
Model-Based Testing of Community-Driven Open-Source GUI Applications

Qing Xie and Atif M. Memon
Department of Computer Science

University of Maryland, College Park, MD 20742
{qing, atif}@cs.umd.edu

Abstract
Although the world-wide-web (WWW) has significantly
enhanced open-source software (OSS) development, it has
also created new challenges for quality assurance (QA),
especially for OSS with a graphical-user interface (GUI)
front-end. Distributed communities of developers, con-
nected by the WWW, work concurrently on loosely-coupled
parts of the OSS and the corresponding GUI code. Due to
the unprecedented code churn rates enabled by the WWW,
developers may not have time to determine whether their
recent modifications have caused integration problems with
the overall OSS; these problems can often be detected via
GUI integration testing. However, the resource-intensive
nature of GUI testing prevents the application of existing
automated QA techniques used during conventional OSS
evolution. In this paper we develop new process support for
three nested techniques that leverage developer communi-
ties interconnected by the WWW to automate model-based
testing of evolving GUI-based OSS. The “innermost” tech-
nique (crash testing) operates on each code check-in of the
GUI software and performs a quick and fully automatic in-
tegration test. The second technique (smoke testing) oper-
ates on each day’s GUI build and performs functional “ref-
erence testing” of the newly integrated version of the GUI.
The third (outermost) technique (comprehensive GUI test-
ing) conducts detailed integration testing of a major GUI
release. An empirical study involving four popular OSS
shows that (1) the overall approach is useful to detect severe
faults in GUI-based OSS and (2) the nesting paradigm helps
to target feedback and makes effective use of the WWW by
implicitly distributing QA.

1 Introduction
Open-source software (OSS) development and evolu-

tion has greatly benefited from the pervasive nature of the
world-wide web (WWW). Today, OSS is typically devel-
oped and maintained by communities of programmers dis-
tributed world-wide. Consequently, the WWW allows OSS
developers to use the world’s different time-zones to their
advantage, thereby enabling continuous around-the-clock
software evolution that “follows the sun” [5]. This prac-

tice of around-the-clock evolution has led to unprecedented
OSS code churn rates. For example, the OSS ACE+TAO [1]
developers average 200+ CVS commits per week [8].

While successful at increasing code churn rates, web-
based community driven OSS evolution suffers from sev-
eral problems. First, there is little direct inter-developer
communication [16]. Almost all communication is done
via web-based tools such as CVS commit log messages,
bug reports, change-requests, and comments [3, 15]. Sec-
ond, sub-groups within developer communities often work
on loosely coupled parts of the application code [16]. Each
developer (sub-group) typically modifies a local “copy” of
the code and frequently checks-in changes (and down-loads
other developers’ changes). Consequently, after making a
change, a developer may not immediately realize that the lo-
cal change has inadvertently broken other parts of the over-
all software code [7]. In such situations, the developer needs
quick feedback of newly introduced faults, enabling quick
fixes. If left undetected, the cascading effect of these faults
leads to wasted debugging cycles during development and
expensive quality assurance later. Moreover, intermediate
fielded releases of the OSS have questionable quality.

Graphical-user interfaces (GUIs) are one of the most im-
portant parts of software [17]. Although GUIs are popu-
lar and useful, developer communities of GUI-based OSS,
interconnected by the WWW, face severe QA challenges.
These challenges stem from the fact that loosely coupled
parts of the OSS are being modified rapidly by several de-
velopers simultaneously; whenever interfaces to these parts
change, the developers also modify the GUI, which is com-
mon to the entire OSS. In many OSS, the GUI is the only
place where several loosely coupled parts of the code in-
teract. Due to the unprecedented code-churn rates enabled
by the WWW, developers may have little or no time to
determine whether their local modifications have inadver-
tently broken other parts of the OSS code. For exam-
ple, while several developers may be working on different
parts of a large desktop application (e.g., the Print module,
text-search/replace, Preferences setting), the GUI brings all
these parts together; interactions between these parts usu-
ally lead to problems. Such problems can often be detected



by performing GUI integration testing. The feedback-based
mechanisms mentioned earlier are not easily adaptable for
automated GUI testing since GUIs have characteristics dif-
ferent from those of traditional software; techniques typi-
cally applied to software testing are not adequate.

This paper presents a new technique with supporting
tools and processes that leverage the WWW and developer
community for continuous integration testing of GUI-based
applications. The key idea of this technique is to create con-
centric testing loops, each with specific GUI testing goals,
resource usage, and target developer sub-groups for error
reports. Instances of three such loops are presented. The
tightest loop called the crash testing loop operates on each
code check-in (e.g., using CVS) of the GUI software [19]. It
is executed very frequently and hence is designed to be very
inexpensive. The goal is to perform a quick-and-dirty, fully
automatic integration test of the GUI software. Software
crashes are reported back to the developer who checked-
in the code. The second loop is called the smoke testing
loop which operates on each day’s GUI build [7, 12]. It is
executed nightly/daily and hence is designed to complete
within 8-10 hours. The goal of this loop is to do functional
“reference testing” of the newly integrated version of the
GUI. Differences between the outputs of the previous (yes-
terday’s) build and the new build are reported to developers
who made changes since the last smoke test run. These two
loops may be implemented as web services. The third, and
outermost loop is called the “comprehensive GUI testing”
loop. It is executed after a major version of the GUI is avail-
able. The goal of this loop is to conduct comprehensive GUI
integration testing, and hence is the most expensive. Prob-
lems in the GUI software are reported to all the developers
who contributed to the release. A novel feature of the con-
tinuous testing technique is a GUI model that is obtained au-
tomatically using reverse engineering techniques [10]. This
model is used to generate test cases, create descriptions of
expected execution behavior, and evaluate the adequacy of
the generated test cases. Automated test executors “play”
these test cases on the GUI and report errors.

