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Abstract
This paper presents a new automated model-driven tech-

nique to generate test cases by using feedback from the ex-
ecution of a “seed test suite” on an application under test
(AUT). The test cases in the seed suite are designed to be
generated automatically and executed very quickly. During
their execution, feedback obtained from the AUT’s run-time
state is used to generate new, “improved” test cases. The
new test cases subsequently become part of the seed suite.
This “anytime technique” continues iteratively, generating
and executing additional test cases until resources are ex-
hausted or testing goals have been met.

The feedback-based technique is demonstrated for auto-
mated testing of graphical user interfaces (GUIs). An ex-
isting abstract model of the GUI is used to automatically
generate the seed test suite. It is executed; during its ex-
ecution, state changes in the GUI pinpoint important rela-
tionships between GUI events, which evolve the model and
help to generate new test cases. Together with a reverse-
engineering algorithm used to obtain the initial model and
seed suite, the feedback-based technique yields a fully au-
tomatic, end-to-end GUI testing process. A feasibility study
on four large fielded open-source software (OSS) applica-
tions demonstrates that this process is able to significantly
improve existing techniques and help identify/report serious
problems in the OSS. In response, these problems have been
fixed by the developers of the OSS in subsequent versions.

1 Introduction
Automated test case generation (ATCG) has become in-

creasingly popular due to its potential to reduce testing
cost and increase software quality [4]. A typical approach
used for ATCG is to create an abstract model of the soft-
ware (e.g., state-machine model [1, 17, 18]) and employ
the model to generate test cases. While successful at re-
ducing overall testing cost, in practice, ATCG continues to
be resource-intensive, especially to create and maintain the
model. Consequently, a few researchers have developed au-
tomated feedback-based techniques to augment the mod-
els [2, 3, 5–7, 9, 13, 14, 20]. These techniques require an
initial test case/suite to be created, either manually or au-
tomatically, and executed on the software. Feedback from
this execution is used to automatically generate additional
test cases. The nature of feedback depends largely on the
goal of the ATCG algorithm. A common example of feed-
back is a code coverage report used to automatically gen-

erate additional test cases that improve overall test cover-
age [5–7, 9, 13, 14]. Few techniques use feedback from the
AUT’s run-time state to generate additional test cases, e.g.,
in the form of outcomes of programmer-supplied predicates
in the code to cover all non-isomorphic inputs [2], and in the
form of operational abstractions to cover increased program
behaviors [3, 20].

This paper presents a new feedback-based technique for
automated testing of graphical user interfaces (GUIs). The
feedback is an abstraction of the run-time state of GUI wid-
gets; the goal is to test multi-way interactions between GUI
events. The nature of GUIs, their test cases (sequences of
GUI events that exercise GUI widgets), and the maturity
of our existing model-based GUI test-case generation al-
gorithms lend themselves to feedback-based techniques for
a number of reasons. First, GUI testing is an extremely
important problem because GUIs are used as front-ends to
most software applications and GUIs constitute as much as
half of software’s code [15]. A functionally correct GUI is
necessary for trouble-free execution of the application’s un-
derlying “business logic.” The event-driven nature of GUIs
creates new challenges for testing that require the develop-
ment of new solutions [17, 18].

Second, our existing model-based GUI test-case gener-
ation algorithms produce test cases that exhaustively test
two-way interactions between GUI events; these test cases
are called smoke tests [10]. Our previous empirical studies
showed that although these test cases reveal a large num-
ber of GUI faults, additional faults may be detected by
testing certain types of multi-way interactions [12]. The
challenge, of course, is how to systematically generate test
cases for these interactions. Exhaustively testing them is
impossible because the number of GUI test cases grows
exponentially with test case length (number of events). A
practical alternative is to identify sets of events that inter-
act in interesting ways with one another and hence should
be tested together, and generate test cases that test multi-
way interactions among members of each set. We will use
the feedback-based technique to automatically identify such
sets of events. Third, our automatically generated smoke
test cases may be used as the basis for feedback collection.
These smoke test cases form the seed suite. Finally, our ex-
isting tools can be easily adapted to monitor and store the
run-time state of the GUI.

The new feedback-based technique has been used in a
fully automatic end-to-end process for a specific type of
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GUI testing. A seed test suite is generated automatically
using an existing event-interaction graph (EIG) model of
the GUI. The seed suite is executed on the GUI using an
automatic test case replayer. During test execution, the run-
time state of GUI widgets is collected and used to automati-
cally identify an Event Semantic Interaction (ESI) relation-
ship between pairs of events. A new model of the GUI,
called the Event Semantic Interaction Graph (ESIG) is con-
structed automatically and used to generate additional test
cases. This entire process, including the scripts required
to set up, execute, and tear down test cases, has been im-
plemented and executes without human intervention. A
feasibility study has been conducted on four fielded, well-
tested, and popular GUI-based Java applications down-
loaded from SourceForge. The results of this study show
that the feedback-based technique improves our existing
techniques with little additional cost. The ESI relation-
ship is successful at identifying complex interactions among
GUI event handlers that lead to serious failures. The fail-
ures were reported on the SourceForge bug reporting site;
in response, the developers fixed some of the bugs. The
developers had never detected our reported failures before
because their own tools and testing processes were unable
to comprehensively and automatically test the applications.

The main contributions of this work include:
• extension of our previous work on automated, model-

based, systematic GUI test-case generation,
• definition of new relationships among GUI events

based on the GUI widgets that they use/influence,
• utilization of run-time state to explore a larger input

space and improve fault-detection effectiveness, and
• immersion of the feedback-based technique into a fully

automatic end-to-end GUI testing process and demon-
stration of its effectiveness on fielded applications.

