
Alternating GUI Test Generation and Execution

Xun Yuan
Department of Computer Science

University of Maryland,
College Park, MD 20742
xyuan@cs.umd.edu

Atif M. Memon
Department of Computer Science

University of Maryland,
College Park, MD 20742
atif@cs.umd.edu

Abstract

Users of today’s software perform tasks by interacting
with a graphical user interface (GUI) front-end via se-
quences of input events. Due to the flexibility offered by
most GUIs, the number of event sequences grows exponen-
tially with length. One ubiquitous challenge of GUI test-
ing is to selectively generate those sequences that lead to
potentially problematic states. This paper presents ALT, a
new technique that generates GUI test cases in batches, by
leveraging GUI run-time information from a previously run
batch to obtain the next batch. Each successive batch con-
sists of “longer” test cases that expand the state space to be
explored, yet prune the “unimportant” states. The “alter-
nating” nature of ALT allows it to enhance the next batch by
leveraging certain relationships between GUI events (e.g.,
one enables the other, one alters the other’s execution) that
are revealed only at run-time and non-trivial to infer stati-
cally. An empirical study on four fielded GUI-based appli-
cations demonstrates that ALT is successful at identifying
complex failure-causing interactions between GUI events.

1 Introduction

As computers find increasingly more general-consumer
oriented applications, the class of software applicationsthat
use a graphical-user interface (GUI) front-end [4] is becom-
ing ubiquitous. GUIs are now seen in cars, phones, dish-
washers, refrigerators, etc. They are popular because of
the flexibility that they offer to both developers and users.
They allow a software developer to implement the GUI
by coding reusableevent-handlers(program code that han-
dles or responds to a user input event) that can be devel-
oped and maintained fairly independently. Moreover, GUIs
give many degrees of freedom to the software user,i.e., the
user is not restricted to a fixed ordering of inputs. The
user interacts with complex underlying software by per-
forming events(e.g., left-click-on-FILE-menu,1 left-click-
on-CANCEL-button) that exercise GUIwidgets. The soft-
ware responds by changing its state and/or producing an

1For brevity, whenever possible, we will use the widget labelto denote
an event,e.g., Cancel, File, etc.

output, and waits for the next input.

This flexibility creates problems during execution be-
cause of the large number of permutations of events that
need to be handled by the GUI. In principle, event han-
dlers may be executed in any order; in earlier work, we
have shown that certain event interactions lead to serious
software failures [12]. Because thespace of all possible in-
teractionswith a GUI is enormous, each event sequence can
result in a different state, and the software may, in principle,
need to be tested in all of these states.

One of our existing model-based GUI testing solutions,
motivated by work on search algorithms for software test-
ing [9], is based on a directed graph model of the GUI called
event-interaction graph (EIG) [12]. EIG nodes represent all
GUI events except those that open menus and windows; a
directed edge from nodenx (representing eventex) to ny

(representing eventey) shows that eventey may be executed
either immediately afterex or after executing some inter-
mediate menu- and/or window-opening events. Test cases
are generated, each covering one directed edge (a pair of
events) in the EIG. These test cases are referred to as “2-
way covering” because each test targets a unique pair of
EIG events [12]. Our previous empirical studies showed
that although these test cases reveal a large number of GUI
faults, additional faults may be detected by executing cer-
tain types of multi-way covering (e.g., 3-, 4-, 5-way) test
cases [12, 17]. For example, a 3-way covering test case is
an event sequence< e1; e2; e3 > such that(e1, e2) and
(e2, e3) are directed edges in the EIG; similarly, a 4-way
covering test case< e1; e2; e3; e4 > covers edges(e1, e2),
(e2, e3), and(e3, e4). The challenge, of course, is to gener-
ate and execute such “long” test cases; increasing the degree
of the event interaction coverage from all possible 2-way to
all possible 3-, 4-,. . ., multi-way interactions is not a viable
solution as the number of test cases grows exponentially;
for most non-trivial applications, executing even all 3-way
interactions is not practical.

