
Direct-Dependency-based Software Compatibility Testing

Il-Chul Yoon, Alan Sussman, Atif Memon, Adam Porter
Dept. of Computer Science

University of Maryland
College Park, MD, 20742 USA

{iyoon,als,atif,aporter}@cs.umd.edu

ABSTRACT
Software compatibility testing is an important quality assur-
ance task aimed at ensuring that component-based software
systems build and/or execute properly across a broad range
of user system configurations. Because each configuration
can involve multiple components with different versions, and
because there are complex and changing interdependencies
between components and their versions, it is generally in-
feasible to test all potential configurations. Therefore, com-
patibility testing usually means examining only a handful of
default or popular configurations to detect problems, and as
a result costly errors can and do escape to the field.

This paper presents an improved approach to compati-
bility testing called RACHET. We formally model the con-
figuration space for component-based systems and use the
model to generate test plans covering user-specified portion
of the space – the example in this paper is covering all direct
dependencies between components. The test plan is exe-
cuted efficiently in parallel, by distributing work so as to
best utilize test resources. We conducted experiments and
simulation studies applying our approach to a large-scale
data management middleware system. The results showed
that for this system RACHET discovered incompatibilities
between components at a small fraction of the cost for ex-
haustive testing without compromising test quality.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.7 [Software Engineering]: Distribu-
tion, Maintenance, and Enhancement

General Terms
Design, Experimentation

Keywords
component-based software system, compatibility testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

1. INTRODUCTION
Over the last decade software engineering researchers have

created tools and techniques that facilitate assembling large
systems from independent components. These advances are
now embodied in technologies such as configuration manage-
ment systems, interconnection standards, middleware frame-
works and product-line and service-oriented architectures.
Despite their many advantages, these technologies also tend
to push many problems and complexities into configuration
and integration activities. Consider for instance, the In-
terComm system [2, 4]. InterComm is data management
middleware that supports large coupled scientific simula-
tions. For example, a simulation studying the effect of so-
lar weather patterns on cell phone performance in the U.S.
might involve multiple simulation modeling applications: so-
lar activity on the sun’s surface, radiation propagation in the
region between the sun and the earth, the effects of the solar
wind on earth’s ionosphere, etc. InterComm couples the ap-
plications, which may be written in different languages and
run in parallel on diverse operating systems, and enables
data to be transferred between them at appropriate times
and at appropriate simulation scales. To support that, In-
terComm requires several system components including mul-
tiple C, C++ and Fortran compilers, parallel data commu-
nication libraries, process management libraries and a struc-
tured data management library. Each component has mul-
tiple versions and there are complex dependencies between
components and their different versions.

Developers of component-based systems like InterComm
are bedeviled by configuration and integration problems.
First, the sheer number of combinations of components and
their versions makes it very difficult to test all possible con-
figurations. Second, the components and their dependencies
can change without notice. Finally, while it might appear
that these issues could be avoided by radically restricting
the set of supported configurations, in reality that would
unacceptably restrict the potential user base. In practice,
developers often approach this problem by conducting com-
patibility testing [3]. This involves selecting a set of configu-
rations – each configuration is an ensemble of component
versions that respects known dependencies – and testing
whether each configuration behaves (builds and functions)
properly. Because the set of possible configurations is very
large and because automated support is limited, to perform
compatibility testing, developers often pare down the set to
a handful of popular configurations [5] or use only configu-
rations that can be realized in test machines [1]. This means
that the software is released with nearly all of its possible

409

Version Annotations

Constraints

 (ver(C) = C3) (ver(F) F3)

Component Versions

A A1

B B1, B2, B3, B4

C C1, C2, C3

D D1, D2

E E1, E2, E3, E4

F F1, F2, F3, F4, F5

G G1

*

B C

+

D E

*

F

*

G

A

Figure 1: An Example CDG and Annotations

field configurations untested. So costly errors can and do
escape to the field. To improve this situation, we develop a
process, algorithms and tools to perform compatibility test-
ing effectively and efficiently. For this paper, we restrict our
testing focus to determining whether the software system
under test builds (compilation and deployment) successfully
without any error, but we can and will extend the work to
functional and performance testing.

2. THE RACHET PROCESS
This section describes the steps needed to perform com-

patibility testing of a given component-based system under
test (SUT) using RACHET.