All the GUI testing loops have been implemented. In
earlier work, we showed that comprehensive model-based
testing is useful in that it helps to detect OSS integration
problems via the GUI [11, 19], and that smoke testing is
practical and useful [7, 12]. In our experience, putting
these techniques together helps to conserve resources, i.e.,
faster “inner” techniques help to detect GUI faults quickly.
These faults, if left undetected, would have delayed the
outer loops. We now evaluate crash testing in an experiment
in Section 5 on four popular OSS developed by communi-
ties of developers on the WWW. The results of the experi-
ment show that (1) the concentric loops provide an effective
mechanism for resource utilization; errors that would oth-
erwise delay the outer loops are caught earlier by the inner

loops and (2) popularly used GUI-based OSS have serious
flaws that persist across multiple versions; these flaws could
have been detected by our approach fully automatically. We
have reported these flaws to the developers of these appli-
cations; they have fixed them in new releases. Note that this
work builds upon six years of work on model-based GUI
testing. To conserve space, we will not discuss the details
of the models and associated algorithms; we will however
give a brief overview. The interested reader is referred to
related literature [7, 9–12, 19].

The specific contributions of this paper include:
• Recognition that the nature of the WWW enables the

separation of GUI testing steps by level of automation, feed-
back, and resource utilization.

• Three types of processes that leverage WWW devel-
oper communities for distributed QA of GUI-based OSS.

• Demonstration that resources may be better utilized by
defining a concentric loop-based GUI testing approach.

• Demonstration that popular GUI-based OSS developed
on the WWW have flaws that can be detected by our fully-
automated approach.

Structure of the paper: The next section discusses re-
lated work. Section 3 provides an overview of three process
types that support the continuous GUI QA. The model that
is central to these process types is described in Section 4.
Section 5 presents an experiment that demonstrate the use-
fulness of the continuous integration testing technique on
several GUI-based OSS.

2 Background & Related Work
There are several feedback-based mechanisms to help

manage the quality of OSS developed by communities of
developers on the WWW. These mechanisms improve the
quality of OSS via continuous, rapid quality assurance (QA)
during evolution. They differ in the level of detail of feed-
back that they provide to targeted developers, their thor-
oughness, their frequency of execution, and their speed of
execution. For example, some mechanisms (e.g., integrated
with CVS) provide immediate feedback at change-commit
time by running select test cases, which form the commit
validation suite. Developers can immediately see the conse-
quences of their changes. For example, developers of Net-
Beans perform several quick (web-enabled) validation steps
when checking into the NetBeans CVS repository.1 In fact,
some web-based systems such as Aegis2 will not allow a
developer to commit changes unless all commit-validation
tests have passed. This mechanism ensures that changes
will not stop the software from “working” when they are
integrated into the software baseline. Other, slower mech-
anisms include “daily building and smoke testing” that ex-
ecute more thorough test cases on a regular (e.g., nightly)

1http://www.netbeans.org/community/guidelines/commit.html
2http://aegis.sourceforge.net/



basis at central server sites. Developers do not get in-
stant feedback; rather they are e-mailed the results of the
nightly builds and smoke tests. Another, still higher level
of continuous QA support is provided by mechanisms such
as Skoll [8] that continuously run test cases, for days and
even weeks on several builds (stable and beta) of the evolv-
ing OSS using user-contributed resources over the WWW.
For example, the ACE+TAO OSS is tested continuously by
Skoll; results are summarized in a web-based virtual score-
board.3 All these mechanisms are useful, in that they lever-
age the WWW to detect defects early during OSS evolution.
Moreover, since the feedback is directed towards specific
developers (e.g., those who made the latest modifications),
QA is implicitly and efficiently distributed.

Testing the correctness of a GUI is difficult for a num-
ber of reasons. First of all, the space of possible interac-
tions with a GUI is enormous, in that each sequence of GUI
events can result in a different state, and each GUI event
may need to be evaluated in all of these states [11]. The
large number of possible states results in a large number of
input permutations [17] requiring extensive testing. A re-
lated problem is to determine the coverage of a set of test
cases [9]. For conventional software, coverage is measured
using the amount and type of underlying code exercised.
These measures do not work well for GUI testing, because
what matters is not only how much of the code is tested,
but in how many different possible states of the software
each piece of code is tested. An important aspect of GUI
testing is verification of its state at each step of test case
execution [9]. An incorrect GUI state can lead to an unex-
pected window/screen, making further execution of the test
case useless since events in the test case may not match the
corresponding GUI elements on the screen. Thus, the exe-
cution of the test case must be terminated as soon as an er-
ror is detected. Also, if verification checks are not inserted
at each step, it may become difficult to identify the actual
cause of the error. Finally, regression testing presents spe-
cial challenges for GUIs, because the input-output mapping
does not remain constant across successive versions of the
software [9, 13].

The most common way to test a GUI-based OSS is to
wait until the software’s GUI has “stabilized,” typically be-
fore a major release is planned. Some developers (or testers)
in the community then use capture/replay tools [6] such as
WinRunner4 [12] to test the new major GUI version release.
A tester uses these tools in two phases: a capture and then
a replay phase. During the capture phase, a tester manu-
ally interacts with the GUI being tested, performing events.
The tool records the interactions; the tester also visually
“asserts” that a part of the GUI’s response/state be stored
with the test case as “expected output” [18]. The recorded

3http://www.dre.vanderbilt.edu/scoreboard/
4http://mercuryinteractive.com

test cases are replayed automatically on (a modified ver-
sion of) the GUI using the replay part of the tool. The
“assertions” are used to check whether the GUI executed
correctly. Another way to test a GUI is by programming
the test cases (and expected output) using tools [4, 17] such
as extensions of JUnit including JFCUnit, Abbot, Pounder,
and Jemmy Module5. The above techniques require a sig-
nificant amount of manual effort, typically yielding a small
number of test cases. The result is an inadequately tested
GUI [9]. Moreover, during iterative development, devel-
opers waste time fixing bugs that they encounter in later
development cycles; these bugs could have been detected
earlier if the GUI had been tested iteratively. The nature
of community-driven GUI development requires new GUI
testing techniques to quickly test each increment of the GUI
during development.

