows just that. We develop
a pair-wise edge coverage criterion. Conceptually, this means
that all pairs of adjacent edges (events) need to be exercised
together. To this end, we create pairs of all edges in our state
machine that are adjacent to a node. And for each pair, we
generate a test case that is a path in the state machine from
the start state to the pair being covered. For example, a2 has
4 incoming edges (e1, e11, e12, e13) and 6 outgoing edges

Digital Object Indentifier 10.1109/MS.2014.55 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

(e7, e8, e9, e10, e11, e12); this creates 4×6=24 pairs that
need to be covered. The test case 〈e1, e11, e8〉 covers 2 of
these pairs, namely (e1, e11) and (e11, e8). In the case of the
Aardict app, we generated 678 test cases, with a total of 2,747
fireable events.

Execution: Our current implementation of the test generator
outputs test cases in JUnit format. Such test cases are able to
detect crashes in the app during its execution. A tester may
enhance a test case by adding JUnit-like assert statements to
check for functional errors.

For our Aardict app, 674 of the 678 test cases executed
without any problems and covered 70% of the code. Of the
678 test cases, 4 detected a bug that led to an unhandled
IllegalArgumentException.

III. DEMONSTRATION OF MobiGUITAR

We now select 4 study subjects from Google Play
(https://play.google.com/store/apps): Aard Dictionary 1.4.1
(https://github.com/aarddict/android) - a dictionary and offline
Wikipedia reader, Tomdroid Notes 0.5.0 (https://launchpad.
net/tomdroid) - a note-taking app, BookCatalogue 3.8.1 (https:
//github.com/eleybourn/Book-Catalogue/wiki) - a book cat-
aloging app, and Wordpress Revision #394 of the alpha
version for Android (http://android.svn.wordpress.org) - an
interactive client for creating, updating, and managing blogs
saved on a Wordpress server. All the subjects are open source
projects developed and maintained by active communities of
programmers. For brevity, we call these applications AardDict,
Tomdroid, BookCat, and Wordpress.

We want to show the bug detection capability of our tool-
chain. To this aim we automatically executed MobiGUITAR
on all subject applications; in all, we generated and executed
7,711 test cases. Several of these test cases revealed bugs; in
all, we detected 10 bugs. The test cases obtained from the
model were able to find all the seven bugs already detected
during the Ripping step, besides three new ones.

Table I provides more details about these bugs. For “Bug
Class,” we use a part of an existing Android bug classification
[14] that distinguishes between Concurrency (C) (interaction
of multiple processes or threads), Activity (A) (incorrect
management of the Activity lifecycle), and Other (O) (in-
correct application logic implementation) bugs. We show the
exception that was thrown and the ticket number that we
opened to report the bug.

Some bugs showed us that Android applications may have
incorrect behaviors due to a wrong management of the life-
cycle of their Activities. Activity components are responsible
for presenting a visual user interface for each focused task
the user can undertake. In its lifecycle, an Activity instance
passes through three main states, namely running, paused
and stopped. When it transits into and out of the different
states described above, it is notified through various callback
methods (like onPause, onResume, onStop,. . . , onDestroy) that
are hooks the programmer can override to do appropriate work
when the state of the Activity changes. If the programmer

fails to override or incorrectly overrides any of these methods,
the app may show a wrong behavior. As an example, testing
AarDict by MobiGUITAR we found BUG 1 resulting in the
incorrect redefinition of the onPause() method of an Activity.
This bug produced five crashes during the execution of the
MobiGUITAR test cases, due to an unhandled IllegalArgu-
mentException.

One sequence of events that caused the exception was
(e4: open the Dictionary Menu pressing on the menu button
of the device, e44: click on a MenuItem, e57: select a
dictionary item from the list by a Long Click, e88: rotate
the device). In this sequence, after opening the menu (e4),
clicking on the MenuItem “Dictionaries” (e44), and selecting
a dictionary item from the list by a Long Click (e57), the
handler onItemLongClick of the event e57 launched a thread
to download a dictionary file from the SD card of the device
and instantiated a ProgressDialog onto the running activity to
show the download progress. When the device rotation event
e88 was fired, the running activity was first destroyed and then
restarted with the updated configuration layout. Unfortunately,
the programmer did not correctly override the onPause()
callback of the DictionaryActivity to save all resources shown
by the running activity, including the references to the working
thread and its ProgressDialog. Hence, when the dictionary
download ended and the verified() method tried to dismiss the
ProgressDialog, we had the crash of the app by an unhanlded
IllegalArgumentException, because the progressDialog was no
more attached to the window manager.

