Alternating GUI Test Generation and Execution

Xun Yuan Atif M. Memon
Department of Computer Science Department of Computer Science
University of Maryland, University of Maryland,
College Park, MD 20742 College Park, MD 20742
Xxyuan@s. und. edu ati f @s. und. edu
Abstract output, and waits for the next input.

This flexibility creates problems during execution be-

Users of today’s software perform tasks by interacting cause of the large number of permutations of events that
with a graphical user interface (GUI) front-end via se- need to be handled by the GUI. In principle, event han-
quences of input events. Due to the flexibility offered by dlers may be executed in any order; in earlier work, we
most GUIs, the number of event sequences grows exponerhave shown that certain event interactions lead to serious
tially with length. One ubiquitous challenge of GUI test- software failures [12]. Because thpace of all possible in-
ing is to selectively generate those sequences that lead tQeractionswith a GUI is enormous, each event sequence can
potentially problematic states. This paper presents ALT, aresultin a different state, and the software may, in pritegip
new technique that generates GUI test cases in batches, byeed to be tested in all of these states.
leveraging GUI run-time information from a previously run One of our existing model-based GUI testing solutions,
batch to obtain the next batch. Each successive batch con-

_ . . motivated by work on search algorithms for software test-
sists of “longer” test cases that expand the state space to being [9], is based on a directed graph model of the GUI called
explored, yet prune the “unimportant” states. The “alter-

i X event-interaction graph (EIG) [12]. EIG nodes represdnt al
nating” nature of ALT allows it to enhance the next batch by 5\ avents except those that open menus and windows; a

leveraging certain relationships between GUI events (e.g. directed edge from node, (representing event,) to n,,

one enables the other, one alters the other’s executiort) tha (representing event,) shows that event, may be executed
are revealed only at run-time and non-trivial to infer stati either immediatelylafteem or after exécuting some inter-

caII_y. An empirical study on four_ fielded GUI-bas_ed aPP'_i' mediate menu- and/or window-opening events. Test cases
cations demonstrates that ALT is successful at identifying ;o generated, each covering one directed edge (a pair of

complex failure-causing interactions between GUI events. events) in the EIG. These test cases are referred to as “2-

way covering” because each test targets a unique pair of
EIG events [12]. Our previous empirical studies showed
1 Introduction that although these test cases reveal a large number of GUI
faults, additional faults may be detected by executing cer-
As computers find increasingly more general-consumerain types of multi-way coveringe(g, 3-, 4-, 5-way) test
oriented applications, the class of software applicatthes cases [12,17]. For example, a 3-way covering test case is
use a graphical-user interface (GUI) front-end [4] is becom ap event sequence e;;es;e; > such that(e,, e5) and
ing ubiquitous. GUIs are now seen in cars, phones, dish- ea,e3) are directed edges in the EIG; similarly, a 4-way
washers, refrigerators, etc. They are popular because Oéovering test case ei;ea; e3;es > COvers edgetey,),
the flexibility that they offer to both developers and users. (e2,e3), and(es, e4). The challenge, of course, is to gener-
They allow a software developer to implement the GUI ate and execute such “long” test cases; increasing theelegre
by coding reusablevent-handler¢program code that han- of the event interaction coverage from all possible 2-way to
dles or responds to a user input event) that can be devely|| possible 3-, 4-,. ., multi-way interactions is not a viable
oped and maintained fairly independently. Moreover, GUIs sp|ution as the number of test cases grows exponentially;

give many degrees of freedom to the software userthe for most non-trivial applications, executing even all 3ywa
user is not restricted to a fixed ordering of inputs. The jnteractions is not practical.

user interacts with complex underlying software by per-
forming events(e.qg, left-click-on-FILE-menut left-click-
on-CANCEL-button) that exercise GWidgets The soft-
ware responds by changing its state and/or producing a

In previous work, we developed a feedback-based tech-
nigue to enhance a 2-way covering test suite to a 3-, 4-,
and 5-way covering test suite [17]. We did this by ana-

Nyzing the effect of each GUI event on the GUI’s run-time
yzing
LFor brevity, whenever possible, we will use the widget labelenote state ?-nd obtaining pairs of events that |nﬂluer_10e one an-
an evente.g, Cancel, File, etc. other in how they modify the GUI’s state. This “influence”

was captured as tHevent Semantic InteractiofESl) rela- 2 Background and Related Work
tion and modeled as a graph called the ESI Graph (ESIG).
For most non-trivial applications, the ESIG is much smaller
than the EIG, making it possible to generate 3-, 4-, and 5
way covering test cases by enumerating all possible path
of length 3, 4, and 5 in the ESIG. An important property of

these test cases is that all adjacent events are reIatelubviatI their techni ih tt de is instrungent
ESl relationship. We summarize this technique in Section 2. nineirtechnique, the sottware source code IS Instruntente

However, although better than the exhaustive approach, théo_Obtaln execution feedback. _The oye_r(_;lll test case gener-
number of test cases required for the ESIG-based techniqu?fltlon process starts by executing an initial test. Exeautio
also grows exponentially with length for most applications eedback is collected and analyzed; results are used to eval

making it difficult to test 5-way and above interactions. We uate the “closeness” of the previous execution to _the desire
continue to utilize the most important aspect of this prasio outcome; the model used to generate test cases is then mod-

approach, namely feedback and its use in the ESI relation. ified accordingly and a new test case is generated. This loop

This paper significantly improves upon the ESIG-based stops wher_l th_e closeness” evaluation is satisfied accgrdin
to some criterion.

approach by generating test cases “in batches.” The first Si th [techni h b based d

batch consists of all possible 2-way covering test cases, ge namli?:(fc:st egr’]esg\;%: T?]Ce nllﬁsl;zefsee(?l\algckifonm t?lzea Orllicay_

erated automatically using the existing EIG model of the |~ | 9) y - PP
tion’srun-time stat¢o generate additional test cases, in

GUI. This batch is executed and the observed executionth f fout f lied predicates i
behavior of the GUI, captured in the form of widgets and € form of outcomes ot programmer-supplied predicaes in
the code to cover all non-isomorphic inputs [2], operationa

their properties, is used to selectively extend some of the .) .
brop y abstractions to cover increased program behaviors [3, 16],