The most comprehensive and complete solution for GUI
testing is provided by GUITAR [7, 12] that automates test-
ing of software applications that have a GUI. GUITAR au-
tomates GUI testing by using model-based techniques. An
overview of the model used by GUITAR is presented in Sec-
tion 4.

3 Process Support for the Testing Loops

Users interact with a GUI by performing events on some
widgets, such as clicking on a button, opening a menu, and
dragging an icon. During GUI testing, test cases, consisting
of sequences of events are executed on the GUI.6 As dis-
cussed in Section 2, the most popular tools used to develop
GUI test cases are capture/replay tools, which are largely
manual. Our experience with GUI testing shows that a tester
cannot use these tools to develop a test suite that covers
a significant portion of the GUI (an extremely resource-
intensive task) for continuous testing. Test cases obtained
from capture/replay tools are very fragile and most of them
would become unusable after a few GUI modifications [9].
Test cases become unusable for the modified GUI either be-
cause the input event sequence can no longer execute on the
GUI or because the expected output (i.e., in the form of as-
sertions) stored with the test case becomes obsolete. During
continuous testing, the testers will have to keep updating the
GUI test suite, develop new test cases, and delete obsolete
ones. These activities are extremely resource intensive, es-
pecially with the code churn rates observed in popular OSS.

The only practical alternative is to use model-based tech-
niques to generate and maintain test cases automatically
during OSS evolution. The loop-based technique employs
GUI models to generate test cases. Three types of con-
currently executing processes support the continuous GUI
testing technique. Several instances of these processes may

5http://junit.org/news/extension/gui/index.htm
6We have shown in earlier work that simply executing each event in

isolation is not enough for effective GUI testing [11].



be active at any time. The most frequently executing pro-
cess that supports crash testing is essentially a two-stage
code commit with an automated GUI testing intervention
step. A developer who has made a change to a part of the
GUI code “checks-in” the changes. An instance of the crash
testing process is automatically launched at the server that
hosts the code repository (in general, this could be a ded-
icated computer that is linked to the repository server). A
reverse engineering technique [10] is used to automatically
obtain a model of the GUI. This model is used to generate
crash test cases, which are then automatically executed on
the newly modified GUI. “Software crashes” are reported
back to the specific developer who checked-in the changes
along with the test cases that caused the crash. The de-
veloper debugs the GUI and resubmits the changes. Only
the previously failed test cases are re-executed; if they pass,
the code changes are made permanent in the repository. If
two or more developers are modifying different parts of the
GUI, multiple instances of crash testing are created, one for
each check-in. This ensures that faulty changes do not in-
teract. Note that this process does not require any manual
intervention, it is very fast, and gives very specific type of
feedback to the developer involved, i.e., whether the soft-
ware crashed or not.

Every night, a process that supports smoke testing is
launched to ensure that changes made to the GUI during
a 24 hour period (this interval length is tunable) are inte-
grated properly. The smoke testing process is launched au-
tomatically; it employs the reverse engineering technique to
obtain the GUI model, which is used for test case genera-
tion. The goal of this testing process is to conduct refer-
ence testing, using the previously tested version as a base-
line. Hence, the previous version is used as a test oracle (a
mechanism that determines whether a software being tested
is executing correctly). As test cases are executed automat-
ically on the latest GUI version, its state after each event is
compared to the baseline and mismatches are reported. Al-
though the process described thus far is fully automatic, the
mismatches (that are reported to all developers involved in
the latest changes) need to be examined manually to weed
out false positives. False positives are expected to exist
since the software has been modified, leading to expected
changes between the new and baseline version.

Periodically, the developers may want to develop and ex-
ecute a more thorough test suite that looks for errors beyond
crashes and differences between the latest and previous ver-
sions. We call this process comprehensive testing. In this
case, the developers create test cases (perhaps by using cap-
ture/replay tools) and test oracles to determine if the GUI is
executing correctly. In our work to date, we have used au-
tomated techniques to do comprehensive GUI testing. For
test case generation we have used AI Planning [11]; for test
oracle creation, we have used pre- and postconditions [9].

GUI-based OSS
Shared Code 
Repository

Check-in 
Modifications

Reverse 
Engineer GUI

Generate 
Crash Tests

Execute 
Crash Tests

Return Report 
& 

Crash Tests

Fix Causes
of Crashes

Submit
Revisions

Rerun Select
Crash Tests

Crashed
Again?

Commit
Changes

Reverse 
Engineer GUI

Generate 
Smoke Tests

Generate 
Expected 

Output

Execute 
Smoke Tests

Return Report 
& Smoke Tests

Create GUI
Test Cases

Create GUI
Test Oracles

Execute GUI
Test Cases

Return Report 
& Test Cases

Y

N

WWW 
Developer

Community

Crash Testing
(executed at each 

code check-in)

Smoke Testing
(executed automatically 

each night)

Comprehensive Testing
(initiated by the 

developers)

Developer

Implemented as a 
web service

Implemented as a 
web service

WWW 
Connection

WWW 
Connection

WWW 
Connection

Figure 1. Continuous GUI Testing.

Once the test cases have been obtained, they are replayed
automatically on the GUI and errors are reported to all the
developers.