In previous work, we developed a feedback-based tech-
nique to enhance a 2-way covering test suite to a 3-, 4-,
and 5-way covering test suite [17]. We did this by ana-
lyzing the effect of each GUI event on the GUI’s run-time
state and obtaining pairs of events that influence one an-
other in how they modify the GUI’s state. This “influence”

was captured as theEvent Semantic Interaction(ESI) rela-
tion and modeled as a graph called the ESI Graph (ESIG).
For most non-trivial applications, the ESIG is much smaller
than the EIG, making it possible to generate 3-, 4-, and 5-
way covering test cases by enumerating all possible paths
of length 3, 4, and 5 in the ESIG. An important property of
these test cases is that all adjacent events are related via the
ESI relationship. We summarize this technique in Section 2.
However, although better than the exhaustive approach, the
number of test cases required for the ESIG-based technique
also grows exponentially with length for most applications,
making it difficult to test 5-way and above interactions. We
continue to utilize the most important aspect of this previous
approach, namely feedback and its use in the ESI relation.

This paper significantly improves upon the ESIG-based
approach by generating test cases “in batches.” The first
batch consists of all possible 2-way covering test cases, gen-
erated automatically using the existing EIG model of the
GUI. This batch is executed and the observed execution
behavior of the GUI, captured in the form of widgets and
their properties, is used to selectively extend some of the
2-way test cases to 3-way test cases via the ESI relation.
The new 3-way test cases are subsequently executed, GUI
execution behavior is analyzed, and some are extended to 4-
way test cases, and so on. In general, the new “alternating
approach” (called ALT) executes and analyzes i-way cov-
ering tests, identifying sets of events that interact in inter-
esting ways with one another (and hence should be tested
together), and generates (i+1)-way covering test cases for
members of each set. Hence ALT generates “longer” test
cases that expand the state space to be explored, yet pruning
the “unimportant” states. A side-effect of the batch-style
nature of this new approach is that certain aspects of GUI
test cases that are revealed only at run-time and impossible
to infer statically,e.g., infeasible test cases, are also used to
enhance the next batch. An empirical study on four fielded
GUI-based applications shows that ALT allows us to gener-
ate longer, more interesting and focused test cases that are
effective at detecting faults.

The specific contribution of this paper include:

• Iterative enhancement of GUI test suites.
• Use of feedback to compute run-time relationships be-

tween events and better handle infeasible test cases.
• Empirical demonstration that the run-time informa-

tion is successful at identifying complex interactions
among GUI event handlers.

The next section provides background, summarizes our
previous work on GUI testing, and explains the ESIG-based
approach. Section 3 presents an overview of ALT via an ex-
ample and Section 4 provides more formal details. Section 5
presents an empirical study to evaluate ALT. Section 6 con-
cludes with a discussion of future work.

2 Background and Related Work

In the context of this work, execution feedback refers
to information obtained during test execution and used to
guide further test case/test suite generation. This is called
dynamic test case generationand, to the best of our knowl-
edge, was originally proposed by Miller and Spooner [13].
In their technique, the software source code is instrumented
to obtain execution feedback. The overall test case gener-
ation process starts by executing an initial test. Execution
feedback is collected and analyzed; results are used to eval-
uate the “closeness” of the previous execution to the desired
outcome; the model used to generate test cases is then mod-
ified accordingly and a new test case is generated. This loop
stops when the “closeness” evaluation is satisfied according
to some criterion.

Since then, several techniques have been based on dy-
namic test generation. They use feedback from the applica-
tion’s run-time stateto generate additional test cases,e.g., in
the form of outcomes of programmer-supplied predicates in
the code to cover all non-isomorphic inputs [2], operational
abstractions to cover increased program behaviors [3, 16],
partially generated non-exception-throwing method-callse-
quences to generate longer sequences [14], and as input to
a fitness function to guide genetic search [5,9].

Our own ESIG-based approach [17] was also motivated
by the above research. We introduced the idea of employing
feedbackfrom the execution of a seed test suite (our 2-way
covering test cases generated using the EIG) to generate ad-
ditional multi-way interaction test cases. The key idea was
to analyze run-time GUI state to identify sets of events that
need to be tested together in multi-way covering test cases.
The result of this analysis is called theEvent Semantic In-
teraction(ESI) relation between pairs of events.