This bug showed us that testing the application by system
events like the orientation change can be useful to reveal this
type of problem that is very frequent in Android applications.

BUG 2 was found thanks to a sequence of events ending
with the input of a wrong URI into an editText view. This
event resulted in a java.lang.IllegalArgumentException that
was essentially due to the lack of input validation in a method
of the app. At the moment, MobiGUITAR uses no automatic
strategy to define the input values at runtime, but the tester
can preliminarily configure the ripper to use a whitelist of
specific input values. This bug showed us the necessity of
investigating effective techniques for input values definition,
such as the ones based on symbolic execution [15].

We found some bugs due to incorrect code reuse such as
BUG 3 and BUG 9. When programmers reuse existing code in
different contexts, it is possible that they omit to test the same
code in the new scenarios, making the wrong assumption that
the reused code will behave as well as in the original context.
MobiGUITAR allowed these bugs to be discovered because it is
able to test the apps in different execution scenarios, launching
them from different preconditions.

Our tool chain was able to detect three concurrency bugs
that are typical of multi-thread software systems like Android
applications. We found them by configuring the tool to send
events to the apps rapidly i.e., with a short delay between
consecutive events.

Moreover, MobiGUITAR was also able to discover another
bug that depends on programming mechanisms that are not

Digital Object Indentifier 10.1109/MS.2014.55 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

TABLE I
BUGS DETECTED BY MobiGUITAR AND THE RESULTING FAILURES

Bug ID Subject app Bug Class Java Exception Ticket
1 AardDict A IllegalArgumentException: View not attached to window manager https://github.com/aarddict/android/issues/44
2 Tomdroid O IllegalArgumentException: Illegal character in schemeSpecificPart https://bugs.launchpad.net/tomdroid/+bug/902855
3 BookCat O CursorIndexOutOfBoundException https://github.com/eleybourn/Book-Catalogue/issues/326
4 BookCat O NullPointerException https://github.com/eleybourn/Book-Catalogue/issues/305
5 Wordpress O StringIndexOutOfBoundException https://android.trac.wordpress.org/ticket/206
6 Wordpress C BadTokenException https://android.trac.wordpress.org/ticket/208
7 Wordpress C NullPointerException https://android.trac.wordpress.org/ticket/212
8 Wordpress C ActivityNotFoundException https://android.trac.wordpress.org/ticket/209
9 Wordpress O CursorIndexOutOfBoundException https://android.trac.wordpress.org/ticket/207
10 Wordpress O NullPointerException https://android.trac.wordpress.org/ticket/218

traditional, but typical of Android applications, like the mecha-
nism of the explicit Intents to launch new activities at runtime.

IV. MOBIGUITAR VS. EXISTING TOOLS

We now compare MobiGUITAR to two tools available for
Android testing: Monkey[5] and Dynodroid[6]. We selected
Monkey, a random testing tool that comes with the Android
Development Toolkit, because of its popularity in the Android
developers community. Dynodroid was chosen because of the
variety of event-based testing techniques it implements. Like
MobiGUITAR both tools test the app by sending it sequences
of events. We abstracted a number of tool features that are
relevant in event-based testing, such as: the types of events
that are fired, the technique used to select the events (e.g.,
type of implemented testing technique), the possibility of
sending events with specific input values, of setting the app
pre-conditions or the time interval between events, and the
types of testing artifacts produced by each tool.

Table II reports the considered features and how they are
implemented by each tool. We see that the tools considerably
differ as to the type of testing artifacts they produce and the
tool configurability features. MobiGUITAR indeed generates
several testing output (such as Crash Report, FSM Model,
GUI Sequences, executable JUnit test cases, etc.) that provide
useful information for the debugging step. Monkey and Dyn-
odroid, instead, do not return any testing artifact else besides
the Android LogCat file, so their support to debugging is
limited. As to the configurability of the tools, MobiGUITAR
is the only tool that allows a tester to choose a whitelist of
input values to be assigned with input widgets, and likewise
Monkey offers the possibility of choosing the event delay and
of putting the app in some specific initial states. Dynodroid
instead does not provide these features and tests the app always
from the initial state of app just installed on the device.

