
A Model-based Distributed Continuous Quality Assurance Process to Enhance
the Quality of Service of Evolving Performance-intensive Software Systems

Cemal Yilmaz
�
, Arvind S. Krishna

�
, Atif Memon

�
, Adam Porter

�
, Douglas C. Schmidt

�
,

Aniruddha Gokhale
�
, Balachandran Natarajan

�
�
Dept. of Computer Science, University of Maryland, College Park, MD 20742�

Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37203

Abstract

Time and resource constraints often force developers
of highly configurable systems, such as that found in
performance-intensive software, to assess their system’s
performance on very few configurations and to extrapolate
from these to the entire configuration space, which allows
many performance bottlenecks and sources of QoS degra-
dation to escape detection until systems are fielded. To im-
prove the assessment of performance across large configu-
ration spaces, we present a model-based approach to devel-
oping and deploying a new distributed continuous quality
assurance (DCQA) process. Our approach builds upon and
extends the Skoll environment, which is developing and val-
idating novel software QA processes and tools that leverage
the extensive computing resources of worldwide user com-
munities in a distributed, continuous manner to significantly
and rapidly improve software quality. This paper describes
how our new DCQA performance assessment process en-
ables developers to run formally-designed screening exper-
iments that isolate the most significant options. After that,
exhaustive experiments (on the now much smaller config-
uration space) are conducted. We implemented this pro-
cess using model-based software tools and executed it in the
Skoll environment to demonstrate its effectiveness via two
experiments on widely used QoS-enabled middleware. Our
results show that model-based DCQA processes improves
developer insight into the effect of system changes on per-
formance at an acceptable cost.

1. Introduction

Performance-intensive software, such as that found in
high-performance computing systems and distributed real-
time and embedded systems, increasingly executes on a
multitude of platforms and user contexts. To ensure that
performance-intensive software meets its quality of service
(QoS) requirements, it must often be fine-tuned to specific
platforms/contexts by adjusting many (in some cases hun-
dreds of) configuration options. Developers who write these
types of systems must therefore try to ensure that their addi-
tions and modifications work across this large configuration
space. In practice, however, time and resource constraints
often force developers to assess performance on very few
configurations and to extrapolate from these to the entire
configuration space, which allows many performance bot-
tlenecks and sources of QoS degradation to escape detection
until systems are fielded.

To address these challenges in the context of
performance-intensive software, we are developing
and integrating the following techniques:� Distributed continuous quality assurance (DCQA)

techniques, which are designed to improve software
quality and performance iteratively, opportunistically,
efficiently, and continuously in multiple, geographi-
cally distributed locations [4]. In prior work, we have
developed a prototype DCQA environment called Skoll
(www.cs.umd.edu/projects/skoll) that pro-
vides a framework for executing QA tasks continu-
ously across a grid of computing distributed around the
world.� Model-based software development techniques,
which help to minimize the cost of QA activities by
capturing the customizability of middleware within
models and automatically generating configuration
files from these higher level models [1]. In prior work,
we have developed prototype model-based software
tools including (1) the Options Configuration Model-
ing language (OCML) [5] that allows developers to
model middleware configuration options as high-level
models and (2) model-driven benchmarking tools [3]
that allow developers to compose benchmarking ex-
periments that observe QoS behavior by mixing and
matching middleware configurations.

This paper expands our prior work by focusing on how
we integrated our modeling tools with the Skoll envi-
ronment to support more effective DCQA processes for
performance-intensive software. In particular, we de-
scribe model-based enhancements to Skoll that enable it
to rapidly identify a small subset of highly influential
performance-related configuration options and systemati-
cally explore that subset of options empirically to esti-
mate system performance across the entire configuration
space. We then present results of using this DCQA process
on ACE+TAO (deuce.doc.wustl.edu/Download.
html), which are widely-used production QoS-enabled
middleware frameworks. Our results show that (1) model-
based DCQA tools and processes can correctly identify a
key subset of options that affect system performance signif-
icantly and (2) monitoring only these selected options im-
proves developer insight into the effect of system changes
on performance at an acceptable cost.