The next section introduces basic GUI concepts and re-
views the EIG model that forms the basis of the new ESIG
model. Section 3 gives an overview of existing GUI-testing
techniques. Section 4 defines the ESI relationship and uses
it to define an ESIG. Sections 5 and 6 evaluate the new
feedback-based technique. Finally, Section 7 concludes
with a discussion of future work.

2 Preliminaries
The feedback-based technique utilizes an abstraction of

the GUI’s run-time state collected and analyzed during the
execution of test cases that cover two-way interactions be-
tween GUI events in order to generate test cases that test
multi-way interactions. This section defines these terms and
introduces notations for subsequent sections.

This work focuses on the class of GUIs that accept dis-
crete events performed by a single user; the events are de-
terministic, i.e., their outcomes are completely predictable.1

1Testing GUIs that react to temporal and non-deterministic events and

A GUI in this class is composed of a set W of widgets (e.g.,
buttons, text fields); each widget w ∈ W has a set Pw of
properties (e.g., color, size, font). At any time instant, each
property p ∈ Pw has a unique value (e.g., red, bold, 16pt);
hence each value is evaluated using a function from the set
of the widget’s properties to the set of values Vp. The GUI
state at any time instant is a set of triples (w, p, v), where
w ∈ W, p ∈ Pw and v ∈ Vp. A set of states SI is called the
valid initial state set for a particular GUI if the GUI may
be in any state Si ∈ SI when it is first invoked. The state
of a GUI is not static; events e1, e2, . . . , en performed on
the GUI change its state and hence are modeled as functions
that transform one state of the GUI to another. The function
notation Sj = ex(Si) denotes that Sj is the state resulting
from the execution of event ex in state Si.

GUIs contain two types of windows: (1) modal win-
dows2 (e.g., FileOpen, Print) that, once invoked, mo-
nopolize the GUI interaction, restricting the focus of the
user to the range of events within the window until explicitly
terminated (e.g., using Ok, Cancel), and (2) modeless win-
dows (e.g., Find/Replace) that do not restrict the user’s
focus. If, during an execution of the GUI, modal window
Mx is used to open another modal window My, then Mx

is called the parent of My for that execution.
The seed test suite is generated using an event-

interaction graph (EIG) model of the GUI, which is
obtained automatically using a standard GUI-reverse-
engineering algorithm [12]. The EIG abstraction of the GUI
represents only two types of GUI events: termination and
system-interaction events. Termination events close modal
windows. Other structural events are used to open and
close menus and modeless windows, and open modal win-
dows, but are not represented in the EIG (for reasons pre-
sented in earlier work [12]). The remaining events, called
system-interaction events, do not manipulate the structure
of the GUI. Directed edges between nodes encode execution
paths, i.e., sequences of events, in the GUI. For example, an
edge (ex, ey) shows that ey may be executed after ex along
some execution path.

The basic motivation behind using a graph model to rep-
resent a GUI is that various types of existing graph-traversal
algorithms (with well-known run-time complexities) may
be used to “walk” the graph, enumerating the events along
the visited nodes, thereby generating test cases. In earlier
research [12], an algorithm called GenTestCases was
implemented that returned all possible paths (sequences of
events) in the graph bounded to a specific length of 2. These
length-2 sequences are said to test all two-way interactions
between the EIG events. This research will generate test
cases for multi-way interactions, i.e., longer paths in an

those generated by other applications is beyond the scope of this research.
2Standard GUI terminology, e.g., see

http://java.sun.com/products/jlf/ed2/book/HIG.Dialogs.html.
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EIG. Because EIG nodes do not represent events to open
or close menus, or open windows, the sequences obtained
from the EIG may not be executable. At execution time,
other events needed to reach the EIG events are automati-
cally generated, yielding an executable test case [12]. To
allow a clean application exit, a test case is also automati-
cally augmented with additional events that close all open
modal windows before the test case terminates.

If e1 and e2 are two different events in a GUI’s EIG, (e1,
e2) is an edge, and S0 ∈ SI is the initial state of the GUI,
then e1(S0) is the GUI state after performing e1, e2(S0)
is the GUI state after performing e2, and e2(e1(S0)) is the
GUI state after performing the event sequence < e1; e2 >.

3 Related Work
To the best of our knowledge, there is no prior work

on the use of run-time state as feedback for GUI testing.
However, several researchers have used feedback from test-
execution results to automatically generate additional test
cases for non-GUI software. This section summarizes some
of their work, followed by a discussion of model-based
GUI-testing techniques.
Feedback-based Test Case Generation: The work of Xie
et al. is most closely related to this research [20]. Their
goal is to generate a suite of unit tests that can expose more
faults than an initial test suite. During the execution of the
initial suite, feedback in the form of operational abstrac-
tions (summaries of program run-time state) is used to au-
tomatically generate new unit tests that result in operational
violations (previously unobserved program behaviors) such
as method-precondition violations. Other researchers have
also used operational abstractions, combined with symbolic
execution, to guide the generation of test cases [3].

Boyapati et al. also employ a feedback-based technique
to obtain all non-isomorphic inputs (test cases) for a method
[2]. A programmer develops (1) a “guided test generation
engine” that outputs test cases to explore the method’s input
space and (2) a predicate from the method’s preconditions
to check the validity of the generated input. This technique
prunes a large portion of the input space by monitoring the
execution of the predicate on an initial test suite, guiding the
engine and yielding a suite of all non-isomorphic inputs.