2-way test cases to 3-way test cases via the ESI relation. artiall aenerated non-excention-throwing method-sadl
The new 3-way test cases are subsequently executed, Ul Y9 P 9

execution behavior is analyzed, and some are extended to gguences to ge_nerate anger seguences [14], and as input to
way test cases, and so on. In general, the new “alternatingal flgless funété(?gtg guu(zjle genetlchse1a7rch [5, 9|]' iivated
approach” (called ALT) executes and analyzes i-way cov- b thur Ok\)N n i aﬁewapp:oa(ljc [d t]hwa_\; aS(} mo |}/a_e
ering tests, identifying sets of events that interact iernt y dsakove rtehsearc : t'e mfro ucedt etl e.?o emg oying
esting ways with one another (and hence should be testeéee acirom the execution of a seed test suite (our 2-way
together), and generates (i+1)-way covering test cases foPovering test cases generated using the EIG) to generate ad-
members, of each set. Hence ALT generates “longer” testditional multi-way interaction test cases. The key idea was
cases that expand the state space to be explored, yet prunin? analyze run-time GUI sta_te o |d_ent|fy sets 9f events that
the “unimportant” states. A side-effect of the batch-style eed to be testgd togeth_e rin multi-way covering test cases.
nature of this new approach is that certain aspects of GUIThe r(_asult of this anaIyS|s IS calleq thent Semantic In-
eraction(ESI) relation between pairs of events.

test cases that are revealed only at run-time and impossiblé . .) .

to infer statically,e.g, infeasible t)ést cases, are also l?sed to we now explain the ES| relatlonshlp and its background.

enhance the next batch. An empirical study on four fielded A GU.' IS rgpresentgd as a sit O.f W|dget§(e.g, b_uttons,

GUI-based applications shows that ALT allows us to gener- text fields); e_ach widget E_W IS as.souated_ W'th a set

ate longer, more interesting and focused test cases that argw of properties(e.g, color, size, font)_, atany time instant,
each property € P, may take a uniqu&alue(e.g, red,

effective at detecting faults. i .) .
The specific contribution of this paper include: bold, 16pt); each value is evaluated using a function from
' the set of the widget's properties to the set of valligs

e lterative enhancement of GUI test suites. Hence, the set of triplesy(p, v), wherew € W,p € P,
e Use of feedback to compute run-time relationships be- @ndv € V,, models the GUI'sstatefor a time instant. The
tween events and better handle infeasible test cases. Set of statesS; at the time when a GUI is first invoked is
° Empirical demonstration that the run_time informa_ called thevalid initial state seffor the GUI. The state of a
tion is successful at |dent|fy|ng Comp|ex interactions GUI iS not StatiC; users interaCt W|th the GUI by executing
among GUI event handlers. events ¢4, es, ..., e,); hence events are modeled as func-
tions that transform one GUI state to another. The function
The next section provides background, summarizes ournotationS; = e, (S;) denotes thab is the state resulting
previous work on GUI testing, and explains the ESIG-basedfrom the execution of evert, in states,.
approach. Section 3 presents an overview of ALT viaan ex- An important aspect of our feedback-based technique is
ample and Section 4 provides more formal details. Section 5the seed suite. For this work, the seed suite consists of all
presents an empirical study to evaluate ALT. Section 6 con-2-way covering test cases. We leverage a directed graph
cludes with a discussion of future work. model, called the event-interaction graph (EIG) of the GUI

In the context of this work, execution feedback refers
_to information obtained during test execution and used to
Sguide further test case/test suite generation. This igdall
dynamic test case generatiand, to the best of our knowl-
edge, was originally proposed by Miller and Spooner [13].

<> Radio Button D: & "& Radio Button Demo [Z]@\ . .
A Rg...mE E].,.- s Renered Shape event handlers interact in terms of code elements, Ghare
® Circle. O Square O Circle @ Sauare variables, exchange messages, share data) should be tested
SelectFill Color . P together. Lets look at the event handlers dgrandeg in
) Color (@ Home —Z | Ccomr ® ame Figure 2; we see that they share varialde®at ed and
cur rent Shape; eg setscreat ed to t rue and influ-
[croata svowe | [rooet | | crostoshone | | roset | enceses’s flpw of control; e; setscur r ent Shape to a
square, whicheg uses as a parameter s@t Shape() ;
166 < egreq > hence it's not surprising that they interact. One may employ
MR _ =g a variety of static program-analysis techniques to idgntif
<> Radio Button Ds £ Radio Button Demo . . X .

. select Shan mmemasnpe | SUC interactions [15]; they can certainly be used success-
OEED © 8D SEED FEmD fully in this example. However, in general, the limitations
D S of static ar]aIyS|s in the presence of mqu—Iangyage GUIlim-

- OCT D plementations, callbacks for event handlers, virtual fiomc
calls, reflection, and multi-threading are well known [15].
el o | [st | Also, since most GUI applications employ a large num-
Create Shape Reset Create Shape Reset . .
ber of library elementsg(g, Java Swing), source code may
Figure 1. Execution of Events e; and eg not be available for parts of the GUI. Hence, our approach

avoids static analysis; instead it approximates the iflenti

cation of interactions between event handlers by analyzing
to generate these test cases [12]. An important property of deedback from the run-time state of the GUI. The remaining
GUI's EIG is that it can be constructed semi-automatically question isWhat constitutes event interaction as computed
using a reverse engineering technique calidl Ripping from the GUI's state?
[12]. TheGUI Ripperautomatically traverses a GUl under ~ The usage of “different from” above is somewhat mis-
test and extracts the hierarchical structure of the GUI andleading. It seems to suggest that checking state non-
events that may be performed on the GUI. The result of this €quivalence would be sufficient to identify interacting
process is the EIG. The 2-way covering test cases are shorgvents,i.e, by using a predicaté®® such as(e,(So) #
each only covering a directed edge in the EIG; extra menu-¢y(€x(S0))) V (e4(S0) # ey(ex(S0))). However, this is
and window-opening events needed to reach the events imot the case. Consider an example of two non-interacting
the edge are generated on-demand at test-execution time. eventse, ande,,, which toggle the states of two indepen-
dent check-box widgets), and O,, respectively. Start-
ing in a stateS, = {0O,,0,}, i.e, both boxes unchecked,
each event would “check” its corresponding check-box,

Informally, evente,, ande, are related via the ESI rela-
tion, if, when executed together in a sequerce,; e, >,
they produce a GUI state that is, in some semfferent _
from the two states that would be obtained hadande, e, ex(S) = {@a Oy}, eyﬁl‘%) = {Dlg’ my}l' and
been executed in isolation. Consider the example shown in¢v(¢z(50)) = {@., @, }. Even thoughP would evaluate to