2. Addressing QA Challenges for Perfo-
rmance-intensive Software Systems

This section describes key QA challenges faced by de-
velopers of performance-intensive software and describes



how DCQA environments and model-based software devel-
opment techniques can help to resolve these challenges.

2.1. Challenge 1: Configuration Space Explosion in
Performance-intensive Software Systems

Context. Performance-intensive software often provide
fine-grained knobs to tune QoS behavior so it can be op-
timized for particular run-time contexts and application re-
quirements. For example, high-performance web servers
(e.g., Apache), object request brokers (e.g., TAO), and
databases (e.g., Oracle) have hundreds of options and con-
figuration parameters. General-purpose, one-size-fits-all
solutions often have unacceptable QoS for performance-
intensive software systems.

Problem. To support customizations demanded by users,
performance-intensive software must run on many hard-
ware and OS platforms and typically have many options to
configure the system at compile- and/or run-time. Highly
configurable performance-intensive software can therefore
yield an explosion of the software configuration space.
While the flexibility of many options and configuration pa-
rameters promotes customization, it also creates many po-
tential system configurations, each of which deserves exten-
sive QA. As software configuration spaces increase in size
and software development resources decrease, it becomes
infeasible to handle all QA activities in-house since devel-
opers often lack all the hardware, OS, and compiler plat-
forms on which their reusable software artifacts will run.

Solution approach � the Skoll DCQA environment.
To address the QA challenges caused by the explosion
of the software configuration space and the limitations of
in-house QA processes, we have developed the Skoll en-
vironment to prototype and evaluate tools necessary to
perform “around-the-world, around-the-clock” DCQA pro-
cesses. Our feedback-driven Skoll environment includes
languages for modeling system configurations and their
constraints, algorithms for scheduling and remotely execut-
ing tasks, and analysis techniques for characterizing faults.
Skoll divides QA processes into multiple subtasks that are
intelligently and continuously distributed to, and executed
by, a grid of computing resources contributed by end-users
and distributed development teams around the world. The
results of these executions are returned to central collection
sites where they are fused together to identify defects and
guide subsequent iterations of the DCQA process.

2.2. Challenge 2: Evaluating the QoS of Perfor-
mance-intensive Software Systems

Context. Performance-intensive software systems run on
a multitude of hardware/OS/compiler platforms and provide
fine grained knobs to tune QoS behavior.

Problem. To evaluate key QoS characteristics of perfor-
mance-intensive software, QA engineers today often hand-
craft individual QA tasks (e.g., benchmarking experiments)
by writing (1) interface definitions, (2) component imple-
mentations, (3) client test applications, and (4) scaffolding
code. Manually implementing these steps is tedious and
error-prone since each step may be repeated many times for
every QA experiment. Further, in a handcrafted approach,
QA engineers visualize experiments via application source
code, which provides an excessively low level of abstrac-
tion.

Solution approach � the Benchmark Generation Mod-
eling Language (BGML). BGML [3] is a model-driven
benchmarking tool that allows component middleware QA
engineers to (1) visually model interaction scenarios be-
tween configuration options and system components us-
ing domain-specific building blocks, i.e., capture software
variability in higher-level models rather than in lower-level
source code, (2) automate benchmarking code generation
and reuse QA task code across configurations, (3) gener-
ate control scripts to distribute and execute the experiments
to users around the world to monitor QoS performance be-
havior in a wide range of execution contexts, and (4) en-
able evaluation of multiple performance metrics, such as
throughput, latency, jitter, and other QoS criteria.

2.3. Challenge 3: Assessing QoS of Performance-
intensive Software Across Large Configura-
tion Spaces

Context. As developers create and modify their perfor-
mance-intensive software systems, they often conduct
benchmarking experiments to identify when changes neg-
atively affect performance. Due to time and resource con-
straints, however, these experiments are typically executed
on a very small number of default configurations. While this
provides some data, it leaves substantial portions of the en-
tire configuration space unevaluated, allowing performance
problems to escape detection until the software is fielded.
To close this gap, developers of performance-intensive soft-
ware could use the BGML modeling language together with
the Skoll DCQA environment to gather a much wider sam-
pling of performance data.

