
ASPIRE: Automated Systematic Protocol Implementation
Robustness Evaluation

Arunchandar Vasan, Atif M. Memon
Department of Computer Science

University of Maryland
College Park, MD 20742

Email: �arun, atif�@cs.umd.edu

Abstract

Network protocol implementations are susceptible to
problems caused by their lack of ability to handle invalid
inputs. We present ASPIRE: Automated Systematic Proto-
col Implementation Robustness Evaluation, an automated
approach to pro-actively test protocol implementations by
observing their responses to faulty Protocol Data Units
(PDUs) or messages. In contrast to existing approaches,
we sample the faulty PDU space in a systematic manner,
thus allowing us to evaluate protocol implementations in the
face of a wider variety of faulty PDUs. We use a pruning
strategy to reduce, from exponential, the size of the faulty
PDU set to polynomial in the number of fields of a PDU.
We have implemented the ASPIRE algorithms and evalu-
ated them on implementations of HTTP (Apache, Google
Web Server (GWS), and Microsoft IIS) and SMTP (Sendmail
and Microsoft Exchange) protocols. Our results show that
Apache, GWS, and IIS, although implementing the same
protocol specification, behave differently on faulty HTTP
PDUs; Sendmail and Exchange are different in handling
our faulty SMTP PDUs.

Keywords: automated testing, robustness testing,
faulty PDUs, protocol data units, stateless protocols, state-
ful protocols.

0 Prologue

RedHat Alert. Sep. 30 2003: RedHat1 reports two bugs
in OpenSSL, a popular security protocol implementation,
versions 0.9.6 and 0.9.7. The parsing of unusual ASN.1 tag
values can cause an OpenSSL server to crash. A client can
send a certificate with faults in its fields to trigger this bug.
The crash can potentially be exploited to launch attacks that
may result in controlling the machine remotely.

1https://rhn.redhat.com/errata/RHSA-2003-292.html

Microsoft Alert. Oct. 15, 2003: Microsoft2 reports a vul-
nerability in the protocol used for its messenger service. A
specific faulty packet could let an attacker gain control of
the system with privileges of the user of the messenger ser-
vice.

Many problems, similar to the ones outlined above [21]
surface frequently in specific protocol implementations.
They are usually caused by faulty input, the handling of
which is usually left unspecified by the protocol specifica-
tion. This paper describes techniques to test protocol imple-
mentations on such faulty input in an automated manner.

1 Introduction

A protocol is an a priori understanding between two or
more hosts (i.e., machines on a network) to communicate
by exchanging messages over a network. The messages ex-
changed are called Protocol Data Units (PDUs) [32, 36]. A
protocol specification defines the syntax, semantics, and al-
lowed sequences of PDUs. A protocol implementation is a
set of programs that execute on different hosts achieving the
message exchange sequence allowed by the protocol speci-
fication.

With the advent and evolution of the Internet, a number
of protocols have been specified and implemented. A pop-
ular example is the Hyper Text Transfer Protocol (HTTP)
[13] protocol usually used to download content from a web-
site. A client sends a PDU with a GET message that causes
the server to send a file back. Implementations of the HTTP
protocol include Apache [1], Google Web Server (GWS)
[3], and Microsoft Internet Information Services (IIS) [6].

“Be conservative in what you send, and liberal in what
you accept from others” [33]. This design philosophy
causes implementations to have different approaches to

2http://www.microsoft.com/technet/treeview/default.asp?url=/
technet/security/bulletin/ms03-043.asp

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

dealing with faulty PDUs. Protocol specifications are typi-
cally written in natural language (e.g., English) and often
incomplete, especially so, in handling faulty inputs, and
many decisions are left to the implementor [23]. As a re-
sult, protocol implementations behave differently on faulty
inputs, depending on the design decisions made by the im-
plementer.

Many issues in server availability, performance, or even
security of a host, come to light as a result of a hacker figur-
ing out that an implementation does not handle some faulty
PDU gracefully. Typically, these defects are then fixed by
the manufacturer or the open-source community after the
break-in has been reported [21].

We advocate pro-active automated testing of protocol
implementations on faulty input before deployment on the
Internet. This gives greater confidence in the ability of net-
worked systems to survive in the face of malformed input.
In this paper, we develop a new technique for automated
testing of protocol implementation robustness. The IEEE
defines robustness as “the degree to which a system or com-
ponent can function correctly in the presence of invalid in-
puts or stressful environmental conditions” [9]. We define
protocol implementation robustness3 as the ability of an
implementation to handle exceptional input in the form of
faulty PDUs and continue normal protocol operation. An
example of abnormal operation would be the premature ter-
mination of the process that implements the protocol.

The main challenge in automated robustness testing of
protocols is the systematic generation of faulty PDUs. An
enumeration of all possible faults is exponential in the num-
ber of fields of the PDUs (explained in Section 5). Exist-
ing approaches to robustness testing typically assume fault
models [17], generate faulty PDUs in an ad-hoc manner,
sample all-possible faulty PDUs pseudo-randomly [18], or
deal with testing the protocol itself with sequences with
fault causing network conditions (e.g., loss of data pack-
ets) in a simulation [20] rather than test an implementation
with faulty PDUs. We need a method to prune the number
of possible faulty PDUs without losing the possible robust-
ness issues revealed by the test cases.