We now explain the ESI relationship and its background.
A GUI is represented as a setW of widgets(e.g., buttons,
text fields); each widgetw ∈ W is associated with a set
Pw of properties(e.g., color, size, font); at any time instant,
each propertyp ∈ Pw may take a uniquevalue(e.g., red,
bold, 16pt); each value is evaluated using a function from
the set of the widget’s properties to the set of valuesVp.
Hence, the set of triples (w, p, v), wherew ∈ W, p ∈ Pw

andv ∈ Vp models the GUI’sstatefor a time instant. The
set of statesSI at the time when a GUI is first invoked is
called thevalid initial state setfor the GUI. The state of a
GUI is not static; users interact with the GUI by executing
events (e1, e2, . . . , en); hence events are modeled as func-
tions that transform one GUI state to another. The function
notationSj = ex(Si) denotes thatSj is the state resulting
from the execution of eventex in stateSi.

An important aspect of our feedback-based technique is
the seed suite. For this work, the seed suite consists of all
2-way covering test cases. We leverage a directed graph
model, called the event-interaction graph (EIG) of the GUI

-

?
@

@
@R

e2

e6 < e2; e6 >

Figure 1. Execution of Events e2 and e6

to generate these test cases [12]. An important property of a
GUI’s EIG is that it can be constructed semi-automatically
using a reverse engineering technique calledGUI Ripping
[12]. TheGUI Ripperautomatically traverses a GUI under
test and extracts the hierarchical structure of the GUI and
events that may be performed on the GUI. The result of this
process is the EIG. The 2-way covering test cases are short,
each only covering a directed edge in the EIG; extra menu-
and window-opening events needed to reach the events in
the edge are generated on-demand at test-execution time.

Informally, eventex andey are related via the ESI rela-
tion, if, when executed together in a sequence< ex; ey >,
they produce a GUI state that is, in some sense,different
from the two states that would be obtained hadex andey

been executed in isolation. Consider the example shown in
Figure 1 (more details of this application are given in Sec-
tion 3). The top-left shows theinitial state (S0) of the ap-
plication. After an evente2 is executed (click onSquare
radio button), the GUI changes its state to the one shown
in the top-right (e2(S0)). In this state,Square is set;
Circle is reset. Starting fromS0, one can execute another
evente6 (click onCreate Shape button) and obtain the
state shown in the bottom-left (e6(S0)); a circle is rendered.
If, however, the sequence< e2; e6 > is executed inS0,
a new state (e6(e2(S0))), shown in the bottom-right is ob-
tained; a square has been created. This execution is equiv-
alent to executing evente6 in the statee2(S0). According
to the intuition presented at the beginning of this paragraph,
because the sequence< e2; e6 > produces a GUI state that
is different from the two states that would be obtained had
e2 ande6 been executed in isolation, the two events should
be tested together to check for interaction problems.

Because each event is executed using its corresponding
event handler, one could hypothesize that all events whose

event handlers interact in terms of code elements (e.g., share
variables, exchange messages, share data) should be tested
together. Lets look at the event handlers fore2 ande6 in
Figure 2; we see that they share variablescreated and
currentShape; e6 setscreated to true and influ-
encese2’s flow of control; e2 setscurrentShape to a
square, whiche6 uses as a parameter tosetShape();
hence it’s not surprising that they interact. One may employ
a variety of static program-analysis techniques to identify
such interactions [15]; they can certainly be used success-
fully in this example. However, in general, the limitations
of static analysis in the presence of multi-language GUI im-
plementations, callbacks for event handlers, virtual function
calls, reflection, and multi-threading are well known [15].
Also, since most GUI applications employ a large num-
ber of library elements (e.g., Java Swing), source code may
not be available for parts of the GUI. Hence, our approach
avoids static analysis; instead it approximates the identifi-
cation of interactions between event handlers by analyzing
feedback from the run-time state of the GUI. The remaining
question is:What constitutes event interaction as computed
from the GUI’s state?