The processes described above are summarized in Fig-
ure 1. The dashed ovals are the activities that are performed
by the developer, and are hence resource intensive. Other
activities are done automatically by our tools. In all cases,
we develop the test cases and test oracles automatically us-
ing model-based techniques. The key reason for our suc-
cess is a new GUI representation that models specialized
user interactions with the GUI. We call this representation
the event-interaction graph, which is based on a structure
called the event-flow graph (EFG) [7] described next.

4 High-Level Overview of GUI Model

There are two parts of the GUI model, one used for test
case generation and the other for test oracle creation. We
now describe each of these parts. Note that to conserve
space, we provide a high-level overview needed to under-
stand the basic concepts; details have been published in ear-
lier reported work [7, 11, 12, 19].

Intuitively, an event-flow graph (EFG) model represents
all possible event sequences that may be executed on a GUI.
An EFG contains nodes (that represent events) and edges.
An edge from node nx to ny means that the event repre-
sented by ny may be performed immediately after the event
represented by node nx. An example of a path through
the EFG for the Main and Replace windows of the MS
NotePad software is shown in Figure 2(a). The path con-
tains six events: <Edit,7 Replace, Type-in-text,
Find Next, View, Status Bar>. Since this path is
modeled in the EFG, a MS NotePad user can execute it.

7Actually, the event is Click-on-Edit; for brevity, we will refer to
events by their associated widget names.



type_in_text

0DSSLQJ

(a)

type_in_text

(b)

Figure 2. (a) Path in an EFG and (b) EIG.
Since we know (from personal experience) that the event
Replace cannot be executed immediately after the event
Cancel, the edge (Cancel, Replace) will not be repre-
sented in the EFG. An EFG simply represents all executable
paths of the software.

An EFG models all possible (an extremely large num-
ber of) event sequences that may be executed on the GUI.
Not all these sequences are necessary to test interactions
between loosely-coupled parts of an OSS. Abstractions are
used to model only specialized (and hence a smaller num-
ber of) event sequences. In a typical GUI, 20-25% of the
events are used to manipulate the structure of the GUI; ex-
amples include events that open/close windows/menus. For
example, in Microsoft Word, of the total 4210 events, 80
events open menus, 346 events open windows, and 196
events close windows; the remaining 3588 events interact
with the underlying code. The code for events that open
menus and windows is usually generated automatically by
visual GUI-building tools. This code is very unlikely to in-
teract with code for other events; hence very few integra-
tion errors are revealed by executing interactions between
these events. The remaining events in the GUI are non-
structural events that do not cause structural changes to the
GUI; rather they are used to perform some action; a com-
mon example is the Copy event used for copying objects to
the clipboard.

Events that interact with the underlying software include
non-structural events and those that close windows. These
events are called system-interaction events. Interactions
between these types of events are represented by event-
interaction graphs, which are used to generate test cases.
Our test cases consist of those event-flow-paths that start
and end with system-interaction events, without any inter-
mediate system-interaction events. An event-flow-path is
interaction-free iff it contains no system-interaction events
except the first and last. Intuitively, two system-interaction
events may interact if a GUI user may execute them in an
event sequence without executing any other intermediate
system-interaction event. Note that an event may interact-

with itself. Also note that “ex interacts-with ey” does not
necessarily imply that “ey interacts-with ex.” The inter-
act relationship is used to create the event-interaction graph.
This graph contains nodes, one for each system-interaction
event in the GUI. An edge from node nx (that represents ex)
to node ny (that represents ey) means that ex interacts with
ey. Of the events shown along the path in Figure 2(a), the
interacts-with relationship holds between Type-in-text
and Find Next; and between Find Next and Status
Bar. These relationships are shown as directed edges in
Figure 2(b). Mapping between EFG and EIG is shown as
dashed lines.
Test-case Generation: An event-interaction graph (EIG)
may be used in a number of ways to generate sequences of
system-interaction events, which form the GUI test cases.
For example, event sequences that cover all nodes in the
EIG may be generated by enumerating each node. Simi-
larly, event sequences that cover all edges in the EIG may
be generated by enumerating each node with its adjacent
node. These test cases form the test suite for crash and
smoke testing. The remaining question is how to execute
the generated event sequences. At execution time, other
events needed to “reach” the system-interaction events are
generated on-the-fly. A mapping, shown as dashed lines
in Figure 2, between EFG and EIG nodes is used to obtain
these events. Hence the two sequences <Type-in-text,
Find Next> and < Find Next, Status Bar> will
expand to <Edit, Replace, Type-in-text, Find
Next> and < Find Next, View, Status Bar> re-
spectively during test-case execution. Additional events
needed to “reach” the first event in the test case are also
automatically generated.

The test cases exhibit the following properties.
1. The test cases are short; they can be generated and

executed very quickly.
2. The test case consists of system-interaction events;

changes to the GUI layout, such as moving events from one
window to another and changing the menu structure, leave
most of the test cases unaffected. Other events are generated
on-the-fly during test execution. i.e., the path to get to the
system-interaction event is generated dynamically.

3. The expected state is stored only for system-
interaction events; it will become obsolete only if a system-
interaction event is modified.

4. All system-interaction events are executed; most of
the GUI’s functionality is covered.

5. Each test case is independent and the suite can be
distributed.

The most important property of these tests is that they
can be generated and executed automatically using GUI-
TAR. Our GUITAR system contains several modules that
makes this automation possible. We discuss these modules
in Section 5.



Test Oracle Creation: The second part of the model is used
to create test oracles, which determine whether a software
executed as expected [2]. The test oracle may either be au-
tomated or manual; in both cases, the actual output is com-
pared to a presumably correct expected output.

• Oracles for crash tests: The test cases defined earlier
(i.e., those that cover all edges of an EIG) are complete, in
that they can be executed automatically on the GUI. Crashes
during test execution may be used to identify serious prob-
lems in the software. Crash tests use the detection of crashes
as test oracles.