Figure 1 (more details of this application are given in Sec- TRUE for this example, events, ande, are non-inte_racti.ng
tion 3). The top-left shows thipitial state (S,) of the ap- and need not be tested together. In order to avoid this con-

plication. After an event, is executed (click oiSquar e fusion, we formalized the notion of interacting events by

radio button), the GUI changes its state to the one showndeveloping formal predicates in[17].

in the top-right ¢2(So)). In this state,Squar e is set; The predicate for/the abovezexample/ is written=hs:¢

Gi rcl e s reset. Starting fronso, one can execute another WV-P € Puw, v € Vp,v" €V, 5.8 (v # ') A ((w’p’,”) #

evente; (click onCr eat e Shape button) and obtain the 190 1 €2(50)3) A ((w,p,v) € ¢y(S0)) A ((w,p,v') €

state shown in the bottom-left{(Sy)); a circle is rendered. ey(%(‘%m)f t_here Is at Ie_as_t one widget that_does not

If, however, the sequence es;eq > is executed inSy, exist in the initial stateSy, it is cregted l_)yey WI'Fh prop-

a new stateds(e2(So))), shown in the bottom-right is ob- erty p and valuev. Howeyer, the W|o_lget is modified V\{hen

tained:; a square has been created. This execution is equivi’® Sequence: ¢;;e, > is ex/ecutedl.e., the value ofw’s

alent to executing evemg in the statees(Sy). According prope_rtyp ch_ange_s from to ",

to the intuition presented at the beginning of this paralgrap This predicate is ev_aluated to true fQ_rar?deG b_egguse

because the sequencess; ¢s > produces a GUI state that thg rendered shape W|dget does not exist in the initial .state

is different from the two states that would be obtained had ' IS created by events with Shape property set to value

¢5 andeg been executed in isolation, the two events should & ' ¢! €. However, this property changes3quar e when

be tested together to check for interaction problems. < e2; e > I executed. _ . .
Because each event is executed using its corresponding It turns out that the example illustrated in Figure 1 is just

event handler, one could hypothesize that all events whose 2Notation for * ‘such that”

[SRENEAN N OB wWN R

OGO hWN P

RBExample :: CircleAction (ActionEvent ev{) 1 RBExample :: NoneAction (ActionEvent ev{) 1 ImagePanel :: paintComponent(Graphics ¢)
@ooo currentShape = SHAREIRCLE; 2 @ooo colorText.setEditablefalse); 2 dddd clear(g);
dooo if(created) { 3 @ooo currentColor = COLOBNONE; 3 dddd Graphics2D g2d = (Graphics2D)g;
dooo imagePanel.setShape(currentShape); 4 dooo if (created){ 4 dddd if (currentShape == SHAREIRCLE) {
dooo imagePanel.repaint} 5 dooo imagePanel.setFillColor(currentColor); 5 dddo if (currentColor == COLOBNONE) {
6 dooo imagePanel.repaint(}} 6 ddoo g2d.setPaint(Color.black);
) 7 gdoo g2d.draw(circle)}
e1’s Event Handler , 8 woud else {
€yq S EVent Handler 9 ratvifeafv) g2d.setPaint(currentColor);
RBExample :: SquareAction (ActionEvent eWt) 10 ratvafeafv) g2d. fill (circle);} }
dd@dd currentShape = SHAREQUARE; 1 RBExample :: CreateAction (ActionEvent evt{ 11 dddd else if (currentShape == SHAREQUARE) {
dddd if (created) { 2 dddd if (color.isSelected ()){ 12 daddo if (currentColor == COLORNONE) {
Jrafratvafea] imagePanel.setShape(currentShape); 3 Jrafratvafea] currentColor = getColor()} 13 ddoo g2d.setPaint(Color.black);
Jrafratvafea] imagePanel.repaint(};} 4 dddd imagePanel.setFillColor(currentColor); 14 ddoo g2d.draw(square)f
5 dddd imagePanel.setShape(currentShape); 15 oodd else {
N 6 dddd imagePanel.repaint(); 16 oodd g2d.setPaint(currentColor);
() S EVent Handler 7 vddd created =true;} 17 oodd g2d. fill (square)} } }
18 ImagePanel:setFillColorifit inputColor) {
RBExample :: ColorAction(ActionEvent ev{)) 19 dddd switch (inputColor) {
dddd colorText.setEditabletrue); €6 S EVent Handler 20 D@ddd case COLORBLACK:
@@ddd currentColor = getColor(); 21 oddd currentColor=Color. black;
Jrafratvafea] if (created){ 1 RBExample :: ResetAction(ActionEvent ewt) 22 odadd break ;
dooo imagePanel.setFillColor(currentColor); 2 @ooo square.setSelectediue); 23 oddd case COLORRED:
dooo imagePanel.repaint(};} 3 @ooo none.setSelectedue); 24 oddd currentColor=Color.red;
4 @ooo colorText.setText("black”); 25 oddd break ;
) 5 @ooo colorText.setEditablefalse); 26 oddd case COLORGREEN:
83 S Event Handler 6 @ooo currentShape = SHAREONE; 27 oddd currentColor=Color.green;
7 @ooo imagePanel.setShape(currentShape); 28 oddd break ;
8 #ooo currentColor = COLOBNONE; 29 dddd default:
9 @ooo imagePanel.setFillColor(currentColor); 30 Jratvafvafva) currentColor=Color.gray}}
10 dooo imagePanel.repaint ()

e7's Event Handler

Figure 2. Some Source Code for th

one case of how the GUI state may be used to pinpoint in-
teractions between event handlers; the work in [17] prasent
six cases, each in three differemdntextsof GUI structure
(we now have a total of 16 predicates; for space reasons,
we show only three in this and the next section). These
cases describe (as evaluative predicates) situationsiaghwh
e, ande, interact,i.e., the combined effect of, ande,, is
different fromthe effect of the individual events, ande,,.
There is arEvent Semantic Interactiorlationship be-
tween two eventg, ande, if and only if at least one
of the predicates iFRUE; this relationship is written as

—_

€ ey, Where the number is one of the predicate
numbers;m is the context number. If multiple predicates
apply, then one of the numbers is used. Due to the specific
ordering of the events in the sequence,; e, >, the ESI
relationship is not symmetric. For space reasons, we will
omit the discussion of context in this paper; the interested
reader is referred to our earlier work [17]; we do provide
context numbers in our reported ESI relationships for the

sake of completeness.