The usage of “different from” above is somewhat mis-
leading. It seems to suggest that checking state non-
equivalence would be sufficient to identify interacting
events,i.e., by using a predicateP such as(ex(S0) 6=
ey(ex(S0))) ∨ (ey(S0) 6= ey(ex(S0))). However, this is
not the case. Consider an example of two non-interacting
events,ex andey, which toggle the states of two indepen-
dent check-box widgets2x and 2y, respectively. Start-
ing in a stateS0 = {2x, 2y}, i.e., both boxes unchecked,
each event would “check” its corresponding check-box,
i.e., ex(S0) = {2�x, 2y}, ey(S0) = {2x, 2�y}, and
ey(ex(S0)) = {2�x, 2�y}. Even thoughP would evaluate to
TRUE for this example, eventsex andey are non-interacting
and need not be tested together. In order to avoid this con-
fusion, we formalized the notion of interacting events by
developing formal predicates in [17].

The predicate for the above example is written as:∃w ∈
W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, s.t.
2 ((v 6= v′) ∧ ((w, p, v) /∈

{S0 ∩ ex(S0)}) ∧ ((w, p, v) ∈ ey(S0)) ∧ ((w, p, v′) ∈
ey(ex(S0)))); there is at least one widgetw that does not
exist in the initial stateS0, it is created byey with prop-
erty p and valuev. However, the widget is modified when
the sequence< ex; ey > is executed,i.e., the value ofw’s
propertyp changes fromv to v′.

This predicate is evaluated to true fore2 ande6 because
the rendered shape widget does not exist in the initial state.
It is created by evente6 with Shape property set to value
Circle. However, this property changes toSquarewhen
< e2; e6 > is executed.

It turns out that the example illustrated in Figure 1 is just

2Notation for ‘ ‘such that”

1 RBExample : : C i r c l eA c t i o n (Act i onEven t ev t){
2 2�222 cu r r en t S h ap e = SHAPECIRCLE ;
3 2�222 i f (c r e a t e d) {
4 2�222 imagePanel . s e t S h ap e (cu r r en t S h ap e) ;
5 2�222 imagePanel . r e p a i n t ()}}

e1’s Event Handler
1 RBExample : : SquareAct i on (Act i onEven t ev t){
2 2�2�2�2� cu r r en t S h ap e = SHAPESQUARE;
3 2�2�2�2� i f (c r e a t e d) {
4 2�2�2�2� imagePanel . s e t S h ap e (cu r r en t S h ap e) ;
5 2�2�2�2� imagePanel . r e p a i n t () ;}}

e2’s Event Handler
1 RBExample : : C o l o r A c t i o n (Act i onEven t ev t){
2 2�2�2�2� co l o r Tex t . s e t E d i t a b l e (t rue) ;
3 2�2�2�2� c u r r e n t C o l o r = g e t C o l o r () ;
4 2�2�2�2� i f (c r e a t e d) {
5 2�222 imagePanel . s e t F i l l C o l o r (c u r r e n t C o l o r) ;
6 2�222 imagePanel . r e p a i n t () ;}}

e3’s Event Handler

1 RBExample : : NoneAct ion (Act i onEven t ev t){
2 2�222 co l o r Tex t . s e t E d i t a b l e (f a l s e) ;
3 2�222 c u r r e n t C o l o r = COLORNONE;
4 2�222 i f (c r e a t e d) {
5 2�222 imagePanel . s e t F i l l C o l o r (c u r r e n t C o l o r) ;
6 2�222 imagePanel . r e p a i n t () ;}}

e4’s Event Handler
1 RBExample : : C r ea t eA c t i o n (Act i onEven t ev t){
2 2�2�2�2� i f (c o l o r . i s S e l e c t e d ()){
3 2�2�2�2� c u r r e n t C o l o r = g e t C o l o r () ;}
4 2�2�2�2� imagePanel . s e t F i l l C o l o r (c u r r e n t C o l o r) ;
5 2�2�2�2� imagePanel . s e t S h ap e (cu r r en t S h ap e) ;
6 2�2�2�2� imagePanel . r e p a i n t () ;
7 2�2�2�2� c r e a t e d = t rue ;}

e6’s Event Handler
1 RBExample : : R es e t A c t i o n (Act i onEven t ev t){
2 2�222 s q u a r e . s e t S e l e c t e d (t rue) ;
3 2�222 none . s e t S e l e c t e d (t rue) ;
4 2�222 co l o r Tex t . s e t T e x t (” b l ack ”) ;
5 2�222 co l o r Tex t . s e t E d i t a b l e (f a l s e) ;
6 2�222 cu r r en t S h ap e = SHAPENONE;
7 2�222 imagePanel . s e t S h ap e (cu r r en t S h ap e) ;
8 2�222 c u r r e n t C o l o r = COLORNONE;
9 2�222 imagePanel . s e t F i l l C o l o r (c u r r e n t C o l o r) ;