1. Model the software system

To define the configuration space of a SUT, developers
model the components, versions, inter-component depen-
dencies and constraints. This information is captured into
a formal model containing a Component Dependency Graph
(CDG) and Annotations. The CDG is a directed acyclic
graph that encodes components and their inter-dependencies.
The example CDG depicted in Figure 1 shows the depen-
dencies for a SUT called A. The figure shows that A requires
two components B and C (captured using an AND node repre-
sented by a *). Component B requires one of D or E (captured
using an XOR node represented by a +); C requires F; and D, E
and F all require G, the bottom node that does not depends
on any other component. (The bottom node may represent
an operating system, but that is not required.) Additional
information not encoded in the CDG is specified as Anno-
tations. Annotations may include (1) version identifiers to
be considered for each component, (2) inter-component con-
straints and configuration constraints described in first-order
logic. For example, in Figure 1, component C has three ver-
sion identifiers and component C’s version C3 may only be
built with F’s versions F3 and higher.
2. Determine coverage criteria

The model from Step 1 represents a configuration space,
containing a large number of ways in which the SUT may be
legally configured. Developers must now determine exactly
which parts of the space will be tested for compatibility. For
example, they may decide to test every possible configura-
tion for the SUT. Since that is often not feasible they may
opt for more practical criteria that systematically sample the
space.

Our approach starts from the observation that a success-
ful component installation is most influenced by the com-

ponents on which it directly depends. In this paper we say
that component A is directly dependent on component B if
and only if there is a path from A to B in a CDG that does
not contain any component node, and we propose a coverage
criterion called DD coverage that tests all version combina-
tions (VCs) among a component and other components on
which it directly depends.
3. Develop test configurations

RACHET automatically produces configurations satisfy-
ing the user-specified coverage criteria. Each configuration
is a set of VCs where each VC is a (cv, dep) pair. cv denotes
a component version to build and dep is a set of component
versions used to build cv . Since component versions repre-
sented by dep are used to set up the proper environment for
cv, each VC represents a partial order to build components.

To satisfy the DD coverage criterion, each VC must be
covered by at least one configuration. To do that, we first
generate all possible VCs for each component in a CDG,
considering direct dependencies of the component. Then, for
each uncovered VC (cv, dep) of components in the CDG, a
test configuration is produced by choosing (covering) appro-
priate VCs for the components specified in dep while travers-
ing the CDG in depth-first order recursively, until all VCs
necessary to build cv are selected.

In addition, developers need to determine how to test each
component in a configuration. If, for example, the goal is to
determine whether a component can be built without any
error on top of components it depends on, then a set of
instructions to build each component should be specified. In
practice, such instructions may be implemented as generic
build scripts parameterizable for components to be built.
4. Generate test plans

From the observation that multiple configurations share
partial orders represented by identical sets of VCs, a test
plan is synthesized from the configurations produced in Step
3. To execute the configurations efficiently on multiple ma-
chines, each configuration is linearized into a totally ordered
component build sequence, respecting the partial orders rep-
resented by VCs. Then, linearized configurations are merged
into a prefix tree called a test plan. The VCs in configura-
tions are mapped into nodes in the tree and the work to
build identical prefixes (build sequences) may be shared for
testing multiple configurations.
5. Execute test plans

RACHET executes a test plan by intelligently distribut-
ing work for each node to multiple machines and collecting
the results. The work for each node is a build sequence of
components represented by the VCs corresponding to the
nodes in the path from the root to the node, and work may
be reused if it is shared by multiple configurations. Compo-
nents are built in a virtual machine (VM) running on each
machine, without contaminating persistent machine state.
Since we focus on testing successful component builds, RA-
CHET checks successful component installation by moni-
toring whether the installation process for the component
finishes without any error.

A novel aspect of RACHET is that it supports contingency
strategies, which dynamically modify test plans if needed so
as not to lose test coverage. During compatibility testing,
failures in low-level components prevent testing higher-level
dependent components. In this case, RACHET creates new
configurations that try to build the higher-level components
from other successfully built low-level ones.

410

*

+

+

+ +

ap pvm

*

lam mch

*

pc

gxx

pxx

gf

gf77

pf

*

mpfr

gmp

*

gcr

*

fc

ic

Figure 2: CDG for InterComm

3. EMPIRICAL STUDIES
We implemented the RACHET process into a tool with

a client/server architecture. The server produces test con-
figurations, synthesizes a test plan and distributes build se-
quences to a set of clients, each running a VM to test correct
component builds. In this section, we present results from
several empirical studies of our approach. In these studies
we apply the RACHET process to the InterComm middle-
ware system described in Section 1. In particular, we focus
on examining: (1) the costs and benefits of the RACHET
process, comparing direct-dependency-based testing to ex-
haustive testing, and (2) the RACHET process’ behavior as
we modify key process design parameters, such as the num-
ber of test machines used and the amount of space dedicated
to caching partial results.