The ImagePanel Class

e Radio Button GUI Example.

ég Radio Button Demo

M=%

~Select ShapeT ~Rendered Shape |
w1 @ Circle Square
~Select Fill Color
- wg
w3 S Color @ None
W4
wed o]
We—_ Create Shape ‘ ‘ Reset |_wry

Figure 3. A Simple GUI Application

and None selected; the text-box correspondingdg is
e
empty. Eventg creates a shape in tliRender ed Shape
area according to current settingswef . . . ws; evente; re-
sets the entire software to its start state.

mpty; and theRender ed Shape area (widgetws) is

The other events behave as follows. Eventsets

the shape to a circle; if there is already a square in the

3 Overview of ALT

Render ed Shape area, then it is immediately changed

to a circle. Event, is similar toe;, except that it changes

We now present an overview of ALT via a simple appli-
cation shown in Figure 3 The GUI contains seven widgets
labeledw; throughw; on which a user can perform corre-
sponding events; throughe;. The application’s function-
ality is very straightforward — thetart statehasCi r cl e

3This unaltered example is used to teach students how to disetnat-
tons.

the shape to a square. Eventenables the text-bows,
allowing the user to enter a custom fill color, which is im-

mediately reflected in the shape being displayed (if there is
a shape there). Eveat reverts back to the initial state.
The GUI of this application is simple, yet quite flexible.

The number of 1-, 2-, 3-, 4-, and 5-way event sequences

(and hence possible test cases) that may be executed in the

start state of the GUI is 6 (remember thgtis initially dis- there exists at least one widget that was disabled in

abled), 37, 230, 1491, and 9641, respectively. Thisislglear S, but enabled bye,. Evente, is performed onw,

too large a number to test on such a small GUI. represented by a predica®XEC(e,,w). This predi-
We now present the steps of ALT: cate applies because widget is disabled in the start

(1) Obtain the event-interaction graph (EIG)s mentioned ~ State but enabled bys. In e3's code this is done by
in Section 2, this is done via automated reverse engineering=0! or Text . set Edi t abl e(true).
techniques [11]. Because of current limitations of the re- The three relations found in this step are;) 6,
;/er?ﬁ englnﬁlerlng lp;_oceshs_, |L|stunable tg agtr?matlcte:llly N o 8 €2, andes &) es. The first two are used to extend
er the (enable) relations Ip betweenandes, NENCEINE 5 of the 2-way covering test cases eg;eg > and <
EIG is a fully connected directed graph with seven nodes, o o .

. eg; €2 > 10 < eg; e6; 2 > and< eg; ea; eg >, respectively.
corresponding to the seven events.

NG d he 2 . Thi The third relation is used to augment all the 2-way cover-
(). e”e@e and execute the -Way covering test stites ., ing test cases that started withbut remained unexecutable
suite consists of all 2-way covering event sequences, which

. . : earlier. Becauses; enableg;, the new 3-way test cases are
are obtained by simply enl_Jmeratlng th_e edges of the, E|G'obtained by prefixing: e5 > to all the 2-way covering test
Each of these sequences is executed in the soft_/vare§ stall.ces that start withs, thereby yielding:< es: es: e1 >, <
state. As expected, none of the sequences startingewith Caie5:n >, < €3: 6503 >, < €31 65164 1 < 315165 >,

executed. However, the sequences; e5 > executed suc- < es:esie >, and< es:es:er >. These test cases will

cessfully, indicating thats enables:s. give us an opportunity to observe the effectegf previ-

Also, the entire state of the GUI is captured after each sy unexecuted, on other all events that can potentially
event for each test case. This includes all the properties of¢g 0w es.

all the GUI's widgets. However, we will restrict our discus-
sion to the state of interest for this example, which inckide
the state of each radio buttdre., selected/not-selected and

(4) Execute the new 3-way test cases, obtain new ESI rela-
tions, and generate 4-way test casesll the GUI states

X after each event are recorded. This step computes new
the con_tents oRendered Shape area. Th's pgrt ofthe Eg relations by splitting each 3-way covering test case
state will be used to compute the ESI relationships. < egie e, > N0 tWO parts:< e,;e, > ande,; the for-

(3) Compute ESI relationshipsOur ESI relationships be- mer is conceptually treated as a singlacro evenfx and
tween two events are based on the ability of an event {0 in-yseq as input to our existing predicates; the resulting ESI
fluence another event's execution, as captured in the GUI'Syg|ation is now betweex (which is really the event se-

state. We saw in the previous section th@tnflueqce$§. quence< e,;e, >) and evenk,. We have designed the
Eventes alone from the start state renders a circle in the «gpitting” of the test case in the above fashion very care-

Rendered Shape area. However, executing before iy so that theEy part would already have been executed
¢s changes the behavior ef;, yielding a square instead. n the earlier batch, thereby requiring no more execution to
This “interaction” is captured by our ESI predicate number gptain the new ESI relations.

9 and represented ag o) €g. Consider the event sequenee es;es;eg >. This is
Another interesting relation in this examplezisﬂ e, :ﬁwrltten a$< Eg;% >5W!th Ex tée|ng“< te3;e5 >;t
i.e., eg is ESl related t@s. In the default start stateg cre- € semantics oby can be |m?g|ne as ‘enter a custom

. . color in anenabledtext-field ws”; the ESI predicates are
ates a circle. However, the sequencers; e, > yields a applied. We see thdix influences:s. Eventeg alone from
square because changes the shape. The predicate (num- thpepstar.t state rende)is an empt 6(.:ircle ir?ﬁﬁmwder ed
ber 8 in our set) used to compute this relatiordis € Pty .

Shape area. However, executingx beforeeg changes its

W,p € Py,v € V,,,v" € Vp,st.((v #v)A (w,p,v) ¢ i - . o X
(S0 M ey(So)}) A ((w,pv) € ex(So)) A ((w,p,0') € behavior, yielding a filled circle instead. Hence, predicat

. . y . 9(1)
ey(ex(S0)))); there is at least one widgetwhich does not applies;< es; es >—— eg.
exist in the initial stateSo; it is created bye, with prop- Becauses es;es > e andes 2 e, (as computed
guence< e,; e, > is executedi.e,, the value ofw’s prop-

erty p changes from to +’. This interaction is due to the
cr eat ed variable shared between the codeegainde,.