We configured Monkey and Dynodroid to test the same
four apps we tested by MobiGUITAR by the same number of
events that were fired by our tool. We analyzed the exceptions
arisen by the tools and the apps’ lines of code causing them.
We matched them against the ones found by MobiGUITAR
and that were associated with bugs. Unfortunately, we were
not able to debug all the other exceptions because of poor
debugging support provided by Monkey and Dynodroid. The
evaluation results are reported in Table III. Both tools were
able to find only three of the ten exceptions; they did not find

any additional bugs. The IllegalArgumentException caused by
BUG 1 was not raised by DynoDroid because it is not able
to rotate the device. Monkey did not detect this exception
due to the randomness of its sent events. Both Monkey and
DynoDroid did not find the crash related to BUG 2 since
it is caused by specific values entered in a given EditText
of the GUI. The unhandled exceptions concerning BUG 3
and BUG 9 were not identified by DynoDroid since they are
related to particular preconditions of the application under
test. Though Monkey allows to test an app by starting from a
predefined initial state, it detected by chance just one of these.
The crashes related to BUG 6, BUG 7 and BUG 8 were not
discovered by DynoDroid since they depend on specific time
delay between events. Although Monkey permits to configure
such delays, it came across only one of the three exceptions.
The NullPointerExceptions corresponding to BUG 4 and BUG
10 were not detected by Monkey.

TABLE III
UNHANDLED EXCEPTIONS FOUND BY MONKEY AND DYNODROID

Bug ID Monkey DynoDroid

1 No No
2 No No
3 Yes No
4 No Yes
5 Yes Yes
6 No No
7 Yes No
8 No No
9 No No
10 No Yes

V. CONCLUSIONS

This paper presented a new fully automatic technique to
test GUI-based Android apps. The technique is based on
the observation, extraction, and abstraction of the run-time
state of GUI widgets. The abstraction is used to create a
scalable state-machine model that, together with event-based
test coverage criteria, provide a way to automatically generate
test cases. The technique was demonstrated via an empirical
study on 4 open-source software applications. The results
showed that the test cases generated were useful at detecting
serious and relevant bugs in the apps. Moreover, this study
showed that the combination of model-learning with model-
based testing techniques is a promising approach for achieving
a better fault detection capability in Android app testing.

Digital Object Indentifier 10.1109/MS.2014.55 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

TABLE II
TOOLS FEATURES COMPARISON

Tools

Features MobiGUITAR DynoDroid Monkey

Types of
Fired Events User Events User and System Events User and System Events

Implemented
Testing Technique

Model Learning &
Model Based

Model Learning &
Random Random

Input Value
Definition Yes No No

Time Delay
Between Events

Setting
Yes No Yes

Preconditions
Settings Yes No Yes

Produced
Artifacts

Crash Report
Code Coverage Emma Report
Executable JUnit Test Cases

GUI Sequences
Finite State Machine Model

Events Sequences Causing Crashes

LogCat Report
Code Coverage Emma Report LogCat Report

Because we are committed to the widest possible dissemi-
nation of our tool, we have made MobiGUITAR available at
http://wpage.unina.it/ptramont/GUIRipperWiki.htm.

REFERENCES

[1] I. Popa, “What problems the next blackberry playbook has to solve
in order to be successful,” http://www.bbgeeks.com/blackberry-tablet/
what-problems-the-next-blackberry-playbook-has-to-solve-in-order-to-\
be-successful-888069, 2012.

[2] M. Andrici, “Windows phone: 70k available apps, but are they
enough to take on android, ios?” http://www.androidauthority.com/
windows-phone-7-apps-67900, 2012.

[3] M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, and Z. Wang,
“Context-aware adaptive applications: Fault patterns and their automated
identification,” IEEE TSE, vol. 36, pp. 644–661, 2010.

[4] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA
’13. New York, NY, USA: ACM, 2013, pp. 623–640. [Online].
Available: http://doi.acm.org/10.1145/2509136.2509552

[5] “Monkey,” http://developer.android.com/tools/help/monkey.html.
[6] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input

generation system for android apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 224–234. [Online].
Available: http://doi.acm.org/10.1145/2491411.2491450

[7] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-
based gui testing of an android application,” in Software Testing,
Verification and Validation (ICST), 2011 IEEE Fourth International
Conference on, 2011, pp. 377–386.