We present a novel approach to automatically test pro-
tocol implementations for robustness by generating faulty
PDUs in a systematic manner. While our approach is
generic enough to be applied to all protocols, we focus on
application layer protocols (most protocols which a human
user would encounter, e.g., HTTP, Simple Mail Transfer
Protocol (SMTP) [24], Domain Name Service (DNS) [31])
as they typically handle human user level input that can be
faulty (as opposed to low-level protocols that get “cleaned”
input from higher layer protocols). We classify application
layer protocols as stateless or stateful. We generate faulty

3In the rest of this paper, we use robustness and implementation robust-
ness interchangeably.

PDUs depending on the protocol’s classification. For state-
less protocols, we generate syntactically faulty PDUs. As a
typical PDU could have many possible syntactic faults (due
to many combinations of individual faults in the fields of the
PDU) an enumeration would cause an exponential growth
in the number of possible syntactically faulty PDUs. We
adapt the pairwise testing strategy outlined in [35] to prune
this growth. For stateful protocols, we use a simple combi-
natorial enumeration to generate semantically faulty PDUs,
where the syntax of the PDU is correct, but the semantics
are incorrect, i.e., the protocol does not expect the PDU in
that state. Intuitively, we sample the set of all possible faulty
PDUs for a protocol systematically and use this sampled set
as input for protocol implementations to evaluate their ro-
bustness.

We have implemented our technique and empirically
evaluated it by creating suites of faulty PDUs for HTTP 1.0,
a stateless protocol, and SMTP, a stateful protocol. We are
able to reduce the number of faulty PDUs without compro-
mising the evaluation of robustness of an implementation.
Our experiments reveal that different implementations of
the same protocol (Apache, Google Web Server, Microsoft
IIS for HTTP and Sendmail and Microsoft Exchange for
SMTP), in fact, behave differently in the face of faulty PDU
inputs.

The specific contributions of our work include:
� We propose a taxonomy of application layer protocols

on the basis of state information maintained during the
protocol execution. We use this taxonomy to design
test cases for testing robustness of protocol implemen-
tations.

� We show how to compose simple faults in different
parts of a PDU to generate faulty PDUs by adapting the
pairwise testing strategy described in [35] to robust-
ness testing. Specifically, we generate a set of faulty
PDUs such that any pair of faults is present in at least
one PDU in this set.

� We show that the reduction in the number of syntac-
tically faulty PDUs to be used for testing by our al-
gorithm does not reduce the capacity to evaluate the
robustness of an implementation.

� Finally, we use our algorithm to generate faulty PDUs
as test cases for practical protocols, namely HTTP and
SMTP, and experimentally evaluate the differences in
robustness of different implementations.

In the next section, we discuss related work. In Section
3, we formally define PDUs. We present our taxonomy of
application-layer protocols in Section 4. In Section 5, we
elaborate on syntactic and semantic faults in PDUs and de-
scribe algorithms to systematically generate faulty PDUs.
We describe our implementation and empirical evaluation
of ASPIRE for HTTP and SMTP in Section 6, and conclude
with a discussion of future work in Section 7.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

2 Related Work

Fault injection, i.e., using faulty inputs in test cases, is
a well known approach in software testing [37]. Existing
work in fault injection for testing protocol implementations
needs significant human input in determining failure models
and test cases. In [17], the design of a script-driven inter-
face for protocol fault injection is described. The script and
failure specification are left to the tester. In [22], anoma-
lies are inserted into the protocol specification itself, and
used to generate test cases. However, it does not address
how many anomalies can exist within one PDU, or how one
can systematically generate a number of anomalous PDUs.
In [18], fault generation in protocol inputs is chosen in a
pseudo-random sampling of the possible exponential num-
ber of faulty PDUs.

Studies [20] and [12] address testing protocol robustness,
i.e., check if a protocol can handle test sequences with bad
network conditions. Note, however, that this is quite differ-
ent from protocol implementation robustness, i.e., testing
implementations with invalid input.

Another related technique is formal protocol testing,
which is a well studied problem [34, 25]. In formal con-
formance testing, the entity executing the protocol is speci-
fied using FSMs [19] (Finite State Machine) or a description
language such as ESTELLE, LOTOS [14], PROMELA, or
SDL [15] which can generate automata on the fly from a
specification in the language. The implementation is also
represented as an FSM. The problem is now reduced to see-
ing if the specification and the implementation generate the
same output sequence given some input sequence. The key
ideas lie in generating input sequences, which, when exe-
cuted on both, are good enough to say that the implemen-
tation conforms to the specification [30]. Other formal ap-
proaches [10, 11] view protocol testing as a case of testing
concurrent distributed systems. While formal approaches to
testing can be applied to test protocol implementation cor-
rectness, they do not deal with the robustness of an imple-
mentation.

3 PDUs & Protocol Specifications

Intuitively, a PDU consists of data and control informa-
tion which tell the protocol how to operate on that PDU.

Definition: A PDU � is an �-tuple given by �

��� � � � � �� � where each �� consists of one more bits.
The ��s are the control or data fields of a PDU. The
number of fields � varies with PDU even within the
same protocol. Control fields typically precede the
data fields although they can be intermingled within
a PDU. �

For example, a HTTP request PDU �� is as follows:

GET�url�HTTP/version������ � � �������

A HTTP response PDU �� is of the form:

HTTP/1.0�200�OK������ � � ������	
	����

The symbol � denotes a space, �� is the newline character,
and �� denotes a header. The GET and the headers are
control fields and the url is a data field.