All other techniques in this category instrument elements
(lines, branches, etc.) of the program code, execute an ini-
tial test case/suite, obtain a coverage report that contains
the outcomes of conditional statements, and use automated
techniques to generate better test cases. The techniques
differ in their goals (e.g., cover a specific program path,
satisfy condition-decision coverage, cover a specific state-
ment) and their test-case generation algorithms. For exam-
ple, Miller et al. [14] use code coverage and decision out-
comes to generate floating-point test data.

Several iterative techniques have been used to generate a

test case that executes a given program path [6, 7, 9]. The
generation is formulated as a function minimization prob-
lem. The gradient-decent approach is used to gradually ad-
just an initial test case so that it executes the given path.
Control-flow information in the form of branch-predicate
outcomes is collected during software execution.

The chaining approach [5] has been used to generate test
cases, each to cover a given program statement. An initial
test case is executed; the program’s control-flow and data-
flow are monitored and used to determine whether the test
case will lead to the given statement. If not, the branch
function of the problematic branch is used to modify the
test case. This process continues until the given statement
is executed.

Genetic algorithms have also been used to automatically
generate test suites that satisfy the condition-decision ade-
quacy criterion [13]. A fitness function is defined for each
branch. An initial test suite is obtained and executed. The
fitness functions are used to evaluate the “goodness” of each
test case. If a test case covers a new condition-decision, it is
considered to be “more fit.” The test cases in the gene pool
evolve to obtain a new generation of test cases. The process
stops until a desired level of fitness is obtained.
Model-based GUI Testing: Various types of models have
been used for GUI test-case generation. The most popu-
lar are state-machine models [17, 18]. These models are
created manually, requiring considerable effort. Moreover,
the fault-detection effectiveness of the generated test cases
depends largely on the tester’s definition of “GUI state” and
the technique used to generate the test cases from the model.
For example, the tester may want to “cover all the states” or
“cover all the state transitions” in the state-machine. Con-
sequently, two testers who test the same GUI application,
using different definitions of GUI state and test adequacy
criteria, may detect different sets of faults. Hence, these
techniques produce results that are non-repeatable across
communities of testers. Several new techniques that uti-
lize search-based algorithms to generate (and improve) test
cases also suffer from the above problems. Recent examples
include AI planning [11] and genetic algorithms [8].

In order to minimize manual work and produce repeat-
able results across multiple testers, several new systematic
techniques based on graph models of the GUI have re-
cently been developed. These techniques leverage a stan-
dard reverse-engineering technique [12] to automatically
create the GUI model. The most successful graph mod-
els that have been used for GUI test-case generation in-
clude Event Flow Graphs (EFG) [10] and Event Interaction
Graphs (EIG), also discussed in the previous section. The
nodes in these graphs represent events; the edges represent
relationships between pairs of events. Test cases are sys-
tematically generated to satisfy various types of adequacy
criteria. One criterion (called the event-interaction crite-
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rion [12]) requires each edge in an EIG to be covered by at
least one test case; test cases are generated by picking the
two events on each edge and using a shortest-path algorithm
to reach these events from the application’s main window.
Such techniques are automated and the algorithms always
produce the same test suites, making the results repeatable.

The primary problem with these approaches is that the
number of event sequences grows exponentially with se-
quence length. Hence, in previous work, we have been able
to generate test cases that cover all edges in the EIG, i.e.,
they test two-way interactions between GUI events. This
paper extends our previous work by systematically generat-
ing test cases for multi-way interactions.

4 Event Semantic Interaction Graph
The new feedback-based technique is based on our abil-

ity to identify sets of events that need to be tested together
in multi-way interactions. Because each event is executed
using its corresponding event handler, one could hypothe-
size that all events whose event handlers interact in terms
of code elements (e.g., share variables, exchange messages,
share data) should be tested together. For example, con-
sider the event handlers for the events e1 and e2 shown in
Figure 1. As these event handlers interact via the variable
currentTool, the events e1 and e2 should be tested together.
Similarly, events e3 and e4 interact via curZoom and should
be tested together. However, since the handlers for e1 and
e3 do not interact, these events need not be tested together.

One may employ a variety of static program-analysis
techniques to identify such interactions [16]. However,
the limitations of static analysis in the presence of multi-
language GUI implementations, callbacks for event han-
dlers, virtual function calls, reflection, and multi-threading
are well known [16]. Also, since most GUI applications em-
ploy a large number of library elements (e.g., Java Swing),
source code may not be available for parts of the GUI.

This research avoids static analysis; instead it approxi-
mates the identification of interactions between event han-
dlers by analyzing feedback from the run-time state of the
GUI on an initial test suite. Recall that testing all two-way
interactions between events is already quite practical with
the smoke test suite; we treat this suite as a starting point
to collect the feedback. The remaining question, addressed
in this section, is: what dynamic behavior constitutes event
interaction? Admittedly, several different types of dynamic
behaviors may point to interactions between event handlers.
It is not our intention to identify all such behaviors; rather,
we will demonstrate proof-of-concept by focusing on a few
behaviors. Extensions may easily be devised to make the
technique more effective.