< €3;€5;€6; €2 >.

None of the other 3-way test cases are extended because
the predicates do not apply.

Another ESI relationship ises & es. The (5) Execute the new 4-way test cases, obtain new ESI rela-
predicate used to obtain it is number 6 in our set: tions, and generate 5-way test casd$e sole 4-way test
Jw € W,ENABLED € P,,TRUE € Vgnuprep, FALSE € case< eg;es; eg; e > IS rewritten as< Ex;es >; hence
Venagreps s.t. (((w, ENABLED, FALSE) € So) A the semantics offy are now “enter a custom fill color and
((w,ENABLED, TRUE) € ¢,(S0)) A EXEC(ey,w)); create the shape.” Note that due to the nature of the spglittin

Ex has already been executed earlier; hence its resultingd The ALT Algorithm
state is already available for analysis.
Having presented an overview of ALT, we now formalize

i e 8(1) . . . o
We determine tt;a;t es;es;eq >— ea. And we al-jis steps by presenting an algorithm. Intuitively, the algo
ready know thats) eg. Hence, only one 5-way cover- rithm takes an i-way covering test suite as input, in which
ing test case is generatedes; es; eg; ea; €6 >. each test case is fully executable, splits each of its i-way

covering test cases ej;eq;...;e; > into two parts: (1)
a macro evenEx = < ej;eq;...;¢e;1 > and (2) the last
evente;. If Ex ande; are related via an ESI relationship,
then for each event, thate; is ESI related to, a new (i+1)-

In all, 37 two-way, 9 three-way, 1 four-way, and 1 five- way coveringtestcase e;;es;...;e;; e, > isaddedto the
way test cases were generated in this example. The totabuite. An extra step handles previously unexecuted events.
number, 48, is much smaller than thlépossible sequences This approach preserves the property of our earlier ESIG-
numbers presented earlier. based test cases that each pair of adjacent events are@lrelate
. . via an ESl relation. Itimposes a stronger condition thaheac
We now informally examine how our 48 test cases ex- . : ! .

. . . preceeding sequence starting from the first event is also
ecuted the code of the simple application. Figure 2 shows :

ESl-related to its subsequent event. Moreover, the alterna
the event-handler code as well as some helper methods. The ;
statement coverage is summarized as a vector of 4 checkmg approach allows us to detect new ESI relations between

. X : newly generated sequences and newly enabled events.
boxesiddd associated with each statement. The first box Y9] q N y
is checked if any of the 2-way test cases executed the corre-, W.e wil assume the availability of several helper func-
sponding line of code; similarly, the second box is for 3-way UONS: (1) FindState(So, ;) that returns the state of the
test cases: third for 4-way, and fourth for 5-way test cases.CU! after event sequendg; has been executed on it, start-

For example, in thé magePanel class code, lines 16 and NG In stateSo, (2) isRelate@So, Si, Sa, S;) that returns
17 were executed only by 4- and 5-way test cases.

TRUE if at least one of the ESI predicates evaluates to
TRUE, (3) pairESI(e;) that returns the set of all events
There are several points to note about the code and statethat are ESI-related te;, (4) pair E1G(e;) that returns the

ment coverage. First, each event has a programmer-definedet of all events that have an incoming edge frgrin the
event handler«(;, which requires no custom functional- EIG, (5) Last(tc) that returns the last event in test case
ity, is the exception). Second, the code is implemented in (6) SubSequence(te, first,last) returns a subsequence of
two classesRBExanpl e andl magePanel —any code- ¢ starting atfirst and ending atast, (7) Lengthtc) re-
based analysis must account for interactions across slasse turns the number of events in, and (8)Union(7}, tc) adds
In Section 5, we will see several failures are due to incor- ¢¢to 7;. Also, an arrayvasNever Execut ed, indexed by
rect interactions across classes. Third, event handlers ineach event, is set f6RUE if the event was disabled in the
teract either directly or indirectly by using shared valésb GUI's start state5,; otherwise it is set t&-ALSE.

(e.g, current Shape, creat ed, current Col or) or The algorithm is shown in Figure 4. It takes the i-way
via method calls €.9, set Fi | 1 Col or ()). Detecting et suite 1) as input and returns the (i+1)-way test suite.
suchinteractions at the code level, especially acrosse$as g4ch test case is broken into two parts (lines 3—4). If the firs
is non-trivial. Fourth, while many statements are coveredb « Lengthtestcase) — 1” events Ex) of the test case yield

all types of test case®.g, Lines 2-4 in thd magePanel a state that is related via the ESI relationship (determined
class are executed by 2-, 3-, 4-, and 5-way test cases), @ the;sRelated predicate), to its last event,) (Line 8),

few statements that are guarded by a series of conditionalen, this test case is a good candidate for extension by a new
statements are executed by very few test cas@s Lines oyentwith all events to which it is ESI related (Lines 9-11).
16 and 17 in thd magePanel class are executed by the ¢ the |ast event ;) has never been executed before but is
sole 4-way and 5-way test case but was missed by the othef,5qe executable b§x, then it is re-executed to compute

46 test cases.) Finally, although not evident by statement, o\, ES| relations (Lines 12-15). The output is the new
coverage, the 4- and 5-way test cases are able to exercisg_l_way covering test suite.

several combinations of control-flow that are only pariall
covered by the 2- and 3-way tests.

(6) Execute the new 5-way test case, obtain new ESI rela-
tions, and generate 6-way covering test casé& do not
find any new ESI relations; hence ALT terminates.

The algorithm is invoked fofs, which is obtained from
the EIG. Each subsequent invocation with an i-way cover-
The above discussion of code coverage is in no way ing test suite(;) as input will yield the (i+1)-way covering
meant to be a formal analysis of the code-covering ability suite (I, 1). Testing can be stopped once the testing goals
of the ALT test cases. However, it helps to highlight some have been met (or the testing team runs out of resources) or
important aspects of GUI testing that will be investigated i ALT returns an empty test suite. This can be if BOTH of
future research. the following happen:

PROCEDUREALT(T;){
/IT; is thei-way covering test suite.
/IT;41 is the output(i + 1)-way covering test suite.

executed in the current batch.