• Oracles for smoke tests: Smoke tests use automated
test oracles that enable the detection of other GUI problems
that may not necessarily be manifested as a software crash.
Since the goal of smoke testing is to ensure that the software
has not “broken” during modifications, automated GUI test
oracles check that the “software does what it was doing be-
fore modifications” were made. During smoke testing, the
modified GUI version is compared with the original ver-
sion and changes are reported. The steps involved are: (1)
execute the test case on the original GUI and collect state
information, (2) execute the same test cases on the modified
version, and (3) compare the GUI’s state with the stored in-
formation and report any changes.

• Oracles for comprehensive testing: A specifications-
based approach is used to create test oracles for the compre-
hensive test cases. The process involves developing formal
specifications for each event in the form of preconditions
(the partial state of the GUI in which the event can execute,
e.g., a button is enabled) and effects (the changes to the GUI
state after the event has executed, e.g., a window is closed).
Details of this approach were described in earlier reported
work [9].

5 Experiment

We now present an experiment to determine whether
popular GUI-based OSS, developed by a community of de-
velopers connected via the WWW, have faults that may be
detected using our approach. More specifically, we are in-
terested in answering the questions: (1) Do popular web-
based community-driven GUI-based OSS have problems
that can be detected by our automated techniques? (2) Do
these problems persist across multiple versions of the OSS?

To answer these questions, we conduct an experiment
using several popular web-based community-driven GUI-
based OSS downloaded from SourceForge.net. We then ex-
ecute our fully-automatic crash testing process on them and
report problems. We also download previous versions of
these applications and determine how long these problems
have been in the code. Note that we tested versions that
the developer community chose to make available online.
We expect that these applications have undergone some QA
before release.

Implementation: We have implemented all the modules
of GUITAR. Using these modules, GUITAR is able to au-
tomatically analyze the GUI, create event-flow and event-
interaction graphs, generate test cases and test oracles, and
execute the test cases on an instrumented GUI. Coverage
reports are created automatically. As the GUI evolves,
GUITAR updates its test suite and test oracles automati-
cally. The GUI ripper is the automated module that creates
the event-flow graphs, which are then converted to event-
interaction graphs. “GUI Ripping” is a dynamic process
in which the software’s GUI is automatically “traversed”
by opening all its windows and extracting all their widgets
(GUI objects), properties, and values. The test-case gen-
erator uses the event-interaction graphs to create the test
cases. The test-oracle generator automatically executes the
generated test cases on the latest GUI version and stores
the captured state. Coverage evaluation serves as a use-
ful guide to additional testing, whether it is done for the
next build or for future comprehensive testing. In GUITAR,
we evaluate conventional code coverage in terms of state-
ments, branches, methods, classes, packages, and files. To
collect the coverage information, we use source-level code
instrumenters. The test executor is capable of executing an
entire test suite automatically on the GUI. It performs all
the events in each test case and invokes the test oracle to
compare the actual output with the expected output. If the
event requires text input, then the values are read from a
database, initialized by the tester. Events are triggered on
the GUI using the native OS API. For example, the win-
dows API SendMessage is used for windows applications
and Java API doClick for Java applications.
Subject Applications: We chose the following four appli-
cations with GUIs developed using Java Swing:

1. FreeMind8, which is a premier free mind-mapping9

software written in Java. It has an all time activity
of 99.72%. We tested versions 0.0.2, 0.1.0, 0.4, 0.7.1,
0.8.0RC5 and 0.8.0.

2. GanttProject10, which is a project scheduling
application written in Java and featuring Gantt chart,
resource management, calendaring, import/export (MS
Project, HTML, PDF, spreadsheets). It has an all time activ-
ity of 98.12%. We tested versions 1.6, 1.9.11, 1.10.3, 1.11,
1.11.1, and 2.pre1.

3. JMSN11, which is a pure Java Microsoft
MSN Messenger clone, including Instant messaging, File
Send/Receive, msnlib (for developers), and additional chat
log, etc. It has an all time activity of 98.93%. We tested
versions 0.9a, 0.9.2, 0.9.5, 0.9.7, 0.9.8b7, and 0.9.9b1.

8http://sourceforge.net/projects/freemind
9http://en.wikipedia.org/wiki/Mind map

10http://sourceforge.net/projects/ganttproject
11http://sourceforge.net/projects/jmsn



4. CrosswordSage12, which is a tool for creating (and
solving) professional looking crosswords with powerful
word suggestion capabilities. When tested, it had an ac-
tivity percentile (last week) of 98.21%. We tested versions
0.1, 0.2, 0.3.0, 0.3.1, 0.3.2, and 0.3.5.

The first three of the above applications were chosen due
to their popularity, active community of developers, and
high all-time activity. Crossword Sage was chosen since
it is fairly new (it was registered in mid-Sep. 2005) with
several versions. We tested all the above applications on the
Windows 2000 Professional platform. GUITAR-setup in-
cluded setting up a database for text-field values. Since we
wanted our overall process to be fully automatic, we used a
“default” database that contains one instance for each of the
text types in the set {negative number, real number, long
file name, empty string, special characters, zero, existing
file name, non-existent file name}. Note that if a text field
is encountered in the GUI (represented as an event called
type-in-text), one instance for each text type is tried
in succession. We also setup the test oracle to detect crashes
– for these applications, we define a crash as an uncaught
exception thrown during test case execution.

The overall process executed without any human inter-
vention in 5-8 hours; one machine per application. The
reverse engineering, model creation, test case generation
steps took 2-3 minutes per application. The test cases ex-
ecution took the remaining time. Note that we could have
greatly speeded up test case execution by splitting up the
test suite for each application across multiple machines. As
noted earlier, the test cases are independent.