Definition: A protocol specification � is a set of se-
quences ��s, � � ������ � �� ���
�� �� �� � � � �

���
�� �� ��� where each triple � ���
�� �� � repre-
sents an action �� executed on the PDU �� by the host

�. The action �� is either a send or a receive of PDU
��. �

For the example HTTP PDUs shown, an acceptable se-
quence of execution is �� ��� 	� � ��� ��� �� � ���

��� �� � ��� ��� 	� � �� where A and B are the communi-
cating hosts, r denotes a receive action, and s denotes a send
action. In the case of �� the only data field is the ���; ev-
erything else is a control field. In ��, the data field appears
at the end of the PDU.

4 A Taxonomy of Application Layer Proto-
cols

We use the state information about a client (an entity that
imports a resource from a network location), maintained by
the server (an entity that exports, i.e., makes available a re-
source at a particular location on the network; e.g., a web
server), (or peer4) in a protocol to classify the application
protocol as being stateless or stateful. By state information
about a client, we mean the record of the transaction with
the client. For instance, in HTTP/1.0, no such information is
maintained about a client. Whereas, in SMTP, a mail server
has to keep track of the sequence of commands issued so far
by the client.

We now present a taxonomy of application layer proto-
cols. The taxonomy specifies the type of faulty PDUs an ap-
plication layer protocol might encounter. A scheme based
on the classification is used for faulty PDU generation.
Stateless Protocols: When a server does not maintain any
state of a transaction, we term it stateless. HTTP 1.05 is an
example of a stateless protocol. Web browsers and servers
implement this protocol. In HTTP 1.0, the server responds
to the client when it gets a request with the appropriate file

4Peers act as both servers as well as clients in peer-to-peer networks,
e.g., in gnutella [2], morpheus [7], kazaa[4], etc.

5Web servers typically use cookies to maintain state in an HTTP ses-
sion. These are not part of the basic protocol.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

or error message, closes the connection without maintain-
ing any state information of the client. Note that this speci-
fication allows only sequences of length two, i.e., a request
followed by a response.
Stateful Protocols: In these protocols, the server maintains
state about the client until the entire transaction is over,
is aborted, or times out. An example is SMTP, in which
a server expects a PDU (e.g., DATA) only after another
(e.g., RCPT), thereby maintaining state information about
the client.

Note that the state is independent of whether the un-
derlying protocols (such as TCP), which the application
level protocol uses, are stateless or stateful. Specifically,
although an HTTP server uses TCP, a protocol with states,
we classify HTTP as stateless. This is because HTTP server
does not keep track of the HTTP client, although its TCP
layer tracks the TCP layer of the client.

5 Faults in PDUs

Intuitively, a PDU is faulty if either its syntax is incorrect
or its position in a PDU sequence is incorrect. We call the
former syntactically faulty PDUs and the latter semantically
faulty PDUs. Note that, in general faults of both kinds are
also possible in the same PDU.

Definition: A PDU � �� ��� ��� � � � � �� � is syntacti-
cally faulty, iff, �� such that �� is faulty, i.e., outside
the range of the inputs the protocol accepts as valid. A
PDU � is maximally faulty if �� �� is faulty. �

For a systematic evaluation of robustness, we need to
consider the execution of a protocol implementation with all
combinations of faults and valid values in its fields, which
are too many in number. We observed by looking at im-
plementations that it suffices to test for maximally faulty
PDUs. However, this is a heuristic. Our future work will
look at the effect of choosing maximally faulty PDUs on
our results. Let ��� � ���� ��� � � � ��� denote the set of
faults for a particular field ��. The size of the set of maxi-
mally faulty PDUs is 	� if each of the
 fields has	 possi-
ble faults. Therefore, even the number of maximally faulty
PDUs grows exponentially in the number of fields. This is
a problem and any testing technique must test a subset.

Note that if a protocol is stateless, it is susceptible to syn-
tactically faulty PDUs. An incorrect sequence of syntacti-
cally correct PDUs cannot cause problems for a stateless
protocol since it maintains no history of PDUs. However,
if a protocol is stateful, it is susceptible to syntactically and
semantically faulty PDUs.

Definition: Let � � ���� ��� � � � � ���, be the set of states of
a stateful protocol. Let
���� be the set of syntactically
correct PDUs that are acceptable in state ��. Then a
PDU � is semantically faulty if � ��
����. �

Intuitively, the protocol does not expect its reception in state
��, and so it is semantically faulty.

Let there be 	 states in a stateful protocol, and
 pos-
sible valid PDUs for that instance of protocol execution
(i.e., for some valid chosen values of PDU fields). Then,
the number of semantically incorrect PDUs is at most 	
,
which is well manageable. This is because for each state
there are at most
 invalid PDUs (as the maximum num-
ber of possible PDUs is clearly more than the number of
PDUs unaccepatable in that state). Therefore, the number
of semantic faults grows polynomially for any instance of
protocol execution with the number of states in the protocol
as well as the number of types of PDUs in the protocol.