Problem. Although Skoll and BGML provide an infras-
tructure for performing large-scale QA, the configuration
spaces of performance-intensive software systems are of-
ten so large that brute force processes are still infeasible.
For example, the ACE+TAO systems have � 500 configu-
ration options, with over ���	�	� potential combinations. To
be effective for highly configurable performance-intensive
software systems, therefore, DCQA processes must gener-
ally include some type of adaptation strategy to efficiently
navigate large configuration spaces.

Solution approach � Applying experimental design the-
ory for configuration space reduction. As software sys-
tems change, developers often run regression tests to detect
unintended functional side effects. In addition to functional-
ity, developers of performance-intensive systems must also
be wary of unintended effects on QoS. They will therefore
periodically run performance benchmarking tests to detect
such problems. As described in Section 1, however, QA ef-
forts can be confounded in highly configurable systems due
to the enormous configuration space. Moreover, time and
resource constraints (and high change frequencies) severely
limit the number of configurations that can be examined.

As a result developers get a very limited view of their
system’s QoS which means that problems not readily seen
in the few tested configurations can escape detection until
the systems are fielded.

To address these problems, we developed the main ef-
fects screening DCQA process, which is performed in the
following two phases:
� Phase 1. We execute a large-scale, formally-designed

experiment across the Skoll grid. As part of this ex-
periment, we run benchmarks on a wide-ranging, but
sparsely distributed, set of configurations. These con-
figurations are selected using a class of experimental



designs called screening designs [6], which are highly
economical and can reveal individual options that sig-
nificantly affect performance (colloquially, these are
referred to as first-order or “main” effects). These de-
signs are economical since they are not intended to de-
tect high-order interaction effects (i.e., significant in-
teractions between, e.g., five different options). The
choice of significance level at which to separate sig-
nificant from non-significant options can be set by QA
process engineers.� Phase 2. Once we have identified the main effects, we
only focus on them, effectively reducing the configura-
tion space to just these few options. The process con-
tinues executing using only in-house resources. Each
time the system changes, we exhaustively benchmark
all combinations of the first-order options, while using
default (or random) settings for the remaining options.
Our intent is that by focusing only on the first-order op-
tions, we can greatly reduce the configuration space,
while at the same time capture a much more com-
plete picture of the system’s QoS. This data is plotted
and maintained on the system’s build scoreboard (e.g.,
www.dre.vanderbilt.edu/Stats). Since the
main effects might change over time, the process can
be restarted periodically to recalibrate the main effects
options.

2.4. Putting It All Together

Now that we described how we addressed the QA chal-
lenges of performance-intensive software systems, we ex-
plain how we have integrated BGML with the existing Skoll
prototype to support the main effects screening DCQA pro-
cess described in Section 2.3.
1. A QA engineer defines a test configuration using BGML
models. The necessary experimentation details are captured
in the models, e.g., the configuration options examined dur-
ing main effects screening, the IDL interface exchanged be-
tween the client and the server, and the benchmark metric
performed by the experiment.
2. The QA engineer then uses BGML to interpret the model.
The paradigm interpreter parses the modeled CORBA mid-
dleware configuration options and generates the required
configuration files to configure the underlying CORBA
middleware. The BGML paradigm interpreter then gen-
erates the required benchmarking code, i.e., IDL files, the
required header and source files, and necessary script files
to run the experiment.
3. When users register with the Skoll infrastructure they
obtain the Skoll client software and configuration template.
4. Clients execute steps in the main effects screening exper-
iment and return the result to the Skoll server, which updates
its internal database. When prompted by developers, Skoll
displays execution results using an on demand scoreboard.
This scoreboard displays graphs and charts for QoS metrics,
e.g., performance graphs, latency measures and foot-print
metrics.