5.1 Results

Our crash testing process produced several interesting re-
sults, which we now present. We first manually examined
all the crash logs and identified the event sequences that
caused the crash. The results of our analysis are summa-
rized next. Note that version numbers are shown in paren-
thesis. Each listed bug will be referred by its bug number in
later discussions.
FreeMind: 1. NullPointerException when trying to open a
non-existent file (0.0.2, 0.1.0);

2. FileNotFoundException when trying to save a file
with a very long file name (0.0.2, 0.1.0, 0.4);

3. NullPointerException when clicking on some buttons
on the main toolbar when no file is open (0.1.0);

4. NullPointerException when clicking on some menu
items if no file is open (0.1.0, 0.4, 0.7.1, 0.8.0RC5);

5. NullPointerException when trying to save a “blank”
file (0.1.0);

6. NullPointerException when adding a new node after
toggling folded node (0.4);

12http://sourceforge.net/projects/crosswordsage

7. FileNotFoundException when trying to import a non-
existent file (0.4, 0.7.1, 0.8.0RC5, 0.8.0);

8. FileNotFoundException when trying to export a file
with a very long file name (0.7.1, 0.8.0RC5, 0.8.0);

9. NullPointerException when trying to split a node in
“Edit a long node” window (0.7.1, 0.8.0RC5, 0.8.0);

10. NumberFormatException when setting non-numeric
input while expecting a number in “preferences setting”
window (0.8.0RC5, 0.8.0);
Gantt Project: 1. NumberFormatException when set-
ting non-numeric inputs while expecting a number in “New
task” window (1.6);

2. FileNotFoundException when trying to open a non-
existent file (1.6);

3. FileNotFoundException when trying to save a file
with a very long file name (1.6, 1.9.11, 1.10.3, 1.11, 1.11.1,
2.pre1);

4. NullPointerException after confirming any prefer-
ences setting (1.9.11);

5. NullPointerException when trying to save the content
to a server (1.9.11);

6. NullPointerException when trying to import a non-
existent file (1.9.11, 1.10.3, 1.11, 1.11.1, 2.pre1);

7. InterruptedException when trying to open a new win-
dow (1.10.3);

8. Runtime error when trying to send e-mail (1.11,
1.11.1, 2.pre1);
JMSN: 1. InvocationTargetException when trying to re-
fresh the buddy list (0.9a, 0.9.2);

2. FileNotFoundException when trying to submit a
bug/request report because the submission page doesn’t ex-
ist (0.9a, 0.9.2, 0.9.5, 0.9.7, 0.9.8b7, 0.9.9b2);

3. NullPointerException when trying to check the valid-
ity of the login data (0.9.7, 0.9.8b7, 0.9.9b2);

4. SocketException and NullPointerException when
stopping a socket that has been started (0.9.8b7, 0.9.9b2);
Crossword Sage: 1. NullPointerException in Crossword
Builder when trying to delete a word (0.3.0, 0.3.1);

2. NullPointerException in Crossword Builder when try-
ing to suggest a new word (0.3.0, 0.3.1, 0.3.2, 0.3.5);

3. NullPointerException in Crossword Builder when try-
ing to write a clue for a word (0.3.0, 0.3.1, 0.3.2, 0.3.5);

4. NullPointerException when loading a new crossword
file (0.3.5);

5. NullPointerException when splitting a word (0.3.5);
6. NullPointerException when publishing the crossword

(0.3.5);
From the above list of severe problems, we see that

fielded GUI-based OSS developed by a community of de-
velopers have problems that are quickly uncovered using
our GUI-integration testing process. Since the overall pro-
cess is completely automatic, crash testing, integrated with



CVS, can discover these problems before they are found by
users.

We were surprised to find that some bugs existed across
applications. This was due to shared open-source GUI com-
ponents. For example, Bug#2 in FreeMind and Bug#3
in GanttProject are identical since both these applications
share a FileSave component. This component throws a
FileNotFoundException when given a very long file name,
which cannot be handled by the Windows operating system.
This particular bug does not show up after Version 0.4 of
FreeMind; however, the same bug still shows up when the
user tries to export a file with a very long file name. This ob-
servation shows that OSS that use shared components must
“sanitize” inputs before passing them to the shared compo-
nents.

Figure 3 gives an overview of bug history across versions
of each application. The x-axis represents the versions; the
y-axis uses the bug numbers assigned earlier. Each bug that
led to one crash is represented by a small filled circle; bugs
that led to multiple crashes are represented by an asterisk.
If the same bug persisted across multiple versions, the cir-
cles (or asterisks) are connected by a horizontal line. For
example, many crashes are caused by Bug#3 in FreeMind
(several toolbar buttons should be disabled if there is no file
opened).

From Figure 3, we observe that many bugs are persistent
across versions. For example, Bug#4, #7, #8, #9 and #10 in
FreeMind persisted across several versions before they were
discovered and fixed. The same observation holds for the
other applications. In fact, Bug#3 in GanttProject appeared
in the first version we tested (we chose Version 1.6 since it
is the first version with default language English); it exists
in all versions, including the latest version.

Since SourceForge has a bug reporting/tracking tool for
each project, we reported some bugs. For example, we
reported Bug#4 in FreeMind for version 0.8.0RC5 (bug
#1245216 in SourceForge13).

In response to our report, the developers fixed this bug in
release 0.8.0. We intend to report all other bugs, especially
the ones in the latest versions of all the applications.