[8] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[9] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: reverse engi-
neering of graphical user interfaces for testing,” in Reverse Engineering,
2003. WCRE 2003. Proceedings. 10th Working Conference on, Nov
2003, pp. 260–269.

[10] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for gui
testing,” SIGSOFT Softw. Eng. Notes, vol. 26, no. 5, pp. 256–267, Sep.
2001. [Online]. Available: http://doi.acm.org/10.1145/503271.503244

[11] F. Gross, G. Fraser, and A. Zeller, “Search-based system testing: High
coverage, no false alarms,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ser. ISSTA 2012.

New York, NY, USA: ACM, 2012, pp. 67–77. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336762

[12] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based
web applications through dynamic analysis of user interface state
changes,” ACM Trans. Web, vol. 6, no. 1, pp. 3:1–3:30, Mar. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2109205.2109208

[13] D. Amalfitano, A. Fasolino, and P. Tramontana, “Reverse engineering
finite state machines from rich internet applications,” in Reverse Engi-
neering, 2008. WCRE ’08. 15th Working Conference on, Oct 2008, pp.
69–73.

[14] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”
in Proceedings of the 6th International Workshop on Automation of
Software Test, ser. AST ’11. New York, NY, USA: ACM, 2011, pp. 77–
83. [Online]. Available: http://doi.acm.org/10.1145/1982595.1982612

[15] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 59:1–59:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393666

Domenico Amalfitano is a postdoctoral researcher at the
University of Naples Federico II. His research interests con-
cern the topics of Software Engineering, mainly including the
reverse engineering, comprehension, migration, testing and
testing automation of Event Driven Software Systems, mostly
in the fields of Web Applications, Mobile Applications and
GUIs. He received the Laurea degree in Computer Engi-
neering and the Ph.D. degree in Computer Engineering and
Automation in 2011 by the University of Naples Federico II.
Contact him at domenico.amalfitano@unina.it

Anna Rita Fasolino is an Associate Professor of Computer
Science at the University of Naples Federico II (Italy). Her
research interests are in software engineering, maintenance,
reverse engineering, Web engineering, and software testing.
She received the Laurea degree in Electronic Engineering in
1992 and a Ph.D. in Electronic and Computer Engineering in
1996 by the University of Naples Federico II. Contact her at
anna.fasolino@unina.it

Porfirio Tramontana is currently an assistant professor
at the University of Naples Federico II. He graduated in
Computer engineering in 2001 and had a Ph.D. degree in 2005

Digital Object Indentifier 10.1109/MS.2014.55 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

at the same university. His research is focused on Software
Engineering applied to Mobile and Web applications. His
research fields include reverse engineering, testing, mainte-
nance, comprehension, migration of legacy systems, software
quality. He is in the program committee of several conferences
and workshops related to its research interests. Contact him
at ptramont@unina.it

Bryan Ta is a fourth year Ph.D. student at the Department
of Computer Science, University of Maryland. He received his
M.S. degree in Computer Science from University of Maryland
in 2013 and his B.Eng. degree in Computer Science from
Hanoi University of Technology, Vietnam in 2009. His research
interest includes empirical software engineering, software test-
ing, program analysis and security with a focus on GUI-base
and mobile applications. Outside of work, he likes traveling
and soccer. Contact him at bryanta@cs.umd.edu

Atif M Memon is an Associate Professor at the Department
of Computer Science, University of Maryland. His research
interests include program testing, software engineering, arti-
ficial intelligence, plan generation, reverse engineering, and
program structures. He has served on numerous National
Science Foundation panels and program committees, including
the International Conference on Software Engineering (ICSE),
International Symposium on the Foundations of Software En-
gineering (FSE), International Conference on Software Testing
Verification and Validation (ICST), Web Engineering Track
of The International World Wide Web Conference (WWW),
the Working Conference on Reverse Engineering (WCRE),
International Conference on Automated Software Engineering
(ASE), and the International Conference on Software Main-
tenance (ICSM). Contact him at atif@cs.umd.edu

Digital Object Indentifier 10.1109/MS.2014.55 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