5.1 Generating Syntactically Faulty PDUs

The key idea in generating syntactically faulty PDUs
systematically is that the tester seeds possible faults for each
field of the PDU, which are then combined by our algorithm
for faulty PDU generation. To prune the number of possi-
ble faulty PDUs and prevent exponential growth, we adapt a
well-known result from software testing called the pair-wise
testing constraint [16, 35]. The algorithm is the same as the
one proposed in [35], but for our usage in the context of
testing protocol implementations. We impose the constraint
that the set of faulty PDUs is chosen such that each pair
of faults is satisfied by at least one PDU. This constraint
has been shown to provide effective coverage for predicate
testing.

Suppose field A of a PDU has the possible faults ��� ��,
field B has the possible faults ��� ��, and field C has the
possible faults ��� ��� ��. Then, the set of triples � � ��
��� ��� �� ��� ��� ��� �� ��� ��� ��� �� ��� ��� ��� �� �
�� ��� ��� �� ��� ��� ��� �� �� satisfies the property that
each pair of faults appears in at least one of the triples. Note
that a simple combinatorial enumeration of the faulty PDUs
has the size 2 � 2 � 3 = 12, whereas the pairwise strategy
yields a set that has � members in it. Also, note that there
are many such sets which satisfy the constraint imposed; we
need to generate one such set which satisfies the constraint.

Algorithm 1 outlines our approach for generating syn-
tactic faults. The algorithm has two phases, horizontal and
vertical growth. Intuitively, the horizontal growth first enu-
merates all possible pairs of errors for the first two fields.
For the remaining fields, it adds its possible faults by aug-
menting the existing set of PDUs such that the choice mini-
mizes the number of pairs left uncovered. The set size does
not grow the set of PDUs beyond the ��
�� pairs gener-
ated by enumerating all possible pairs for the first two fields
considered.

The vertical growth, on the other hand, adds a new PDU
for a pair with other fields of the PDU set to a don’t care
value (D), i.e., any value can be used later to fill this po-

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Algorithm 1: SYNTACTIC-FAULT-GENERATION� �
1 � � all pairs of faults in each pair of PDU fields
2 /* Phase 1 of Horizontal Growth */
3 for each �� in set of faults for field ��
4 do for each �� in set of faults for field ��
5 do �� �� ��� �� �

6 �� �� �
7 /* Phase 2 of Horizontal Growth */
8 for each � in set of fields
9 do for each �� in set of faults of �

10 do �� �� �� � �� �
11 Remove all pairs satisfied from �

12 for each �� in remaining entries
13 do Choose �� that satisfies maximum
14 number of pairs in �
15 �� � � ��� �� �

16 Remove all satisfied pairs from �

17 /* Vertical Growth */
18 �� � �
19 /* � � � is imposed to avoid counting pairs */
20 /* twice. 	� is the fault in field �� and */
21 /*
� is a fault in field �� */
22 /* “D” stands for a don’t care value */
23 for each unsatisfied pair � 	��
� �� � � � in �

24 do if �� � �� such that �� � � and fault �� � 	�

25 then replace the D with 	�

26 else add a faulty PDU with �� � 	�

27 and �� �
� and �� �������� � ��
28 Remove newly satisfied pairs from ��

29 � � � � ��

sition by the algorithm. For every pair, the algorithm first
checks if the pair can be satisfied within an existing PDU
one of whose values is D and the other’s value is the same
as in the partial PDU. If so, the D field in the partial PDU is
replaced with the new value. Otherwise, it constructs a new
partial PDU with the values of two fields set from this pair
and other fields set to D.

We now trace through the algorithm using two param-
eters A and B. The only set that satisfies the pairwise-
constraint is � ����� � �� ��� �� ��� ��� �� ���

��� �� ��� ��� �� ��, which is the same as the combi-
natorial enumeration.

Now consider the case of three parameters A, B, and C.
We extend �� ��� �� ��� ��� �� ��� ��� �� �� by the
parameters ��� ��� �� to get �� ��� ��� �� ��� ��� ��� �� �

�� ��� ��� �� ��. This is the first phase of the horizontal
growth algorithm as shown in lines 1-6 where the original
set ������ is augmented with faults from each of the re-
maining fields.

Now this leaves the pairs �� ��� �� ��� ��� �� ���

Algorithm 2: SEMANTIC-FAULT-GENERATION� �
1 � � �
2 for each � in set of states of the protocol
3 do for each PDU � in protocol instance
4 do if � �� ����
5 then � � �� � �� � �

6 for each � in set of states of protocol
7 do Compute ����� the sequence
8 of PDUs from start state which leads to �

��� �� ��� ��� �� ��� ��� �� ��� ��� �� �� unsatisfied.
The next phase of the horizontal growth algorithm in lines
8-16 augments all those rows of the existing set ������
by that fault of the new field, that minimizes the number of
uncovered pairs. In this case, the choice of �� to � ��� �� �

covers two missing pairs � ��� �� � and � ��� �� �. This
is the maximum number of pairs that can be covered. This
process is repeated for each remaining field in the PDU.

Note that the number of faulty PDUs that are generated
by this horizontal growth never exceeds 	�	
 	�	, the car-
dinality of the set ������. At the end of this horizontal
growth, some pairs are still unsatisfied. Therefore, the PDU
generation algorithm enters the next part called the vertical
growth in lines 18-24, where the number of faulty PDUs is
increased.