10 2�222 imagePanel . r e p a i n t () ;}

e7’s Event Handler

1 ImagePanel : : pa in tComponen t (Graph ics g){
2 2�2�2�2� c l e a r (g) ;
3 2�2�2�2� Graphics2D g2d = (Graphics2D) g ;
4 2�2�2�2� i f (cu r r en t S h ap e == SHAPECIRCLE) {
5 2�2�2�2 i f (c u r r e n t C o l o r == COLORNONE) {
6 2�2�22 g2d . s e t P a i n t (Co lo r . b l ack) ;
7 2�2�22 g2d . draw (c i r c l e) ;}
8 2�2�2�2� e l s e {
9 2�2�2�2� g2d . s e t P a i n t (c u r r e n t C o l o r) ;

10 2�2�2�2� g2d . f i l l (c i r c l e);}}
11 2�2�2�2� e l s e i f (cu r r en t S h ap e == SHAPESQUARE) {
12 2�2�2�2 i f (c u r r e n t C o l o r == COLORNONE) {
13 2�2�22 g2d . s e t P a i n t (Co lo r . b l ack) ;
14 2�2�22 g2d . draw (s q u a r e) ;}
15 222�2� e l s e {
16 222�2� g2d . s e t P a i n t (c u r r e n t C o l o r) ;
17 222�2� g2d . f i l l (s q u a r e);}}}
18 ImagePanel : s e t F i l l C o l o r (i n t i n p u t C o l o r) {
19 2�2�2�2� swi t ch (i n p u t C o l o r) {
20 22�2�2� ca se COLORBLACK:
21 22�2�2� c u r r e n t C o l o r=Co lo r . b l ack ;
22 22�2�2� break ;
23 22�2�2� ca se COLORRED:
24 22�2�2� c u r r e n t C o l o r=Co lo r . red ;
25 22�2�2� break ;
26 22�2�2� ca se COLORGREEN :
27 22�2�2� c u r r e n t C o l o r=Co lo r . g reen ;
28 22�2�2� break ;
29 2�2�2�2� d e f a u l t :
30 2�2�2�2� c u r r e n t C o l o r=Co lo r . g ray ;}}

The ImagePanel Class

Figure 2. Some Source Code for the Radio Button GUI Example.

one case of how the GUI state may be used to pinpoint in-
teractions between event handlers; the work in [17] presents
six cases, each in three differentcontextsof GUI structure
(we now have a total of 16 predicates; for space reasons,
we show only three in this and the next section). These
cases describe (as evaluative predicates) situations in which
ex andey interact,i.e., the combined effect ofex andey is
different fromthe effect of the individual eventsex andey.

There is anEvent Semantic Interactionrelationship be-
tween two eventsex and ey if and only if at least one
of the predicates isTRUE; this relationship is written as

ex

n(m)
−→ ey, where the numbern is one of the predicate

numbers;m is the context number. If multiple predicates
apply, then one of the numbers is used. Due to the specific
ordering of the events in the sequence< ex; ey >, the ESI
relationship is not symmetric. For space reasons, we will
omit the discussion of context in this paper; the interested
reader is referred to our earlier work [17]; we do provide
context numbers in our reported ESI relationships for the
sake of completeness.

3 Overview of ALT

We now present an overview of ALT via a simple appli-
cation shown in Figure 3.3 The GUI contains seven widgets
labeledw1 throughw7 on which a user can perform corre-
sponding eventse1 throughe7. The application’s function-
ality is very straightforward – thestart statehasCircle

3This unaltered example is used to teach students how to use radio but-
tons.

w1 -
w2

�	

w3 -
w4@I

w5 -

w6 - w7�

w8�

Figure 3. A Simple GUI Application

and None selected; the text-box corresponding tow5 is
empty; and theRendered Shape area (widgetw8) is
empty. Evente6 creates a shape in theRendered Shape
area according to current settings ofw1 . . . w5; evente7 re-
sets the entire software to its start state.