5 Empirical Study

So= GUI's Initial state;T;+1 = ¢; 1
foreachtest casec € T; do 2 The test cases obtained from tAET algorithm can be
Ex = SubSequen¢e, 1, Length{tc)-1); 3 generated and executed automatically on the GUI. The only
e;j = Lasi(tc); 4 unavailable part is theest oracle a mechanism that deter-
S1 = FindStatéSo, Ex); 5 mines whether an application under test executed correctly
S> = FindStatéS, < e; >); 6 for a test case. In this research, an application is coresider
S3 = FindStatéSo, tc); 7 to havepassed test case if it did not “crash” (terminate un-
if isRelate@So, S1, S2, Ss) 8 expectedly or throw an uncaught exception) during the test
foreache, € pairESI(e;) do 9 case’s execution; otherwisefdiled. Such crashes may be
newtc = < Ex;ej;eq >; 10 detected automatically by the script used to execute tle tes
Ti+1 = Union(Ti+1, newtc); 11 cases. The EIG, ESI, and test cases may also be obtained
if wasNever Execut ed[e;] 12 automatically. Hence, the entire end-to-end feedbackéas
foreache, € pair EIG(e;) do 13 GUI testing process for “crash testing” could be executed
newtc =< Ex;ej;eqp >; 14 without human intervention.
T;+1 = Union(T; 11, newtc); 15 Implementation of the crash testing process included set-
wasNever Execut ed[e;] = FALSE 16 ting up a database for text-field values. Since the overall
returnTy1; 17 process needed to be fully automatic, a database containing
1 one instance for each of the text types in the{seigative
number, real number, long file name, empty string, special
Figure 4. The ALT Algorithm characters, zero, existing file name, non-existent file jame

was used. Note that if a text field is encountered in the GUI,

1. no new ESI relations are founid(, isRelatedSy, 5 one instance for each text type is tried in succession.
' Sy, Ss) returnsFALSE on Line 83 ore. is no?,Esll'— This process provided a starting point for a feasibility
reI:';lted to any other evenitd pa”ES‘}(e) returns study to evaluate the ALT test cases and compare them to
” y

an empty set in Line 9). the ESIG-generated test cases. The following questions
2. ¢; has already been executed in an earlier batch OrWaSneeded to be answered to dete.rmlne the usefulness of the
enabled inS,. overall feedback-based process:
Q1. How many test cases does ALT generate? How

We observe that this algorithm is fairly conservative in does this number compare to the EIG- and ESIG-based ap-
the number of test cases that it generates. Lines 8-9 providgroaches?

a strict condition to test-case extensiag,, not only must Q2: How many faults are detected by ALT? Of the faults
Ex by ESl-related ta;, evente; must also be ESlI-related detected in this study, which are detected by ALT and which
to at least one or more event., pair ESI(e;) returns a by the ESIG-based approach? Why does one approach de-
non-empty set. Moreover, we have observed in our exper-tect a particular fault whereas the other one misses it?
iments that most events have been executed by the second This study was conducted using four popular GUI-based
iteration of the algorithm; hence, Lines 12—15 are rarely ex open-source software (OSS) applications downloaded from
ecuted beyond’. Because ALT is intended to be one of SourceForge. The fully-automatic crash testing process wa
many algorithms that a tester should have in the “testing executed on them and the cauise.(thefault) of each crash
tool-box,” we feel that having fewer test cases from ALT in the source code was determined. More specifically, the
would help a test designer to conserve resources that mayollowing process was used for this study:

be redirected to other testing techniques, thereby yigldin
“healthy” mix of test cases from several techniques.

One final point to note is our use of the function
FindState(So, E;). This function maintains a lookup-
table to return its output; the table is populated duringr tes
case execution; it is important that all entries exist. Estr
corresponding to the three invocations of this function on
Lines 5-7 are guaranteed to exist — for the invocation on
Line 5, Ex was executed in a previous batch, for Line 6,
e; is a single event, whose resulting state was stored dur- To allow comparison, the ESIGs and corresponding test
ing the execution of the 2-way test cases, for Linécfyas cases were also obtained for all applications.

1. Choose software subjects with GUI front-ends.

2. Generate and execute the 2-way covering test suite.
Obtain the ESI relationships.

3. Generate new test suite using the algorithm of Figure 4.

4. Ifthe newly proposed test suite is empty then stop; else
execute it and report crashes.

5. Repeat the last two steps until ALT returns an empty
test suite.

Subject i-way Suites i-way Suites
Application | 2 3 4 [5]6 3] 4 | 5 | 6 | 7
FreeMind | 614 | 204 | 86 | 3 | - FreeMind
GanttProject| 710 | 617 | 109 | 63 | 1 EIG | 1.72e8 | 9.56e10 5.31el3 2.95el6 1.64e19
JEdit 591 | 419 | 54 | 38 - ESIG | 10208 | (122426) | (1690861) | (21857767) | (353090927)
OmegaT | 469 | 310 | 11 - - ALT 10208 2821 11 2 -
GanttProject
Table 1. ESI relationships EIG | 4.94¢6 | 7.17¢9 | 2.09¢12 6.07el4 1.77el7
ESIG | 3070 | 14742 27933 (63994) (125362)
ALT 3070 2229 226 34 4
jEdit
STEP 1: Selection of subject applications. Four popular EIG | 9.17e7 | 4.14e10 1.87¢13 8.42¢15 3.80e18
GUI-based OSS (FreeMind 0.8.0, GanttProject 2.0.1, jEdit| ESIG | 7572 84488 | (1024424) | (10225602) | (105931205)
4.2, OmegaT 1.7.3) were downloaded from SourceForge| ALT 7572 1258 738 171 -
FreeMind and GanttProject have been used in our previ- OmegaT
ous experiments [10]; details of why they were chosen have| EIG | 7.65¢6 | 1.51e9 2.97ell 5.85¢13 1.15¢16
been presented therein; we added jEdit and OmegaT to ref ESIG | 2335 8935 42859 (219415) (1135743)
duce threats to external validity. In summary, all the appli | ALT | 2335 1440 - - -

cations have an active community of developers and a high
all-time-activity percentile on SourceForge. Due to their
popularity, these applications have undergone qualityrass
ance before release. To further eliminate “obvious” bugs, a

Table 2. Test Cases Generation

) . . Subject . i-way test suite
static analysis tool calleBindBugs[7] was executed on all Application Technique 3 275
the applications; after the study, we verified that none of ou . ESIG Peated e
reported bugs were detected by FindBugs. FreeMind ALT g o1
STEP 2: Generation of EIGs & seed test suites, exe- GanttProject ESIG dudo | - | O
cution of seed suite; computation of ESI relations: The ALT aadd | - | @
EIGs of all subject applications were obtained using revers Edit ESIG agda | o | -
engineering. The seed suite was generated and executed ALT ga | @ | -
without any human intervention. The GUI’s run-time state OmegaT I,EAIS_EI'G - B
was recorded during test execution. All faults were fixed in - -
the applications. The feedback was used to obtain the ESIs Table 3. Fault Detection

for each application.