Informally, event ex interacts with event ey, if, when ex-
ecuted together in a sequence < ex; ey >, they produce a
GUI state that is, in some sense, different from the two states

e1:: select ellipse tool
public void ellipsePerformed (java.awt.event.ActionEvent evt){
...; currentTool = toolEllipse; ... }

e2:: drag mouse on canvas
public void mouseDragged(java.awt.event.MouseEvent evt) {
...; currentTool.dragAction(newEvt, center); ... }

e3:: set zoom factor to double
public void zoom1Performed(java.awt.event.ActionEvent evt) {
...; curZoom = zoom1; ... }

e4:: click left mouse button on canvas
public void mousePressed(java.awt.event.MouseEvent evt) { ...
if (currentTool == toolZoom){ // if the zoom tool is being used

int temp = toolZoom.getZoom(); // current zoom level
if (SwingUtilities.isLeftMouseButton(evt){ switch (temp){

case zoom1: zoom2.setBG(pColor); curZoom = zoom2;
case zoom2: zoom3.setBG(pColor); curZoom = zoom3;... } }}

theCanvas.repaint();... }

Figure 1. Example Event Handlers

that would be obtained had ex and ey been executed in isola-
tion. Consider the example shown in Figure 2. The top-left
shows the initial state (S0) of an application. After an event
e1 (event handler shown in Figure 1) is executed, the GUI
changes its state to the one shown in the top-right (e1(S0)).
In this state, the “ellipse tool” remains selected. Starting
from S0, one can execute another event (e2) and obtain the
state shown in the bottom-left (e2(S0)); an area of the can-
vas has been selected. If, however, the sequence < e1; e2 >

is executed in S0, a new state (e2(e1(S0))), shown in the
bottom-right is obtained; an ellipse has been created. This
execution is equivalent to the execution of event e2 in the
state e1(S0). According to the intuition presented in the be-
ginning of this paragraph, because the sequence < e1; e2 >

produces a GUI state that is different from the two states
that would be obtained had e1 and e2 been executed in iso-
lation, event e1 interacts with event e2, and should be tested
together to check for interaction problems. The code for e1

and e2 shows that they do in fact interact.
The usage of “different from” above is somewhat mis-

leading. It seems to suggest that checking state non-
equivalence would be sufficient to identify interacting
events, i.e., by using a predicate P such as (e1(S0) 6=
e2(e1(S0))) ∨ (e2(S0) 6= e2(e1(S0))). However, this is
not the case. Consider an example of two non-interacting
events, ex and ey, which toggle the states of two indepen-
dent check-box widgets �

x and �
y, respectively. Start-

ing in a state S0 = {
�

x,
�

y}, i.e., both boxes unchecked,
each event would “check” its corresponding check-box,
i.e., ex(S0) = {

��
x,

�
y}, ey(S0) = {

�
x,

��
y}, and

ey(ex(S0)) = {
��

x,
��

y}. Even though P would evaluate to
TRUE for this example, events ex and ey are non-interacting
and need not be tested together. In order to avoid this con-
fusion, we now formalize the notion of interacting events.
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Figure 2. Execution of Events e1 and e2

It turns out that the example illustrated in Figure 2 is just
one case of how the GUI state may be used to pinpoint in-
teractions between event handlers – there are many more.
This research provides a starting point by identifying a total
of six cases. Intuitively, these cases will describe (as evalu-
ative predicates) situations in which e1 and e2 interact, i.e.,
the combined effect of e1 and e2 is different from the effect
of the individual events e1 and e2. In these six cases, e1 and
e2 are system-interaction events in modeless windows; this
situation will be called Context 1.
Case 1: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, s.t.
3 ((v 6=

v′) ∧ ((w, p, v) ∈ {S0 ∩ e1(S0) ∩ e2(S0)}) ∧ ((w, p, v′) ∈
e2(e1(S0)))); there is at least one widget w with property
p with initial value v (hence the triple (w, p, v) is in S0),
which is not affected by the individual events e1 or e2 (the
triple is also in e1(S0) and e2(S0)); however, it is modified
when the sequence < e1; e2 > is executed, i.e., the value of
w’s property p changes from v to v′.
Case 2: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, v
′′ ∈

Vp, s.t. ((v 6= v′) ∧ (v′ 6= v′′) ∧ ((w, p, v) ∈
{S0 ∩ e2(S0)}) ∧ ((w, p, v′) ∈ e1(S0)) ∧ ((w, p, v′′) ∈
e2(e1(S0)))) there is at least one widget w with property p

that has an initial value v, which is not modified by the event
e2; it is modified by e1; however, it is modified differently
by the sequence < e1; e2 >.
Case 3: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, v
′′ ∈

Vp, s.t. ((v 6= v′) ∧ (v′ 6= v′′) ∧ ((w, p, v) ∈
{S0 ∩ e1(S0)}) ∧ ((w, p, v′) ∈ e2(S0)) ∧ ((w, p, v′′) ∈
e2(e1(S0)))) there is at least one widget w with property p

that has an initial value v, which is not modified by the event
e1; it is modified by e2; however, it is modified differently
by the sequence < e1; e2 >. Note that this case is different
from Case 2 because the event sequence remains the same,
i.e., e1 is executed before e2.
Case 4: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, v
′′ ∈ Vp, v̄ ∈

3Notation for “such that”

Vp, s.t. ((v 6= v′)∧(v 6= v′′)∧(v′′ 6= v̄)∧((w, p, v) ∈ S0)∧
((w, p, v′) ∈ e1(S0))∧((w, p, v′′) ∈ e2(S0))∧((w, p, v̄) ∈
e2(e1(S0)))); there is at least one widget w with property p

that has an initial value v, which is modified by individual
events e1 and e2; however, it is modified differently by the
sequence < e1; e2 >.