For the pair of faults � ��� �� �, we have the new faulty
PDU � ��� �� �� �, where � stands for a dummy don’t
care value. Likewise, we have to add � ��� �� �� � to
cover � ��� �� �. Now, to cover � ��� �� �, we can sim-
ply change � ���� �� � to � ��� ��� �� � and to cover
� ��� �� � we change � ��� �� �� � to � ��� ��� �� �

which covers all pairs of faults.
It can be shown that, on termination, the algorithm out-

puts a set of faulty PDUs with the property that any pair of
faults in two fields is satisfied by at least one PDU in this
set. Furthermore, the size of this set does not grow expo-
nentially. A detailed analysis of the algorithm is beyond the
scope of this paper. The interested reader is referred to [35]
for details.

5.2 Generating Semantically Faulty PDUs

As the number of semantically faulty PDUs does not
grow exponentially with the number of states and PDUs,
we do not worry about reducing the number of semanti-
cally faulty PDUs. Consequently, the algorithm we use is
a straightforward enumeration of the number of semanti-
cally faulty PDUs for each state. We present our approach
in Algorithm 2.

Each state in a stateful protocol can accept only certain
PDUs. Therefore, for each state, the remaining PDUs of the

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

0 21

4 5

3

r1 s2 r3

s7

s5

r6r4

Figure 1. A Stateful Protocol Specification

protocol are semantically faulty. The algorithm enumerates
the semantically faulty PDUs for each state. When testing,
however, one should first drive the protocol implementation
to a particular state using correct PDUs before injecting a
semantically faulty PDU in that state to be tested. There-
fore, the test case consists of a state, a list of semantically
faulty PDUs, associated with that state, and a sequence of
correct PDUs which will drive the protocol to that state.
This is similar to our earlier work [26, 27, 28, 29].

We illustrate our algorithm with a simple stateful pro-
tocol specified in Figure 1 as a directed graph. The start-
ing state of the protocol is 0. An arc labeled �� means
that the machine receives a PDU �. Likewise, an arc la-
beled �� stands for sending a PDU �. Consider state 5, it
expects to receive PDU 6. Now, the algorithm would gener-
ate �� �� � ��� �� � ��� �� � �� for state 5, i.e. PDUs 1,
3, and 4 are semantically faulty in state 5. And, the path for
driving the implementation would be ��� ��, i.e., the testing
program would send the PDU 4 and receive the PDU 5, and
then send the semantically faulty PDU.

6 Experiments

We now show the practicality and usefulness of our tech-
nique. Specifically, we experimentally evaluate the follow-
ing hypotheses:

� Different protocol implementations offer different ro-
bustness to faulty PDU input, and this is true for both
stateless and stateful protocols.

� The pair-wise faults constraint does not reduce the ca-
pacity to evaluate robustness of different implementa-
tions.

6.1 Metrics for Evaluation

We define the following metrics for studying the perfor-
mance of our algorithm and test-case generation.

� The Reduction Ratio is the ratio of the number of faulty
PDUs generated by the syntactic faulty PDU genera-
tion algorithm to combinatorial enumeration.

� The Robustness Ratio is the ratio of the number of
faulty inputs that were handled by an implementation
by continuing normal operation to the total number of
faulty inputs.

To ensure our hypotheses hold, we show that:

� the average robustness ratio as estimated with our syn-
tactic faulty PDU set is about the same as that of the
set of all possible faulty PDUs.

� the average robustness ratio of different implementa-
tions is different for both syntactic and semantic faults.

We use the reduction ratio to study the extent of reduc-
tion in the number of test-cases needed. For studying the
performance of semantic faulty PDUs, we itemize the ef-
fect of each of the PDU and its faulty state.

6.2 Threats to Internal Validity

Threats to internal validity are conditions that can affect
the dependent variables of the experiment without the re-
searcher’s knowledge. The independent variables in our ex-
periments are the protocol implementations under test and
the test suites generated by our algorithms. The dependent
variables are the robustness ratios of the implementations.
The syntactic mutants chosen by us for the initial seeding
of faults in different fields is the cause for greatest concern.
Our approach was to limit this by logically splitting the do-
main of faulty inputs of each field of the PDU and choosing
representatives from each of these sub-domains.

6.3 Threats to External Validity

Threats to External Validity are conditions that limit the
ability to generalize the results of our experiments to in-
dustrial practice. We consider artifact representativeness to
be the major threat to external validity. The subject pro-
grams themselves are widely used products, and therefore
are representative of industrial practice. However, content
is dynamically generated. Our experiments don’t represent
dynamic URL creation. However, we can generate URLs
that represent actual faulty input once we study common
URL generation patterns used in practice.

6.4 Threats to Construct Validity

Threats to construct validity are conditions caused by the
inadequacy of the measuring metrics in capturing the prop-
erty measured. We have defined the robustness ratio as the
number of faulty test cases resulting handled properly by
the implementation divided by the total number of faulty
PDUs sent as inputs. While this does indicate the degree of
robustness, this is a fairly coarse metric and may not factor
the cost of processing each PDU.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

6.5 Subject Protocols

We chose HTTP and SMTP as subject protocols for our
study. HTTP is a simple stateless protocol, and SMTP is a
simple stateful protocol. We focus on the most commonly
used PDUs of these protocols. We implemented our syntac-
tic fault generation algorithm for HTTP and semantic fault
generation algorithm for SMTP.