STEP 3: Execution of ALT algorithm: The initial set of

ESI relations was used to obtain the 3-way test cases. The

number of test cases is shown in Table 2. These test case8ther hand, the ALT approach generates a reasonable num-
were executed and the algorithm was invoked again. Thisber of test cases that goes down with each test suite itaratio
process continued until ALT returned an empty test suite. This helps to answe@1.

Table 1 shows the number of ESI relations obtaifrech Both ALT and the ESIG-approach were successful at de-
each of thei-way suites, fori = 2...6. For example, tecting faults in the applications, except OmegaT (only 2
only one ESI relation was obtained from the 6-way suite of faults were detected by the 2-way covering test cases for
GanttProject. A “-” indicates that we did not have an entry. this application). We show these results in Table 3. Each
As the numbers show, the ESI relations decrease with eactfletected fault is shown as a check-twxwhich is checked
iteration, thereby helping to terminate the ALT algorithm. if the fault was detected; otherwise it is unchecked. A “-”
This differed across applications: we went as high as 7-wayindicates that no fault is detected. To allow easy compari-
covering test cases for GanttProject and 4-way covering tes Son, we show the check-box vector (for the same faults in
cases for OmegaT. From these results, we see that the totdhe same order) for both ALT and ESIG. For example, faults
number of EIG-generated test cases is simply too large (sol, 2, and 3 in GanntProject were detected by both ESIG and
large that we had to represent them using the “exponent”’ALT. Faults 4 and 5 were not detected by ESIG; they were
notation to fit in the table). The 3-way ESIG-generated test however detected by ALT, fault 4 by the 3-way test suite and
suites are manageable; 4-way and beyond becomes quitéault 5 by a 5-way covering suite. We see that ALT detected
large. The parenthesized ESIG entries are shown for com-all the faults that ESIG detected and some more using much
parison only — we could not execute such large numbers offewer test cases. This helps to partly ans@&r

test cases; the others were generated and executed. On the We now provide more details of faults 4 and 5 of

GanttProject, and Fault 3 of jEdit. These faults were not < ej;eq; e3 > part of the test case was generated by Lines
detected by ESIG because several events required a comyo_14 ofthe ALT algorithm. Finally< e1, es, 3 N0} el
plex chain of enabling events, which could only be detected | jnes 811 of the ALT algorithm add the évent In this

by alternating between test execution and generation. example, we see that the combination of émablingand
Fault 4 in GanttProject results in a NumberForma- Esj parts of ALT was important to obtain the test case.

tException. It is detected by a 3-way test case;: Summary: This study demonstrated that ALT tests are able
Create new task e»: Set general task propertyes: g detect all the ESIG-detected faults, as well as some ad-
Set non-integer value in task duration Event es ditional faults, using fewer test cases. Among the three

causes GanttProject to crash because it expects an ingay|ts that we discussed, we note that the test cases that de-
teger to be entered for the duration text-field in the tected them were the shortest sequences needed to reveal the
task property window. However, if a non-integer fayits. Moreover, the ESIG-based approach could not de-
value is set, GanttProject redraws the task shown in itSect them because of its inability to handle disabled events
schedule panel; the method getLength() invokes Inte- o alternative algorithm, based on a random walk of the
ger.parselnt(durationField1.getText().trim()) whidirdws EIG, would have a very low probability of generating the

a NumberFormatException. fault-revealing test cases. For exampjel— probability

In the GUI, evente; enablese,, and the sequence for Fault 4 of GanttProject. (Recall that the total number of
e1; eg > enables;. During ALT test-case generation, none - 3-way sequences from the EIG is 4.94e6 for GanttProject.)
of the 2-way test cases that started withande; executed; The event handlers in the fault-revealing test cases

however, the test case e;; e; > executed, indicating that \vere distributed across multiple classes. For exam-
e; enablese,. Lines 12-14 of the algorithm used this in- ple, for GanttProjecte; was in theNewTaskAct i on
formation to extend all 2-way covering test cases that CON-class;{ey, €3, c4} Were inGant t Di al ogPr operti es;
tainedes by prefixinge; to them; one important test case {es,e6,e7} were inGantt TreeTabl e. Similarly, for
was< ey;eg;eg >. jEdit, e; was in thePl ugi nManager class,{es,e3} in

In the first iteration of ALT, all 2-way covering test Pl ugi nLi st, andey in BeanShel | . As mentioned ear-
cases that started withy remained unexecuted. Moreover, lier, interactions across classes are difficult to infetista
< eg;e3 > was also unexecuted. Hence, by this iteration, cally; our run-time state based techniques are agnostic to
ALT did not know how to executes. In the second iter- how the event handlers are distributed.
ation, once the above-generated 3-way covering test case As always, results of studies should be interpreted with
< e1;e2;e3 > was executed, it was used to determine that threats to validity in mind. Several such threats are identi
< e1;ez > enables;. Lines 12-14 used this information fied in this study. First, four Java applications have been
to obtain new test cases for the third iteration. used as subject programs. Although they have different

The above 3-way test case was the shortest and only setypes of GUIs, this does not reflect the wide spectrum of
quence needed to reveal this fault starting in sftenone possible GUIs that are available today. Moreover, the appli
of the 2-, and other 3-way test case could have detected it. cations are extremely GUI-intensivieg., most of the code

Fault 5 in GanttProject results in a NullPointerException. is written for the GUI. The results will be different for ap-
Itis detected by a 5-way covering test casq : Create new plications that have complex underlying business logic and
task e4: Custom columns:s: Add columns (with a namg) afairly simple GUI. Second, all the subject applicatiores ar
eg: Select newly created column in column talle Delete open-source, typically developed by volunteer developers
column>. Once again, the enabling relationship is complex and might be more bug-prone than software implemented

—e; enableses, < eg;eq > enabledes, < ej;eq;e; > by paid developers. Third, the run-time state of GUI wid-
enablegs ande;. We note that it cannot be detected by any gets is obtained using Java Swing API. These widgets may
other 5-way or lower test case. have additional properties that are not exposed by the API.