3.1 Experimental Setup
To execute RACHET process, we first created a model

working with the InterComm developers. It consists of the
CDG shown in Figure 2, version annotations depicted in
Table 1, and additional constraints described below.

These constraints apply to individual configuration ap-
pearing in a test plan. First, if multiple GNU compilers
are used (gcr, gxx, gf and gf77), they must have the same
version. Second, only a single MPI component (i.e., lam or
mch) can be used in a given configuration. Third, only one
C++ compiler and version (gxx version X or pxx version
Y) can be used. Fourth, in a single configuration if C and
C++ compilers are used, they must be developed by the
same vendor (i.e., GNU Project or PGI).

Based on the model, two test plans are generated by RA-
CHET. The first test plan is based on exhaustive coverage
of the model. This test plan contains 3552 configurations,
requiring a total of 39,840 components to be built. Of these,
9919 are distinct nodes in the combined test plan. The other
test plan, called DD, covers all direct dependencies in the
model. This plan contains 211 configurations, requiring 1897
component builds, of which 649 are distinct in the plan.

Comp. Version Description
ic 1.5 InterComm, the SUT
ap 0.7.9 High-level array management

component
pvm 3.2.6, 3.3.11, Parallel data communication

3.4.5 component
lam 6.5.9, 7.0.6, A library for MPI (Message Passing

7.1.3 Interface) standard
mch 1.2.7 A library for MPI
gf 4.0.3, 4.1.1 GNU Fortran 95 compiler
gf77 3.3.6, 3.4.6 GNU Fortran 77 compiler
pf 6.2 PGI Fortran compiler
gxx 3.3.6, 3.4.6, GNU C++ compiler

4.0.3, 4.1.1
pxx 6.2 PGI C++ compiler
mpfr 2.2.0 A C library for multiple-precision

floating-point number computations
gmp 4.2.1 A library for arbitrary precision

arithmetic computation
pc 6.2 PGI C compiler
gcr 3.3.6, 3.4.6, GNU C compiler

4.0.3, 4.1.1
fc 4.0 Fedora Core Linux operating system

Table 1: Version Annotations for InterComm CDG

We executed the test plans on three clients, each with a P4
2.4GHz CPU, 768MB memory and 150GB of disk space, all
running Linux Fedora Core 4. The server is equipped with
a P4 2.4GHz CPU and 512MB memory, running Red Hat
Linux 3.2.3. All machines were connected via Fast Ethernet.
The cache size for each client is set to 64, which means that
each client is capable of storing up to 64 VMs simultaneously.

3.2 Cost-Benefit Assessment
As stated previously, the exhaustive test plan involves

3552 configurations, while the DD test plan contains only
211. Since in our setup building a configuration for Inter-
Comm from scratch takes can take up to 3 hours, we esti-
mate that a naive execution plan where each configuration
is built completely from scratch would take up to 10,600
CPU hours for the exhaustive test plan and about 630 CPU
hours for the DD test plan. As there is no work shared
across builds, the worst-case turnaround time given n ma-
chines would then be 3 hours times the ceiling of the number
of configurations divided by n. For our 3 machine situation
then, the expected worst case turnaround time is 3552 hours
for the exhaustive test plan and 210 hours for the DD test
plan. However, RACHET shares build effort across configu-
rations and machines and many component versions in con-
figurations failed to build. Therefore the actual turnaround
time for the exhaustive test plan was 110.1 hours, during
which 1148 of the 9919 nodes built successfully. For the DD
test plan, the turnaround time was 36 hours, with 320 of
649 nodes built without any error.

In addition to cost savings we must also consider any lost
effectiveness due to testing only direct dependencies. To do
this we first mapped all component builds in the exhaustive
test plan onto component builds in the DD test plan. We
examined all failures in the exhaustive test plan and for each
failure, noted the specific component version that failed to
build and the other component versions on which it directly
depended. Then, we checked whether the same component
version failed in the same context when we tried to build
it during the DD test plan execution. We found that for
the system studied each failure in the exhaustive test plan
is covered by one in the DD test plan during this analysis.