6.5.1 The HTTP Protocol

The core operation of HTTP is to fetch content using the
GET command. The GET PDU has several headers, and
the typical operation is as follows:

� Client sends GET PDU
� Server sends content.

Our approach generates syntactically faulty request
PDUs with syntactic mutants of the GET command.

6.5.2 The SMTP Protocol

The SMTP protocol is executed by mail servers of a domain
and is used to exchange electronic mail between different
domains (e.g. mailin-02.mx.aol.com is the mail server for
the domain aol.com.) Let � denote a client and � denote a
server. The notation �� � � means that � sends PDU �

to �. SMTP works as follows:

� � � � 220 mail-server-name SMTP
� � � � HELO domainname
� � � � 220 Hello domainname pleased to meet you
� � � � MAIL FROM:
� � � � 250 Sender OK
� � � � RCPT TO:
� � � � 250 Recipient OK
� � � � DATA
� � � � 354 Enter mail, end with a “.” on a line by

itself
� � � � Message Content
� � �C 250 Message queued for delivery
� � �S QUIT
� � �C mail-server-name closing connection

The protocol has 4 states, each of which it reaches
from the start state for the PDUs HELO, MAIL, RCPT,
DATA, and QUIT respectively. As an illustration, sending
a DATA before MAIL and RCPT is a semantic fault. We
test SMTP server implementations, by issuing semantically
faulty PDUs generated by our algorithm.

6.6 Results of HTTP Test Suite

We tested the web servers www.umd.edu that runs
Apache 2.0.45, www.google.com that runs GWS 2.0

(Google Web Server), and www.microsoft.com that runs
IIS 6.0 (Internet Information Services). The test PDUs
were generated from the simple faults being compounded
to maximally faulty HTTP GET requests by our algorithm
for syntactic faults. We automated it by a driver program,
which sends each of the requests to the web server over the
Internet, and logs the response. The driver program first re-
solves the name of the web server to be tested to get the
IP address and sets up a TCP connection to port 80 on the
server using the BSD socket library. Then, the program
reads an entry from the precomputed test suite and sends a
maximally faulty request to the server. Finally, it reads the
response from the server if any. For each PDU, the driver
program sets up a new connection and repeats the entire
process.

The GET PDU is the most commonly used HTTP
PDU. For instance, publicly available statistics of the
www.cs.umd.edu web-server say that out of the 1,121,178
requests over a period of one week, 1,106,119 (98.6%) were
GET requests. Therefore, we focus on the GET PDU for our
HTTP testing. We chose 5 fields namely url, version, date,
if-modified-since, and refer for the GET PDU. The url
used as the base for faulty URLs was “/” indicating that the
main page of the webserver is requested. These were seeded
with 10 syntactic faults each and combined according to the
algorithm described before to produce a syntactically faulty
PDU set. As a result of the pruning algorithm we had 801
cases, instead of the possible ��

�. Table 1 summarizes the
results of our pruned syntactically faulty PDU test suite for
HTTP. Each row of the table gives the number of requests
that were considered “Normal” and the number of those that
resulted in “Exceptional” behaviour of the server. By excep-
tional, we mean that the server process possibly crashed6

or the TCP connection was terminated improperly. We say
“possibly” crashed because we do not have access to the
error/crash logs of any of the servers themselves, and are
inferring this from our observed response or lack of it. In
our future work, we will evaluate our testing approach with
servers we control.

Figure 2 shows the robustness ratios observed for differ-
ent servers. The X-axis shows the size of the set of faulty
PDUs used to test the system and the Y-axis shows the ro-
bustness ratio observed. The curve for Microsoft IIS stays
flat at zero showing lack of robustness in handling faulty
PDUs. The GWS curve shows that it handles some of the
smaller-sized sets well but the overall robustness ratio falls
off to a very small non-zero value with increasing number
of faulty PDUs. This is due to newer combinations of faults
which were not present in the smaller-sized sets. Apache
shows the best behaviour. Although the robustness ratio os-

6Typically, a web server consists of several processes executing the
HTTP protocol. Even if one process crashes, the others can still handle
requests.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Server “Exceptional” “Normal”
responses responses

Apache 19 782
GWS 792 9

IIS 801 0

Table 1. Responses to faulty HTTP PDUs of
Pruned Suite

Server Pruned All-Cases
Apache 0.9762 0.97
GWS 0.0112 0.02
IIS 0.0 0.0

Table 2. Overall Robustness Ratios

cillates for small-sized sets showing variations in its ability
to handle combinations of faults, it converges to a value very
close to 1. The overall values of robustness ratios are shown
in Table 2.

The results conclusively show that different implemen-
tations react to faulty PDUs differently. More interest-
ingly, some of the “Normal operation” responses were
those of HTTP/1.1, though the request PDUs were those
of HTTP/1.0. This is because most web server implemen-
tations implement both versions 1.0 and 1.1 of HTTP. Such
responses show that the implementation was confused by
the faults to classify it as a different version of the protocol-
but handled it normally. In general, according to our defini-
tion of robustness, Apache is the most robust, while GWS
is more robust than IIS, which is the least robust.