The other events behave as follows. Evente1 sets
the shape to a circle; if there is already a square in the
Rendered Shape area, then it is immediately changed
to a circle. Evente2 is similar toe1, except that it changes
the shape to a square. Evente3 enables the text-boxw5,
allowing the user to enter a custom fill color, which is im-
mediately reflected in the shape being displayed (if there is
a shape there). Evente4 reverts back to the initial state.

The GUI of this application is simple, yet quite flexible.
The number of 1-, 2-, 3-, 4-, and 5-way event sequences
(and hence possible test cases) that may be executed in the

start state of the GUI is 6 (remember thate5 is initially dis-
abled), 37, 230, 1491, and 9641, respectively. This is clearly
too large a number to test on such a small GUI.

We now present the steps of ALT:
(1) Obtain the event-interaction graph (EIG).As mentioned
in Section 2, this is done via automated reverse engineering
techniques [11]. Because of current limitations of the re-
verse engineering process, it is unable to automatically in-
fer the (enable) relationship betweene3 ande5; hence the
EIG is a fully connected directed graph with seven nodes,
corresponding to the seven events.
(2) Generate and execute the 2-way covering test suite.This
suite consists of all 2-way covering event sequences, which
are obtained by simply enumerating the edges of the EIG.
Each of these sequences is executed in the software’s start
state. As expected, none of the sequences starting withe5

executed. However, the sequence< e3; e5 > executed suc-
cessfully, indicating thate3 enablese5.

Also, the entire state of the GUI is captured after each
event for each test case. This includes all the properties of
all the GUI’s widgets. However, we will restrict our discus-
sion to the state of interest for this example, which includes
the state of each radio button,i.e., selected/not-selected and
the contents ofRendered Shape area. This part of the
state will be used to compute the ESI relationships.
(3) Compute ESI relationships.Our ESI relationships be-
tween two events are based on the ability of an event to in-
fluence another event’s execution, as captured in the GUI’s
state. We saw in the previous section thate2 influencese6.
Evente6 alone from the start state renders a circle in the
Rendered Shape area. However, executinge2 before
e6 changes the behavior ofe6, yielding a square instead.
This “interaction” is captured by our ESI predicate number

9 and represented ase2
9(1)
−→ e6.

Another interesting relation in this example ise6
8(1)
−→ e2,

i.e., e6 is ESI related toe2. In the default start state,e6 cre-
ates a circle. However, the sequence< e6; e2 > yields a
square becausee2 changes the shape. The predicate (num-
ber 8 in our set) used to compute this relation is∃w ∈
W, p ∈ Pw, v ∈ Vp, v

′ ∈ Vp, s.t.((v 6= v′) ∧ ((w, p, v) /∈
{S0 ∩ ey(S0)}) ∧ ((w, p, v) ∈ ex(S0)) ∧ ((w, p, v′) ∈
ey(ex(S0)))); there is at least one widgetw which does not
exist in the initial stateS0; it is created byex with prop-
erty p and valuev. However, it is modified when the se-
quence< ex; ey > is executed,i.e., the value ofw’s prop-
erty p changes fromv to v′. This interaction is due to the
created variable shared between the code ofe6 ande2.

Another ESI relationship ise3
6(1)
−→ e5. The

predicate used to obtain it is number 6 in our set:
∃w ∈ W, ENABLED ∈ Pw, TRUE ∈ VENABLED, FALSE ∈
VENABLED, s.t. (((w, ENABLED, FALSE) ∈ S0) ∧
((w, ENABLED, TRUE) ∈ ex(S0)) ∧ EXEC(ey, w));

there exists at least one widgetw that was disabled in
S0 but enabled byex. Event ey is performed onw,
represented by a predicateEXEC(ey, w). This predi-
cate applies because widgetw5 is disabled in the start
state but enabled bye3. In e3’s code this is done by
colorText.setEditable(true).