The above four cases all handle widgets that per-
sist across the three states being considered, i.e., e1(S0),
e2(S0), and e2(e1(S0)). In many cases, event execution
“creates” new widgets, e.g., by opening menus; the next
case handles newly created widgets.
Case 5: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, s.t. ((v 6=
v′)∧ ((w, p, v) ∈ ex(S0))∧ ((w, p, v) 6∈ S0)∧ ((w, p, v′) ∈
e2(e1(S0)))); there is at least one new widget w with prop-
erty p and value v in ex(S0), i.e., it was created by event ex

(either e1 or e2) but did not exist in state S0; it was created
by the sequence < e1; e2 > but with a different value for
some property.

A common occurrence of event interaction in GUIs is
enabling/disabling widgets, which may be modeled as the
widget’s ENABLED property being set to TRUE or FALSE.
Case 6: ∃w ∈ W, ENABLED ∈ Pw, TRUE ∈
VENABLED, FALSE ∈ VENABLED, s.t. (((w, ENABLED, FALSE) ∈
S0)∧((w, ENABLED, TRUE) ∈ e1(S0))∧EXEC(e2, w)); there
exists at least one widget w that was disabled in S0 but en-
abled by e1. Event e2 is performed on w, represented by a
predicate EXEC(e2, w).

Modal windows create special situations for Cases 1
through 6 due to the presence of termination events. User
actions in these windows do not cause immediate state
changes; they typically take effect after a termination event
has been executed, leading to contexts 2 and 3.
Context 2: If both e1 and e2 are associated with wid-
gets that are contained in one modal window with termi-
nation event TERM, then the definitions of e1(S0) , e2(S0),
and e2(e1(S0)) are modified as follows: e1(S0) is the
state of the GUI after the execution of the event sequence
< e1; TERM >, e2(S0) is the state of the GUI after the exe-
cution of the event sequence < e2; TERM >, and e2(e1(S0))
is the state of the GUI after the execution of the event se-
quence < e1; e2; TERM >. All the predicates defined in
Cases 1 through 6 apply, using these modified definitions,
for e1 and e2 in the same modal window.
Context 3: If e1 is associated with a widget contained in
a modal window with termination event TERM, and e2 is
associated with a widget contained in the modal window’s
parent window (i.e., the window that was used to open the
modal window) then e1(S0) is the state of the GUI after
the execution of the event sequence < e1; TERM >, e2(S0)
is the state of the GUI after the execution of the event e2,
and e2(e1(S0)) is the state of the GUI after the execution
of the event sequence < e1; TERM; e2 >. All the predicates
defined in Cases 1 through 6 apply.
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There is an Event Semantic Interaction relationship be-
tween two events e1 and e2 if and only if at least one of the
predicates in Cases 1 through 6 evaluates to TRUE; this re-

lationship is written as e1
n(m)
−→ e2, where the number n is

one of the case numbers 1 through 6 above; m is the context
number. If multiple cases apply, then one of the case num-
bers is used. Due to the specific ordering of the events in the
sequence < e1; e2 >, the ESI relationship is not symmetric.

Once all of the cases have been implemented, the
feedback-based process execution is straightforward. The
seed suite is executed on the GUI software. The state infor-
mation is collected and the above predicates are evaluated
for each pair of system-interaction events that are either (1)
directly connected by an edge (Context 1) or (2) connected
by a path that does not contain any intermediate system-
interaction events (contexts 2 and 3). If one of the pred-
icates evaluates to TRUE, the two events are ESI-related.
When all the ESIs in a GUI have been identified, a graph
model called the ESI graph (ESIG) is created. The ESIG
contains nodes that represent events; a directed edge from
node nx to ny shows that there is an ESI relationship from
the event represented by nx to the event represented by ny.

The ESIG may be traversed using a modified version of
the GenTestCases algorithm discussed in Section 2. The
differences are that (1) an ESIG may contain multiple con-
nected components in which case the event sequences are
generated for each component separately, and (2) the length
of the obtained sequences is now a tunable parameter in-
stead of a fixed number 2. The feasibility study in the next
section uses values 3, 4, and 5 for this parameter.

5 Feasibility Study
The test cases obtained from the GenTestCases algo-

rithm can be generated and executed automatically on the
GUI. The only unavailable part is the test oracle, a mech-
anism that determines whether an AUT executed correctly
for a test case. In this research, an AUT is considered to
have passed a test case if it did not “crash” (terminate un-
expectedly or throw an uncaught exception) during the test
case’s execution; otherwise it failed. Such crashes may be
detected automatically by the script used to execute the test
cases. The EIG and ESIG, and their respective test cases
may also be obtained automatically. Hence, the entire end-
to-end feedback-based GUI testing process for “crash test-
ing” could be executed without human intervention.

Implementation of the above process also included set-
ting up a database for text-field values. Since the overall
process needed to be fully automatic, a database containing
one instance for each of the text types in the set {negative
number, real number, long file name, empty string, special
characters, zero, existing file name, non-existent file name}
was used. Note that if a text field is encountered in the GUI,
one instance for each text type is tried in succession.

This process provided a starting point for a feasibility
study to evaluate the ESIG-generated test cases. The fol-
lowing questions needed to be answered to determine the
usefulness of the overall feedback-based process:
Q1: How many test cases are required to test two-way in-
teractions in an EIG? How does this number grow for 3-, 4-,
..., n-way interactions?
Q2: In how many ESI relationships does a given event par-
ticipate? How many test cases are required to test two-way
interactions in an ESIG? How does this number grow for 3-,
4-, ..., n-way interactions?
Q3: How do the ESIG- and EIG-generated test suites com-
pare in terms of fault-detection effectiveness? Do the for-
mer detect faults that were not detected by the latter?