0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

Number of faulty PDUs

R
ob

us
tn

es
s

R
at

io

 Apache

GWS

IIS

Figure 2. Robustness ratio vs. number of syn-
tactically faulty HTTP PDUs: With pruning

In order to verify that the pruning did not reduce the

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of faulty PDUs

R
ob

us
tn

es
s

R
at

io

GWS

IIS

Apache

Figure 3. Robustness ratio vs.number of syn-
tactically faulty HTTP PDUs: No pruning

ability to evaluate robustness, we tested the servers with all
��

� possible faulty PDUs over several days and the results
are shown in Figure 3. The X-axis shows the number of
faulty PDUs and the Y-axis shows the robustness ratio. The
trends are very similar to to those of the pruned-set. Specifi-
cally, the robustness ratios converge to those shown in Table
2. Each row in the table shows the robustness ratio com-
puted for the pruned and the non-pruned all-faulty PDUs
test suites. The results show that our approach is effective
in pruning without compromising on robustness evaluation.

6.7 Results of SMTP Test Suite

We tested the mail-server hosts ringding.cs.umd.edu,
that uses the sendmail 8.1.19 [8], an open-source imple-
mentation, and envoy.cs.umd.edu that uses Microsoft Ex-
change 5.5 [5]. We itemize the results of the tests rather
than compute the robustness ratio, as the number of tests is
small. The results of the tests are shown in Tables 3 and 4.
Each row of the tables records the response of an implemen-
tation to semantically faulty PDUs, when it expects a PDU
shown in column 1. A

�
denotes that the PDU was han-

dled by the server and normal operation proceeded, while a
� denotes it was not so. NA stands for not-applicable, i.e.,
the PDU is not semantically faulty. The robustness ratios
of the two implementations are different, and the sendmail
implementation is more robust towards semantically faulty
PDUs than the Exchange implementation.

6.8 Evaluation of Pair-wise Fault Generation

Finally, we studied the effectiveness of our pruning strat-
egy. Specifically, we need to confirm that the strategy

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Sent HELO FROM RCPT DATA QUIT
Expected Observed Responses
HELO NA

� � � �

FROM
�

NA � � �

RCPT
� � NA � �

DATA
� � �

NA
�

QUIT � � � � NA

Table 3. Responses of sendmail to semanti-
cally faulty PDUs.

Sent HELO FROM RCPT DATA QUIT
Expected Observed Responses
HELO NA � � � �

FROM � NA � � �

RCPT
� � NA � �

DATA � � �
NA

�

QUIT � � � � NA

Table 4. Responses of Exchange to semanti-
cally faulty PDUs.

3 4 5 6 7
0

50

100

150

200

250

Number of fields in PDU (faults per field fixed)

R
ed

uc
tio

n
R

at
io

Figure 4. Reduction Ratio vs. number of fields
in PDU for faults per field = 5

scales, i.e., achieves greater reduction, with increasing num-
ber of fields as well as more number of seeded faults per
field. Therefore, we fixed �, the number of fields, and var-
ied the number of faults � for each field. Then, we fixed
�, and varied �. The results are shown in Figures 4 and 5
respectively.

In both cases, the Y-axis shows the reduction ratio, i.e.,
the extent of reduction achieved, and the X-axis shows the
parameter being varied. In both cases, the reduction ratio is
an increasing function, showing that the extent of reduction
is able to keep pace with growth of number of fields in a
PDU as well as number of faults per PDU. We have already
shown that the effectiveness in evaluating robustness is not

2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Faults per field of PDU (number of fields fixed)

R
ed

uc
tio

n
R

at
io

Figure 5. Reduction Ratio vs. faults per field
for number of fields = 5

compromised by this pruning strategy.

7 Conclusions and Future Work

Network protocol implementations are susceptible to
misbehaving clients. Robustness testing of implementations
gives greater confidence in deployed systems. Our approach
is to pro-actively test protocol implementations by injecting
faulty PDUs. A protocol can have syntactically and seman-
tically faulty PDUs depending on whether it is stateless or
stateful. As a PDU typically has many fields, the number
of possible syntactically faulty PDUs grows exponentially
in the number of fields even for a fixed number of faults
for each field. We proposed a pruning strategy to reduce the
number of such possible faults by imposing an all-pairs con-
straint, i.e., the set of faulty PDUs is chosen such that each
pair of faults between any two fields is satisfied by at least
one PDU. For stateful protocols, we defined semantically
faulty PDUs that are syntactically correct but are received
in a wrong state of the protocol. We used a simple enumer-
ation to generate a set of semantically faulty PDUs.

We implemented our approach for HTTP and SMTP and
evaluated its performance empirically. Our test suites con-
sist of syntactically faulty PDUs for HTTP and semantically
faulty requests for SMTP. We showed that different protocol
implementations have different robustness. We also verified
that our pruning sharply reduces the size of the set to be
tested without significantly reducing the ability to evaluate
robustness.

In the future, we will consider the impact of choosing a
non-maximally-faulty set and pruning such a set. We in-
tend to test servers which we control to give us a better idea
of what exactly happened to the server process. Finally,
our preliminary study of a hybrid testing technique using
both syntactically and semantically faulty PDUs for SMTP

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

shows promising results. We would also like to see how
code coverage for faulty PDU handling differs from code
coverage for normal PDU handling. We will also try se-
mantic fault injection with protocols that have more states
such as Yahoo!, MSN, and syntactic faults for dynamically
created HTTP URLs.