In summary these results suggest that RACHET using the
DD test plan was able to detect build incompatibilities at

411

 10
 25
 50

 100

 150

 200

 250

 300

 350

 400

12 4 8 16 32 64

Tu
rn

ar
ou

nd
 T

im
e

(h
ou

r)

Number of Local Cache Entries

of clients=1
of clients=2
of clients=4
of clients=8

of clients=16
of clients=32
of clients=64

Figure 3: Turnaround times, varying the number of

machines used for the exhaustive test plan.

greatly reduced cost when compared to exhaustive testing.
Furthermore, for this SUT direct-dependency-based testing
achieved these savings without compromising test effective-
ness. We note that these results are specific to this SUT.

3.3 Understanding Process Trade-offs
The experimental results presented in Section 3.2 showed

that direct-dependency-based testing quickly and accurately
detected build incompatibilities between components. How-
ever, the experiment explored only a single instance of the
RACHET process – i.e., executing across 3 machines with a
local cache size of 64. To better understand the trade-offs
between these process parameters and to help pinpoint ar-
eas for further improvement we developed a discrete event
simulator that mimics the behavior of the key components
found in the actual RACHET tool. The output of the sim-
ulation is the turnaround time for completing a test plan
using a given number of machines, each with a given cache
size. The work times used by the simulation are computed
from the average work times seen during the experiments
from Section 3.2. These work times include the time needed
to build a component, to transfer a VM over the network, to
compress or decompress a VM, and to start up a VM. The
time to handle events and to manage the test plan are not
modeled in the simulation. The simulation was performed
on a machine with a P4 2.4GHz CPU and 512MB memory,
running Red Hat Linux 3.2.3.

As a control, we compared the simulated turnaround times
to the actual turnaround time for the setup used in the ex-
periments from Section 3.2, and we found that the simulated
times were roughly 10% less than the actual times for both
the exhaustive and DD test plans. Based on this we be-
lieve that the simulated times are accurate enough to help
us understand the behavior of the real RACHET system.

Figures 3 and 4 show simulated turnaround times using
different numbers of machines and cache sizes for the exhaus-
tive and DD test plans, respectively. Each line corresponds
to different numbers of machines (clients). One observation
is that the turnaround times decrease a fair amount (about
20%) as cache sizes increase from 1 to 8 for all system sizes
(number of machines). Beyond a cache size of 8, however,
little benefit is seen. Increasing the system size from 1 to 64
has a more substantive effect. In general, we see that dou-
bling the number of machines decreases turnaround time by
somewhat less than half until 16 machines – some overhead

 0

 20

 40

 60

 80

 100

 120

 140

12 4 8 16 32 64

Tu
rn

ar
ou

nd
 T

im
e

(h
ou

r)

Number of Local Cache Entries

of clients=1
of clients=2
of clients=4
of clients=8

of clients=16
of clients=32
of clients=64

Figure 4: Turnaround times, varying the number of

machines used for the DD test plan.

is seen due to dependencies between components that make
some machines remain idle, and some extra time is needed
to transmit VMs across the network, as local cache hit rates
drop when the workload is spread across more machines.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an improved approach

called RACHET to test compatibility of component-based
systems. Our experimental results for the system studied
show that RACHET can detect inter-component incompat-
ibilities rapidly and effectively, at a fraction of the cost of
exhaustive testing and without compromising test quality.
We also explored several tradeoffs among process parame-
ters, such as the number of computers used and the size
of the cache on each machine. Based on these results we
plan to examine diverse strategies to execute test plans ef-
ficiently in a parallel environment, to extend our work to
new SUTs, new test scenarios, including functional and per-
formance testing, and to investigate other cost-effective test
coverage criteria.

Acknowledgments
This research was supported by the National Science Foun-
dation under grants #CCF-0447864, #ATM-0120950 and
#CNS-0615072, the Office of Naval Research under grant
#N00014-05-1-0421, and NASA under grant #NNG06GE75G.

5. REFERENCES
[1] A. Duarte, G. Wagner, F. Brasileiro, and W. Cirne.

Multi-environment SW testing on the Grid. In Proc. of
the 2006 Workshop on Parallel and Distributed
Systems: Testing and Debugging, Jul. 2006.

[2] J.-Y. Lee and A. Sussman. High performance
communication between parallel programs. In Proc. of
HIPS-HPGC 2005, Apr. 2005.

[3] W. E. Lewis. Software Testing and Continuous Quality
Improvement. CRC Press LLC, Apr. 2000.

[4] A. Sussman. Building complex coupled physical
simulations on the Grid with InterComm. Eng. with
Computers, 22(3–4):311–323, 2006.

[5] VMware Inc. Streamlining software testing with IBM
�

Rational
�

and VMwareTM: Test lab automation
solution - whitepaper, 2003.

412