To answer these questions while minimizing threats to
external validity, this study was conducted using four ex-
tremely popular GUI-based open-source software (OSS)
applications downloaded from SourceForge. The fully-
automatic crash testing process was executed on them and
the cause (i.e., the fault) of each crash in the source code
was determined.
STEP 1: Selection of subject applications. Four popu-
lar GUI-based OSS (CrosswordSage 0.3.5, FreeMind 0.8.0,
GanttProject 2.0.1, JMSN 0.9.9b2) were downloaded from
SourceForge. These applications have been used in our pre-
vious experiments [19]; details of why they were chosen
have been presented therein. In summary, all the applica-
tions have an active community of developers and a high
all-time-activity percentile on SourceForge. Due to their
popularity, these applications have undergone quality assur-
ance before release. To further eliminate “obvious” bugs, a
static analysis tool called FindBugs was executed on all the
applications; after the study, we verified that none of our
reported bugs were detected by FindBugs.
STEP 2: Generation of EIGs & seed test suites. The
EIGs of all subject applications were obtained using reverse
engineering. To address Q1 above, the number of test cases
required to test 2-, 3-, 4-, and 5-way interactions was com-
puted. The result for each application is shown as a solid
line in Figure 3 (the y-axis in all these plots is a logarithmic
scale). The plot shows that the number of test cases grows
exponentially with the number of interactions. The number
quickly becomes unmanageable for more than 2- and 3-way
interactions. In this study, only two-way interactions were
tested by the seed test suites. The seed test suites contained
920, 51,316, 29,033, and 4634 test cases for Crossword-
Sage, FreeMind, GanttProject, and JMSN, respectively.
STEP 3: Execution of the seed test suite. The entire seed
suite executed without any human intervention. It executed
in 0.39, 30.83, 22.89, and 2.68 hours on CrosswordSage,
FreeMind, GanttProject, and JMSN, respectively. In all,
163, 66, 14, and 34 test cases caused crashes; these crashes
were caused by 5, 4, 3, and 3 faults (as defined earlier) for
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Figure 3. Test Case Space Growth

CrosswordSage, FreeMind, GanttProject, and JMSN, re-
spectively. The GUI’s run-time state was recorded during
test execution. All faults were fixed in the applications.
STEP 4: Generation of the ESIG. The above feedback
was used to obtain the ESIs for each application. To ad-
dress Q2, the number of ESI relationships in which each
event participates is shown in Figure 4. Each event in the
GUI has been assigned a unique integer ID; all event IDs
are shown on the x-axis. The y-axis shows the number of
ESI relationships in which the event participates. The result
shows that certain events dominate (around 25%) the ESI
relationship in GUIs. In the future, we will create a classifi-
cation of these dominant events.

The ESIs were used to obtain the ESIGs and, subse-
quently, additional test cases. The number of test cases re-
quired to test 2-, 3-, 4-, and 5-way interactions using an
ESIG is shown, for each application, as a dotted line in
Figure 3. This result shows that the growth of the ESIG-
generated test cases appears manageable for 3-, 4-, and
(given sufficient resources) 5-way interactions. They are in
fact reduced from the EIG by 99.78%, 99.97%, and 99.99%
for 3-, 4-, and 5-way interactions, respectively. In this study,
test cases for 3-, 4-, and 5-way interactions were generated.
The total number of test cases for these interactions was
3592, 160,629, 199,127, and 18,144 for CrosswordSage,
FreeMind, GanttProject, and JMSN, respectively.
STEP 5: Execution of the test cases. To address Q3, all
the newly-generated test cases were executed. The execu-
tion lasted for several days. In all, 68, 157, 109, and 20
test cases caused crashes; they were caused by 3, 3, 3, and
1 faults for CrosswordSage, FreeMind, GanttProject, and
JMSN, respectively. These faults had not been detected by
the two-way test cases. The result shows that the ESIG-
based test cases help to detect additional faults.

This study demonstrated that test suites for multi-way
GUI event interactions are able to detect additional faults
compared to two-way interactions. In earlier work, we
have shown that two-way interactions yield high code cov-
erage, while multi-way interactions cover little additional

code [10]. The additional fault-detection effectiveness of
multi-way interactions is due to the execution of combina-
tions of events in different execution orders. Also, this study
did not use the newly-generated test cases in its seed suite
to generate additional test cases; the extension will be ex-
plored and its benefits demonstrated in future work.

As always, results of studies should be interpreted with
threats to validity in mind. Several such threats are identi-
fied in this study. First, four Java applications have been
used as subject programs. Although they have different
types of GUIs, this does not reflect the wide spectrum of
possible GUIs that are available today. Moreover, the appli-
cations are extremely GUI-intensive, i.e., most of the code
is written for the GUI. The results will be different for ap-
plications that have complex underlying business logic and
a fairly simple GUI. Second, all the subject applications are
open-source, typically developed by volunteer developers
and might be more bug-prone than software implemented
by paid developers. Third, the run-time state of GUI wid-
gets is obtained using Java Swing API. These widgets may
have additional properties that are not exposed by the API.
Hence the set of ESI relationships may be incomplete.

6 Discussion
Several lessons were learned from this study. First, the

developers of the applications felt that the crashes revealed
important faults in the code. Several crashes were reported
on each application’s bug-reporting site. In response, some
of them have already been fixed in subsequent releases of
the applications. For example, Bugs #1536224, #1536229,
and #1536205 (SourceForge-assigned numbers) have been
fixed by the developers of FreeMind.