8 Acknowledgements

We thank Adithya Nagarajan of the Department of Com-
puter Science, University of Maryland and the anonymous
referees for their useful comments.

References

[1] Apache Web Server http://www.apache.org.
[2] Gnutella File Sharing Program http://www.gnutella.com.
[3] Google Web Server http://www.google.com.
[4] Kazaa File Sharing Program http://www.kazaa.com.
[5] Microsoft Exchange Server

http://www.microsoft.com/exchange.
[6] Microsoft Internet Information Services (IIS)

http://www.microsoft.com/iis.
[7] Morpheus File Sharing Program http://www.morpheus.com.
[8] Sendmail Mail Server http://www.sendmail.org.
[9] I. S. 610.12-1990. IEEE Standard Glossary of Software En-

gineering Terminology. Dec. 1990.
[10] A. U. Shankar. An Introduction to Assertional Reasoning for

Concurrent Systems. ACM Computing Surveys, 25(3):225–
262, Sept. 1993.

[11] A. U. Shankar and S. S. Lam. Time-Dependent Distributed
Systems: Proving Safety, Liveness and Real-Time Proper-
ties. Distributed Computing, (2) pp. 61-79, 1987.

[12] S. Begum, M. Sharma, A. Helmy, and S. K. S. Gupta. Sys-
tematic Testing of Protocol Robustness: Case Studies on
Mobile IP and MARS. In LCN, pages 369–380, 2000.

[13] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
Transfer Protocol – HTTP/1.0. In RFC1945, http://www.rfc-
editor.org, 1996.

[14] E. Brinksma, G. Scollo, and G.Steenbergen. LOTOS Speci-
fications, Their Implementations, and Their Tests. Proceed-
ings of Sixth International Workshop on PSTV, 1986.

[15] L. Bromstrup and D. Hogrefe. TESDL: Experience with
Generating Test Cases from SDL Specifications. Proceed-
ings of Fourth SDL Forum, 1989.

[16] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Pat-
ton. The AETG System: An Approach to Testing Based
on Combinatorial Design. IEEE Transactions on Software
Engineering, 23(7), 1997.

[17] S. Dawson and F. Jahanian. Probing and fault injection of
protocol implementations. In International Conference on
Distributed Computing Systems, pages 351–359, 1995.

[18] J. Griffin. Testing Protocol Implementation Robustness.
In 29th Annual International Symposium on Fault-Tolerant
Computing, Madison, Wisconson, 1999.

[19] G.V.Bochmann. Finite State Description of Communication
Protocols. Computer Networks, 2, 1978.

[20] A. Helmy. Systematic Testing of Multicast Protocol Robust-
ness, 1997.

[21] http://www.cert.org. The CERT Coordination Center, Soft-
ware Engineering Institute, CMU.

[22] http://www.ee.oulu.fi/research/ouspg/protos/. PROTOS-
Security Testing of Protocol Implementations.

[23] http://www.rfc editor.org. Request for Comments. Specifi-
cations of Protocols.

[24] J. Klensin. Simple Mail Transfer Protocol. In RFC2821,
http://www.rfc-editor.org, 2001.

[25] R. J. Linn and M. U. Uyar. Conformance Testing Method-
ologies and Architechtures for OSI Protocols. IEEE Com-
puter Press, 1994.

[26] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a
goal-driven approach to generate test cases for GUIs. In Pro-
ceedings of the 21st International Conference on Software
Engineering, pages 257–266. ACM Press, May 1999.

[27] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. In Proceedings of the ACM SIGSOFT
8th International Symposium on the Foundations of Software
Engineering (FSE-8), pages 30–39, NY, Nov. 8–10 2000.

[28] A. M. Memon, M. E. Pollack, and M. L. Soffa. Plan gen-
eration for GUI testing. In Proceedings of The Fifth Inter-
national Conference on Artificial Intelligence Planning and
Scheduling, pages 226–235. AAAI Press, Apr. 2000.

[29] A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical
GUI test case generation using automated planning. IEEE
Transactions on Software Engineering, 27(2):144–155, Feb.
2001.

[30] R. E. Miller and S. Paul. Generating Minimal Length Test
Sequences for Conformance Testing of Communication Pro-
tocols. Proceedings of INFOCOM, 1991.

[31] P. Mockapetris. Domain names - implementation and speci-
fication. In RFC1035, http://www.rfc-editor.org, 1987.

[32] L. Peterson and B.Davie. Computer Networks: A Systems
Approach. Morgan Kaufman, 2000.

[33] J. Postel. Transmission Control Protocol. In RFC793,
http://www.rfc-editor.org, 1982.

[34] B. Sarikaya, G.V.Bochmann, and E.Cerny. A Test Design
Methodology for Protocol Testing. IEEE Transactions on
Software Engineering, 28(1), 2002.

[35] K.-C. Tai and Y. Lei. A Test Generation Strategy for Pair-
wise Testing. IEEE Transactions on Software Engineering,
28(1), 2002.

[36] A. Tanenbaum. Computer Networks. Prentice Hall, 2000.
[37] J. Voas and G. McGraw. Software Fault Injection: Incocu-

lating Programs Against Errors. John Wiley and Sons, 1998.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