Fault 3 in jEdit results in a NullPointerException. It is Hence the set of ESI relationships may be incomplete.
detected by the 4-way covering test case;: Download
QuickNotepad plugines: Select QuickNotepad plugins: 6 Conclusions and Future Work
Install QuickNotepad pluginey: Choose QuickNotePad
file>. After installing the QuickNotepad plugin, jEdit al- This paper presented a new alternating technique to gen-
lows the user to open a file by entering its path in a text- erate n-way covering test cases. It is based on analysis of
field. The user is free to enter any string in this text-field, the run-time state of GUI widgets obtained from a previous
including an incorrect path or the hame of a non-existing test batch to obtain a new batch; the process cycles through
file. Hence, when opening a non-existing file in QuickN- test-case generation, execution, and analysis. Our exist-
odePad €,), the NullPointerException is thrown. In this ing 2-way covering test cases are used as a starting point
test caseg; enablese,, < e1;es > enabledes; hence the for GUI state collection. Subsequently-generated and- exe

cuted test cases are used for the analysis, iterativelg-yiel References

ing additional test cases; no extra test cases are needed.

The technique was demonstrated via an empirical study on [1] P. T. Alessandro Marchetto and F. Ricca. State-bastitiges

four fielded software applications. The results of the study
showed that the test cases generated using the GUI state
were useful at detecting serious faults in the applications
the alternating nature of the technique helped to detect com

plex enabling relationships between events.

The results of the empirical study afforded two high-

priority tasks for future research. First, as discusseceity S

tion 3, we need to understand the subtle nature of the ESI

relationship that helps to improve the reachability ofierit

cal fault-revealing code. We hypothesize that this improve
ment is caused by the linking of events that, in some sense, [4]
are functionally related; executing them together causes t
revelation of problems due to shared objects. Second, sev-
eral events are ESl-related because of multiple predicates
We currently do not “count” the predicates per relation; in
the future, we will explore assigning “strengths” to ESI re-

lations based on how many predicates BaRUE for each
pair of events.

Some of our earlier work based on the ESIs has been [7]
extended to testing Ajax-based web applications [1]. The
Document Object Model (DOM) of the page manipulated
by the Ajax code is abstracted into a state model. Test cases
are derived from the state model based on the notion of se- [g]

mantically interacting events. We expect that our alténgat

approach will also be applicable in the Ajax domain.
Most faults that we continue to find in our work on GUI

testing are triggered only when certain interactions betwe

event handlers occue.g, one event handler passes incor-

rect data to another. As observed by Matal. [8], these

interactions may also be modeled by information flows, pro-
gram dependences, and program slices. We will explore the
use of these models in our work. From a GUI develop- [12]

ment point of view, with the increasing flexibility of new

user interfaces, programmers must take steps to ensure that
their software works correctly for a large input space. They [13]
should check the validity of objects whenever possible be-
fore use; text fields in particular should be restricted ® th
smallest input domains possible. We will also explore the

application of a&hecking sequender GUI testing; a check-

ing sequence is a test sequence that, under certain condif15
tions, is guaranteed to lead to a failure [6]. Although tradi
tionally used for finite-state machines, we feel that it may

be extended to our flow-graphs for GUI.

Acknowledgments

This work was partially supported by the US National
Science Foundation under NSF grant CCF-0447864 and the

Office of Naval Research grant NO0014-05-1-0421.

of Ajax web applications. IfProceedings of the 1st Inter-
national Conference on Software Testing, Verification, and
Valication, pages 121-130, April 9-11, 2008.

2] C.Boyapati, S. Khurshid, and D. Marinov. Korat: autoetht

testing based on java predicates.I88TA '02 pages 123—
133, 2002.

M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.
Ernst. An empirical comparison of automated generation
and classification techniques for object-oriented untirigs

In Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineeyipg06.

M. B. Dwyer, V. Carr, and L. Hines. Model checking graph-
ical user interfaces using abstractions. BBEC/FSE '97
pages 244-261, 1997.

C.D. Grosso, G. Antoniol, E. Merlo, and P. Galinier. Dete
ing buffer overflow via automatic test input data generation
Comput. Oper. Res35(10):3125-3143, 2008.

R. M. Hierons and H. Ural. Optimizing the length of
checking sequences.IEEE Transactions on Computers
55(5):618-629, 2006.

D. Hovemeyer and W. Pugh. Finding bugs is e&PLAN
Not, 39(12):92-106, 2004.

[8] W. Masri, A. Podgurski, and D. Leon. An empirical study

of test case filtering techniques based on exercising irderm
tion flows. IEEE Trans. on Soft. Eng33(7):454—-477, 2007.

P. McMinn, M. Harman, D. Binkley, and P. Tonella. The
species per path approach to search-based test data genera-
tion. INISSTA '06 pages 13-24, 2006.

A. M. Memon. Automatically repairing event sequence-
based GUI test suites for regression testild®CM Trans.

on Softw. Eng. and Methqd2008.

1] A. M. Memon, |. Banerjee, and A. Nagarajan. GUI ripping:

Reverse engineering of graphical user interfaces fomgsti

In Proceedings of The 10th Working Conference on Reverse
Engineering November 2003.

A. M. Memon and Q. Xie. Studying the fault-detection ef-
fectiveness of GUI test cases for rapidly evolving software
IEEE Trans. Softw. Eng31(10):884—896, 2005.

W. Miller and D. L. Spooner. Automatic generation
of floating-point test data. IEEE Trans. Software Eng.
2(3):223-226, 1976.

4] C.Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feetlba

directed random test generation. IIBSE '07, pages 396—
405, May 23-25, 2007.

A. Rountev, S. Kagan, and M. Gibas. Evaluating the impre
cision of static analysis. IMorkshop on Program analysis
for software tools and engpages 14-16, 2004.

[16] T. Xie and D. Notkin. Tool-assisted unit-test genesatand

selection based on operational abstractioAstom. Softw.
Eng, 13(3):345-371, 2006.

[17] X. Yuan and A. M. Memon. Using GUI run-time state as

feedback to generate test cases.|TSE '07, pages 396—
405, May 23-25, 2007.