Second, the study provided evidence that the intuition
behind using the GUI’s run-time state to find sets of inter-
acting events was useful. Upon closer examination, sev-
eral test cases that caused crashes had executed events that
shared some code elements. The first evidence of the use-
fulness of the state-based feedback approach was apparent
even with the seed test suite.

Bug#1536205 of FreeMind was detected using a test
case from the seed suite. It caused a NullPointerException
when reverting back from a newly created FreeMind map
to its previously saved version.4 The test case contained
two system-interaction events: e1 – Create a new FreeMind
map, and e2 – Revert. FreeMind starts with a default map;
event e1 creates a new map with one node; event e2 reverts
the map back to the previously saved version. These events

are related using Case 2, i.e., e1
2(1)
−→ e2. When executed to-

gether, they modify the map object; executed individually,
e2 does not change the state, as there is no saved map.

The crash occurred because the event handlers of e1 and

4FreeMind is a “mind mapping” software.
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Figure 4. ESI Distribution in OSS

e2, contained in the NewMapAction.class and Re-
vertAction.class, respectively, improperly handled
the map object’s instance variable file used to keep track
of the physical file corresponding to the map. A new map
object, created by e1 has no associated file; the variable
file remains null. A subsequent revert event invokes
createRevertXmlAction(file) that in turn invokes
file.getAbsolutePath(). With file being null,
a NullPointerException is thrown.

This example reinforced our intuition linking the run-
time state resulting from the execution of events to interac-
tions among event-handler code. The ESIG test cases were
more interesting and provided additional insights. The re-
mainder of this section describes the ESIG test cases in de-
tail and the causes of the crashes they detected.
Crash 1: One test case, which executed two events in a
modal window, then the window’s termination event, and
finally an event in the parent window, caused a NullFor-
matException in FreeMind by trying to create a new Free-
Mind map with a non-numeric font size. The test case con-
tained four events: e1 – Select default parameters to set,
e2 – Set default font size in text field, e3 – Save preference
settings, and e4 – Create a new FreeMind map. Events e1

and e2 are system-interaction events in a modal window ti-
tled Settings; e3 is a termination event in the same win-
dow; and e4 is a system-interaction event in FreeMind’s
main window. The relationships between the events are

e1
6(2)
−→ e2

3(3)
−→ e4. Event e1 enables e2; the font-size cannot

be set unless the text-field (for e2) is enabled by e1. Setting
a non-numeric font size with e2, then executing the termi-
nation event e3, causes e4 to try to create a a new map with
an invalid font size, resulting in a crash.

The crash occurred because the event handlers
for e1, e2, e3, and e4, contained in Option-
Panel$ChangeTabAction, OptionPanel.class,
OptionPanel.closeWindow(), and NewMa-
pAction.class, respectively, made different assump-

tions about the default font size, which FreeMind maintains
as a string object. Event e4, performed by clicking on the
New... menu-item, creates a new map. During map
creation, it obtains the preference settings, including the
default font size, which it (incorrectly) assumes to be an
integer value. An invocation of Integer.parseInt()
on the string causes the crash.

Lessons Learned: This example demonstrated that event
handlers interact in complex ways. Because event handlers
may have been developed by different programmers, they
may have made incorrect assumptions about the validity of
shared objects, leading to integration problems. Moreover,
Context 3 that handles interactions among events contained
in multiple windows are extremely useful, since achieving
the combined effect of events in a modal window requires
the execution of the window’s termination event.

Crash 2: An event sequence that executed across two cas-
cading (one opened by the other) modal windows, followed
by the parent modal window’s termination event, caused a
NullPointerException in GanttProject. The sequence tried
to change the type of a file to be imported after it had se-
lected the name of the file from a list. Developers of the
software had expected that users would select the type first,
and then select the file name. The sequence contained five
events: e1 – Choose import file type T1, e2 – Choose import
file, e3 – Click OK to close FileChooser window, e4 –
Choose import file type T2, e5 – Click OK to close import
file window. Events e1 and e4 are system-interaction events
in a modal window titled Import; event e5 is the window’s
termination event. Event e2 is a system-interaction event in
the FileChooser modal window; event e3 is the win-
dow’s termination event. Note that another event is used af-
ter e1 to open the FileChooser window; it is not shown
here because it is not a part of the EIG. The relationships

between the events are e1
4(2)
−→ e2

4(2)
−→ e4. The test case se-

lects a file type (e1) and the file name (e2), but then changes
the type (e4) without changing the file name. Executing the
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termination event results in a crash.
The crash was caused because the event handlers of the

events e1, e2, e3, e4, and e5 contained in Importer-
ChooserPage.class, FileChooserPage.class,
JFileChooser.closeWindow(), Importer-
ChooserPage.class, and ImportFileWiz-
ardImpl.onOkPressed(), respectively, failed to keep
track of the relationship among a file’s name, its type,
and the file suffix in the name. GanttProject records the
import file’s type in myProject and its name in myS-
tate. ImportFileWizardImpl.onOkPressed()
examines the selected type and assumes that the file name
will have the correct suffix. If, however, the filename
does not have the assumed suffix, an object Open remains
null. Execution of Open.load(file) results in a
NullPointerException.
Lessons Learned: This example reinforced our original
motivation for developing new techniques for model-based
GUI testing. Developers often cannot predict how users
will use the software. They typically test the software for
a small number of obvious, predictable use-cases. Develop-
ers need to use automated techniques to test their software
for a larger number of unpredictable event sequences.
Crash 3: One event sequence caused a NullPointerEx-
ception in FreeMind after executing a Cancel event in a
modal window. It tried to close a window that was trying to
save a file with an empty name. The sequence contained
six events: e1 – Create a new FreeMind map, e2 – Add
a child node on current FreeMind map, e3 – Insert a hy-
perlink to the child node, e4 – Click OK to close window,
e5 – Click the hyperlink; side effect opens the Save win-
dow, and e6 – Click the Cancel button to close the Save
window. e1 and e2 are system-interaction events in Free-
Mind’s main window; e3 is a system-interaction event in a
modal window Hyperlink; e4 is Hyperlink’s termi-
nation event; e5 is a system-interaction event in the main
window with the side effect of opening a modal window
Save; e6 is Save’s Cancel termination event. Note that
another event (not shown here) is used to open the Hyper-
link window. The relationships between the events are