Figure 3 leads to another observation that we have found
is consistent with our experience with other OSS. There are
fewer bugs in the first version than in later versions. For
example, there are two crash-causing bugs in Version 0.0.2
of FreeMind. Typically, the first version of an OSS is rel-
atively simple and is developed by a small group of core
developers. This version typically undergoes QA before its
first release; hence it is reasonably stable. Versions 0.1.0
and 0.2.0 of CrosswordSage have no bugs because they are
very simple. The only change that was made from Version
0.1.0 to Version 0.2.0 was a new help document. As the

13http://sourceforge.net/tracker/index.php?func=detail
&aid=1245216&group id=7118&atid=107118

developer community grows, the application becomes more
complex and prone to bugs. For example, Bug#10 in Free-
Mind was first introduced when a new “preference setting”
functionality was added. Similarly, there was a new feature
added to Version 0.3.0 of Crossword Sage; this new feature
introduced some bugs that we detected. There were more
features added in Version 0.3.5; bugs were detected in the
added part of code.

By default, we tested all our applications in one machine
configuration on Windows 2000 Professional. We observed
that altering this “default” configuration helps to uncover
more bugs. In a preliminary study, we tested GanttProject in
a new configuration with a much lower memory setting than
the default configuration. We found that Bug#4 and Bug#7
surface only in this low memory configuration. In case
of Bug#4, the application tries to repaint all the GUI win-
dows/widgets after the preferences setting have changed; in
low memory, this causes a substantial delay for the user.
Any event performed during the slow repainting process
causes an uncaught NullPointerException exception. In
case of Bug#7, the application requires additional time to
open new windows; if a user performs a new event during
this time, the result is an uncaught InterruptedException ex-
ception.

We now describe some of the reasons for these crashes.
We identified four reasons: (1) Invalid text input. We
found that many crashes were the result of the software
not checking the validity and size of text input. For exam-
ple, some text boxes in GanttProject and Freemind expect
an integer input; providing a string resulted in a crash. In
some instances, a “very long” text input also resulted in a
crash, such as providing a “very long” text input as the file
name while saving such a file sometimes leads to FileNot-
FoundException. (2) Widget enabled when it should be dis-
abled. One challenge in GUI design is to identify allow-
able sequences of interactions with widgets and to disal-
low certain sequences. Designers often disable certain wid-
gets in certain contexts. In these open-source applications,
we found several instances of widgets enabled when they
should really have been disabled. When our crash tests ex-
ecuted the incorrectly enabled widget in an event sequence,
the software crashed. (3) Object declared but not initialized.
Some of our crashes were Java NullPointerExceptions. It
turned out that as the software was evolving, one developer,
not seeing the use of an object, commented out a part of the
code, which was responsible for object initialization. An-
other developer continued to use the object in another part
of the code. The software crashed when the uninitialized
object was accessed. (4) Obsolete external resources. Some
of the crashes in JMSN were caused by the test cases that
were trying to retrieve information from a web page that is
no longer available.

Note that in the context of a large development commu-



0

1

2

3

4

5

6

7

8

9

10

0.0.2 0.1.0 0.4 0.7.1 0.8.0 RC5 0.8.0

Version

B
ug

 N
o.

0

1

2

3

4

5

6

7

8

1.6 1.9.11 1.10.3 1.11 1.11.1 2.pre1

Version

B
ug

 N
o.

(a) (b)

0

1

2

3

4

0.9a 0.9.2 0.9.5 0.9.7 0.9.8b7 0.9.9b2

Version

B
ug

 N
o.

0

1

2

3

4

5

6

0.1.0 0.2.0 0.3.0 0.3.1 0.3.2 0.3.5

Version

B
ug

 N
o.

(c) (d)

Figure 3. Bug History Over Versions.

nity, it is important to focus feedback to relevant developers
who can quickly fix the newly introduced bugs. Our crash
test reports are concise (they contain the crash log and test
cases) and are sent only to the developer who initiated the
code check-in. Together with the above “common causes of
crashes,” the developer can debug the new code and resub-
mit the changes. This technique ensures that all develop-
ers will not get overwhelmed with too many error messages
each time a change is checked-in.

The above results of crash testing, together with our pre-
viously published work on smoke and comprehensive GUI
testing demonstrates that GUI integration testing is use-
ful, especially for quick integration testing of evolving GUI
OSS that is being developed by a community of developers
interconnected on the WWW.

6 Conclusions & Future Work

This paper presented a new approach for continuous inte-
gration testing of web-based community-driven GUI-based
OSS. Since GUI testing is extremely resource intensive, the
approach implicitly distributes the testing tasks by leverag-
ing the developer community and targeting feedback to spe-
cific sub-groups of developers. Three concentric loops with
associated processes were presented. The innermost loop
called crash testing operates on each code check-in of the
GUI software and performs a quick-and-dirty, fully auto-
matic integration test of the GUI software; feedback is di-
rected to the developer who initiated the check-in. The sec-
ond loop called smoke testing operates on each day’s GUI

build and performs functional reference testing of the newly
integrated version of the GUI; developers who changed the
OSS since the last smoke test run are given feedback. The
third (outermost) loop called comprehensive GUI testing
conducts detailed integration testing of a major GUI re-
lease. Our earlier work showed that comprehensive and
smoke testing are useful. This paper evaluated the crash
testing process in an experiment involving four popular
OSS. The experiment showed that (1) the GUI-based test-
ing approach helps to find integration problems in fielded
GUI-based OSS, (2) several problems persist across mul-
tiple versions of OSS, (3) errors surface in different OSS
that share problematic open-source GUI components, and
(4) the first version (likely created by a core group of de-
velopers) of most OSS is relatively stable; problems surface
as additional developers add functionality. Post-experiment
analysis revealed that most of these problems are caused by
incorrect integration of different parts of the OSS.

There are several new directions for additional research.
Short-term future work will focus on a more detailed study
of the overall benefits of this technique. Students of the un-
dergraduate Software Engineering class at the University of
Maryland have been developing a GUI-based OSS called
TerpOffice.14 They will evolve the software in the Spring
2006 semester. They will employ our new technique to au-
tomatically test the software incrementally. This will also
extend our subject application pool for study.