3. Feasibility Study

This section describes a feasibility study that assesses
the implementation cost and the effectiveness of the main
effects screening process on a large performance-intensive
software system.
Experimental process. We use the following experimental
process to evaluate our approach:

Step 1: Subject Application. We used ACE v5.4 + TAO
v1.4 [2] + CIAO v0.4 for this study. CIAO is a QoS-enabled
implementation of CCM and it supports components, which
simplifies the development of DRE applications by enabling
developers to declaratively provision QoS policies end-to-
end when assembling a system.

Step 2: Application Scenario. Due to recent changes
made to the message queueing strategy, the developers of
ACE+TAO+CIAO are concerned with measuring two per-
formance criteria: (1) the latency for each request, and
(2) total message throughput (events/second) between the
ACE+TAO+CIAO client and server. For this version of
ACE+TAO+CIAO, the developers identified 14 run-time
options they felt affected latency and throughput. Each op-
tion is binary as shown in Table 1 and the entire configura-
tion space is ��
��������������� .

Step 3: BGML Tool. ACE+TAO+CIAO QA engineers
used the BGML tool as described below to generate the
screening experiments to quantify the behavior of latency
and throughput.� Using the BGML modeling paradigm QA engineers com-
posed the experiment.� In the experiment modeled, QA engineers associate
the QoS characteristic (in this case roundtrip latency and
throughput) that will be captured in the experiment.� Using the experiment modeled, BGML interpreters gener-
ate the benchmarking code required to set-up, run and tear-
down the experiment. The files generated include, compo-
nent implementation files (.h, .cpp), IDL files (.idl), Com-
ponent IDL files (.cidl) and Benchmarking code (.cpp) files.
The generated file is executed and QoS characteristics are
measured.

Step 4: Application of the Main Effects Screening
Process. In this step, our main concern is to find the first-
order effects of configuration options; we are not interested
in higher-order (interaction) effects. We decided to use a
resolution IV screening design, which means that, among
other things, that no main effects are aliased with any other
main effects or with any two-factor interactions. The fi-
nal screening design examines 14 factors in � � ����� runs,
which is a ��� fraction of the exhaustive design.

Step 5: Generating Variation for the Entire Configu-
ration Space. For comparison purposed, we also obtained
the performance variation for the entire configuration space,
i.e., 16,384 configurations. It took 48 hours of computer
time to run all the benchmarking experiments.
Results. Across the entire configuration space, only options
o2 and o10 have a significant effect on the latency. This
result was surprising to ACE+TAO+CIAO developers since
they thought that all 14 run-time options would contribute
substantially to latency. The same result appears for latency
variation and for throughput. Therefore, only options 02
and o10 show a significant effect on performance.

Looking instead at just the 32 data points from the
“screening” design we see that we would draw the exact
same conclusion. That is the screening design gave us the
same information at a fraction of the cost. Note that the time
needed to run the 32 configurations was about 6 minutes.

The second phase of the process used the information
that o2 and o10 are important options to generate all possi-
ble (in this case 4) configurations for the binary options o2
and o10. Default values were assigned to the remaining op-
tions. The latency and throughput were measured for these
4 configurations.

The results of the second phase are that distributions ob-
tained from the screening experiments are very similar to
the ones obtained from the exhaustive runs and the medians,



Option Index Option Name Option Settings
o1 ORBReactorThreadQueue � FIFO, LIFO �
o2 ORBClientConnectionHandler � RW, MT �
o3 ORBReactorMaskSignals � 0, 1 �
o4 ORBConnectionPurgingStrategy � LRU, LFU �
o5 ORBConnectionCachePurgePercentage � 10, 40 �
o6 ORBConnectionCacheLock � thread, null �
o7 ORBCorbaObjectLock � thread, null �
o8 ORBObjectKeyTableLock � thread, null �
o9 ORBInputCDRAllocator � thread, null �

o10 ORBConcurrency � reactive, thread-per-connection �
o11 ORBActiveObjectMapSize � 32, 128 �
o12 ORBUseridPolicyDemuxStrategy � linear, dynamic �
o13 ORBSystemidPolicyDemuxStrategy � linear, dynamic �
o14 ORBUniqueidPolicyReverseDemuxStrategy � linear, dynamic �

Table 1. The Options and Their Settings
Metric Screening Random
latency 77% 46%
latency variance 64% 30%
throughput 75% 55%

Table 2. Range of Performance Metrics Covered
by Screening and Random Design

not shown, were nearly identical. In contrast, the distribu-
tions for random configurations (4 chosen at random) were
very different.

Table 2 shows the percentage of observations for each
performance metric in the entire configuration space that
fall into the range of the observations obtained from screen-
ing and random designs. As this table indicates, the screen-
ing design covered a large portion of the system’s range of
performance and covered more of the performance range
than the random design did.

4. Concluding Remarks

This paper described a model-based distributed contin-
uous quality assurance (DCQA) process called main ef-
fects screening. The process is designed to improve per-
formance assessment across the large configuration spaces
found in performance-intensive software. We quickly im-
plemented this process using BGML, executed it on Skoll,
and demonstrated its effectiveness via a feasibility study in-
volving ACE+TAO middleware, which are two large-scale
performance-intensive software frameworks consisting of
well over one million lines of C++ code and regression tests
contained in � 4,500 files.

The main effects screening process leverages formally-
designed screening experiments to isolate the most signif-
icant individual options in the configuration space. This
screening experiment is executed by users around the world
using the Skoll infrastructure. After this reduced option set
has been identified it can then be examined exhaustively
(using local resources) as often as desired. Our feasibility
study showed that this process could automatically reduce
an original set of 14 options down to 2 main effects and
that the information of these main effects provides much of
the information that could have been gained from exhaus-
tive testing (even though exhaustive testing is infeasible).
We will continue to explore new DCQA processes, e.g., we
are examining how to prioritize parts of the configuration
model based on end-user usage patterns, developer priori-
ties, or other economic justifications.

The results of the work presented in this paper have also

motivated research in several new directions. We are work-
ing closely with the ACE+TAO developers to generalize
Skoll’s processes to cover a broader range of QA activities,
in particular new end-to-end QoS measures on heteroge-
neous DRE systems. One immediate application is to start
to refactor ACE to shrink its memory footprint and enhance
its run-time performance. The DCQA process will then be
used to measure ACE’s footprint and QoS at every check-in
across different configurations, while simultaneously ensur-
ing correctness via Skoll’s automated and intelligent regres-
sion testing environment [4].

References

[1] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-Integrated Development of Embedded Soft-
ware. Proceedings of the IEEE, 91(1):145–164, Jan.
2003.

[2] A. S. Krishna, D. C. Schmidt, R. Klefstad, and A. Cor-
saro. Real-time CORBA Middleware. In Q. Mah-
moud, editor, Middleware for Communications. Wiley
and Sons, New York, 2003.

[3] A. S. Krishna, N. Wang, B. Natarajan, A. Gokhale,
D. C. Schmidt, and G. Thaker. CCMPerf: A Bench-
marking Tool for CORBA Component Model Imple-
mentations. In Proceedings of the 10th Real-time
Technology and Application Symposium (RTAS ’04),
Toronto, CA, May 2004. IEEE.

[4] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed Con-
tinuous Quality Assurance. In Proceedings of the
26th IEEE/ACM International Conference on Soft-
ware Engineering, Edinburgh, Scotland, May 2004.
IEEE/ACM.

[5] E. Turkaye, A. Gokhale, and B. Natarajan. Address-
ing the Middleware Configuration Challenges using
Model-based Techniques. In Proceedings of the 42nd
Annual Southeast Conference, Huntsville, AL, Apr.
2004. ACM.

[6] C. F. J. Wu and M. Hamada. Experiments: Planning,
Analysis, and Parameter Design Optimization. Wiley,
2000.