e1
4(1)
−→ e2

4(1)
−→ e3

6(3)
−→ e5.

The crash occurred because the event handlers of
e1, e2, e3, e4, e5, and e6 contained in NewMa-
pAction.class, NewChildAction.class,
SetLinkByTextFieldAction.class, Hyper-
LinkDialog.closeWindow(), NodeMouseMo-
tionListener.mousePressed(), and Con-
trollerAdapter$loadURL(), respectively, failed to
set an instance variable file, and check its validity before
associating it with a hyperlink. The association, caused by
getFile().toURL(), results in a crash as soon as the
termination event is executed.
Lessons Learned: This example demonstrated two points.

First, software crashes can occur after the execution of the
Cancel button; we had not expected this result. Sec-
ond, this sequence contained 6 events; in our study the
GenTestCases algorithm generated sequences that had
at most 5 events. The only reason that Cancel was ex-
ecuted is that GenTestCases closes all open windows
(using Cancel) after a test case has completed execution.
Summary: The above crashes (and the ones not presented
here) illustrated several important points. First, the event
handlers for events are typically implemented in multiple
classes. Static analysis that is limited to intra-class anal-
ysis fails to reveal problems with interacting events. Sec-
ond, with the increasing flexibility of new user interfaces,
programmers must take steps to ensure that their software
works correctly for a large input space. They should check
the validity of objects whenever possible before use; text
fields in particular should be restricted to the smallest in-
put domains possible. For example, an e-mail address text
field in JMSN caused a crash after a non-e-mail string was
entered. The developers had simply checked whether the
length of the entered text was non-zero, which is clearly in-
adequate. Third, most of the test cases that revealed the
crashes did not add to the code coverage (statement and
branch) of the seed test suite. They were able to detect the
faults because of the permutations of events that were ex-
ecuted on the GUI. Finally, we expect that we would not
have found many of these faults had we simply performed a
random walk of the EIGs. The walk would have used four
times as many events, adding a significant space of interac-
tions, and it would have generated sequences of unrelated
events. Comparison of our technique to such a “random
walk” approach is a topic for future research.

7 Conclusions and Future Work
This paper presented a new technique to test multi-way

interactions among GUI events. The technique is based on
analysis of feedback obtained from the run-time state of
GUI widgets. A seed test suite is used as a starting point
for feedback collection. Subsequently-generated and- exe-
cuted test cases are expected to be used for the analysis, iter-
atively yielding additional test cases. This algorithm can be
stopped any time to yield useful results. The technique was
demonstrated via a feasibility study on four fielded software
applications. The results of the study showed that the test
cases generated using the feedback were useful at detecting
serious and relevant faults in the applications.

This research has presented several exciting opportuni-
ties for future work. In the immediate future, the three con-
texts for the cases will be simplified and, if possible, com-
bined. The current special treatment of termination events,
which led to an additional two contexts, will be revised.
One possibility is the revision of the EIG model; the elimi-
nation of all termination events from this model will be ex-
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plored. This revision will also lead to the definition of new,
fundamentally different cases for the ESI relationship.

The results of the feasibility study showed that certain
events in the GUI dominate the ESI relationship. These
events will be studied and classified. In the future, ad-
ditional GUI applications and software problems beyond
crashes will be studied. The run-time state information
was collected using the Java Swing API for standard Swing
widgets. Future work involves incorporating customized
API for application-specific widgets into feedback collec-
tion and analysis.

The current test-case generation algorithms output a
set of all possible event sequences bounded by a pre-
determined length. As the goal of this work is to generate
multi-way interactions among GUI events, other techniques
(such as covering arrays [21]) designed to minimize the
number of test cases while retaining high interaction cov-
erage will be explored.

The analysis summarized in Section 6 led to a deeper
understanding of the relationship between GUI events and
the underlying code. This may lead to new techniques that
combine dynamic analysis of the GUI and static analysis of
the event handler code. For example, the code for related
events may be given to a static-analysis engine that could
examine the code for possible interactions that are only ap-
parent at the code level, e.g., data-flow relationships.

Some of the challenges of GUI testing are also relevant
to testing of Web applications and object-oriented software.
One way to test these classes of software is to generate test
cases that are sequences of events (either Web user actions
or method calls). Some of the techniques developed in this
research may be used to prune the space of all possible in-
teractions that need to be tested.

The feedback currently obtained at run time is in the
form of GUI widgets. Mechanisms, such as reflection, in
modern programming languages may be used to obtain ad-
ditional feedback from non-GUI objects. The definition of
state, in terms of a set of objects with properties and val-
ues, is general; it may be applied to any executing object.
Some of the six cases may be adapted for non-GUI objects.
Another straightforward way to enhance the feedback is to
instrument the software for code coverage and run-time in-
variant collection. This feedback may be used to generate
new types of test cases.
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