The applications that we have studied thus far have sev-

14http://www.cs.umd.edu/users/atif/TerpOffice/



eral windows with numerous widgets; most of the user
events are mouse-clicking events on the widgets. Values are
read from a database and automatically entered into text-
boxes. In the medium-term, we intend to extend our re-
search to applications such as web applications that have
complex back-ends. One particular aspect of our results
has direct applicability to testing web applications. Our test
case re-player uses Java reflection to perform events on GUI
widgets. This mechanism also allows us to perform events
that are disabled, and hence cannot be performed by end-
users. For example, a user cannot change text in a disabled
text-box. However, our test case re-player can perform this
operation via reflection. As a preliminary study, we gener-
ated test cases that allow us to click on disabled buttons and
change text in disabled text-boxes. As expected, this led to
several uncaught exceptions. For example, we encountered
an uncaught NullPointerException in FreeMind when click-
ing on a disabled button, and a StringIndexOutofBound-
sException when setting a wrong string in a text-box that
expects date format input. While not immediately relevant
to GUI testing, this result has implications for web bypass
testing [14], in which a tester bypasses the client user inter-
face (and hence any user-interface constraints) and interacts
directly with the web sever via http request events. We en-
vision a new web “crash testing” technique that combines
bypass and GUI crash testing.

In the long term, we will study the interaction between
our three loops. In particular, we will study whether one
loop (say the outermost) can benefit from the execution
of the inner loops. We envision that the inner loops may
be able to annotate the event-interaction graphs; the outer
loops may be able to use these annotations to improve test
case generation. For example, event sequences that have
already been tested by inner loops may not need to be re-
tested by the outer loops. We will also study the need for
additional loops.
Acknowledgments

This work was partially supported by the US National
Science Foundation under NSF grant CCF-0447864 and the
Office of Naval Research grant N00014-05-1-0421.
References

[1] ACE+TAO software release.
http://deuce.doc.wustl.edu/Download.html.

[2] L. Baresi and M. Young. Test oracles. Technical Report CIS-
TR-01-02, University of Oregon, Dept. of Computer and In-
formation Science, Eugene, Oregon, U.S.A., August 2001.
http://www.cs.uoregon.edu/ michal/pubs/oracles.html.

[3] H. F. Brophy. Improving programming performance. Aus-
tralian Computer Journal, 2(2):66–70, 1970.

[4] M. Finsterwalder. Automating acceptance tests for GUI ap-
plications in an extreme programming environment. In Pro-
ceedings of the 2nd International Conference on eXtreme
Programming and Flexible Processes in Software Engineer-
ing, pages 114 – 117, May 2001.

[5] J. D. Herbsleb and D. Moitra. Guest Editors’ introduction:
Global software development. IEEE Software, 18(2):16–20,
Mar./Apr. 2001.

[6] J. H. Hicinbothom and W. W. Zachary. A tool for automati-
cally generating transcripts of human-computer interaction.
In Proceedings of the Human Factors and Ergonomics Soci-
ety 37th Annual Meeting, volume 2 of SPECIAL SESSIONS:
Demonstrations, page 1042, 1993.

[7] A. Memon, A. Nagarajan, and Q. Xie. Automating regres-
sion testing for evolving GUI software. Journal of Soft-
ware Maintenance and Evolution: Research and Practice,
17(1):27–64, 2005.

[8] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed Continuous
Quality Assurance. In Proceedings of the 26th IEEE/ACM
International Conference on Software Engineering, Edin-
burgh, Scotland, May 2004. IEEE/ACM.

[9] A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. Ph.D. thesis, Department of
Computer Science, University of Pittsburgh, July 2001.

[10] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing.
In Proceedings of The 10th Working Conference on Reverse
Engineering, pages 260–269, Nov. 2003.

[11] A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical
GUI test case generation using automated planning. IEEE
Transactions on Software Engineering, 27(2):144–155, Feb.
2001.

[12] A. M. Memon and Q. Xie. Studying the fault-detection ef-
fectiveness of GUI test cases for rapidly evolving software.
IEEE Transactions on Software Engineering, 31(10):884–
896, Oct. 2005.

[13] B. A. Myers. Why are human-computer interfaces difficult
to design and implement? Technical Report CS-93-183,
Carnegie Mellon University, School of Computer Science,
July 1993.

[14] J. Offutt and W. Xu. Generating test cases for web ser-
vices using data perturbation. SIGSOFT Softw. Eng. Notes,
29(5):1–10, 2004.

[15] R. D. Riecken, J. Koenemann-Belliveau, and S. P. Robert-
son. What do expert programmers communicate by means
of descriptive commenting? In Empirical Studies of Pro-
grammers: Fourth Workshop, Papers, pages 177–195, 1991.

[16] C. B. Seaman and V. R. Basili. Communication and or-
ganization: An empirical study of discussion in inspection
meetings. IEEE Transactions on Software Engineering,
24(7):559–572, July 1998.

[17] L. White, H. AlMezen, and N. Alzeidi. User-based testing
of GUI sequences and their interactions. In Proceedings of
the 12th International Symposium Software Reliability En-
gineering, pages 54 – 63, 2001.

[18] Q. Xie and A. Memon. Designing and comparing automated
test oracles for gui-based software applications. ACM Trans-
actions on Software Testing and Methodology, to appear.

[19] Q. Xie and A. M. Memon. Rapid crash testing for contin-
uously evolving GUI-based software applications. In Pro-
ceedings of The International Conference on Software Main-
tenance 2005 (ICSM’05), pages 473–482, Budapest, Hun-
gary, Sept. 2005.