The three relations found in this step are:e2
9(1)
−→ e6,

e6
8(1)
−→ e2, ande3

6(1)
−→ e5. The first two are used to extend

two of the 2-way covering test cases< e2; e6 > and <
e6; e2 > to < e2; e6; e2 > and< e6; e2; e6 >, respectively.

The third relation is used to augment all the 2-way cover-
ing test cases that started withe5 but remained unexecutable
earlier. Becausee3 enablese5, the new 3-way test cases are
obtained by prefixing< e3 > to all the 2-way covering test
cases that start withe5, thereby yielding:< e3; e5; e1 >, <
e3; e5; e2 >, < e3; e5; e3 >, < e3; e5; e4 >, < e3; e5; e5 >,
< e3; e5; e6 >, and< e3; e5; e7 >. These test cases will
give us an opportunity to observe the effect ofe5, previ-
ously unexecuted, on other all events that can potentially
follow e5.
(4) Execute the new 3-way test cases, obtain new ESI rela-
tions, and generate 4-way test cases.All the GUI states
after each event are recorded. This step computes new
ESI relations by splitting each 3-way covering test case
< ex; ey; ez > into two parts:< ex; ey > andez; the for-
mer is conceptually treated as a singlemacro eventEX and
used as input to our existing predicates; the resulting ESI
relation is now betweenEX (which is really the event se-
quence< ex; ey >) and eventez. We have designed the
“splitting” of the test case in the above fashion very care-
fully so that theEX part would already have been executed
in the earlier batch, thereby requiring no more execution to
obtain the new ESI relations.

Consider the event sequence< e3; e5; e6 >. This is
rewritten as< EX ; e6 >, with EX being < e3; e5 >;
the semantics ofEX can be imagined as “enter a custom
color in anenabledtext-field w5”; the ESI predicates are
applied. We see thatEX influencese6. Evente6 alone from
the start state renders an empty circle in theRendered
Shape area. However, executingEX beforee6 changes its
behavior, yielding a filled circle instead. Hence, predicate 9

applies;< e3; e5 >
9(1)
−→ e6.

Because< e3; e5 >
9(1)
−→ e6 ande6

8(1)
−→ e2 (as computed

earlier), we extend< e3; e5; e6 > to the 4-way test case
< e3; e5; e6; e2 >.

None of the other 3-way test cases are extended because
the predicates do not apply.
(5) Execute the new 4-way test cases, obtain new ESI rela-
tions, and generate 5-way test cases.The sole 4-way test
case< e3; e5; e6; e2 > is rewritten as< EX ; e2 >; hence
the semantics ofEX are now “enter a custom fill color and
create the shape.” Note that due to the nature of the splitting,

EX has already been executed earlier; hence its resulting
state is already available for analysis.

We determine that< e3; e5; e6 >
8(1)
−→ e2. And we al-

ready know thate2
9(1)
−→ e6. Hence, only one 5-way cover-

ing test case is generated< e3; e5; e6; e2; e6 >.

(6) Execute the new 5-way test case, obtain new ESI rela-
tions, and generate 6-way covering test cases.We do not
find any new ESI relations; hence ALT terminates.

In all, 37 two-way, 9 three-way, 1 four-way, and 1 five-
way test cases were generated in this example. The total
number, 48, is much smaller than theall possible sequences
numbers presented earlier.

We now informally examine how our 48 test cases ex-
ecuted the code of the simple application. Figure 2 shows
the event-handler code as well as some helper methods. The
statement coverage is summarized as a vector of 4 check-
boxes2�2�2�2� associated with each statement. The first box
is checked if any of the 2-way test cases executed the corre-
sponding line of code; similarly, the second box is for 3-way
test cases; third for 4-way, and fourth for 5-way test cases.
For example, in theImagePanel class code, lines 16 and
17 were executed only by 4- and 5-way test cases.

There are several points to note about the code and state-
ment coverage. First, each event has a programmer-defined
event handler (w5, which requires no custom functional-
ity, is the exception). Second, the code is implemented in
two classesRBExample andImagePanel – any code-
based analysis must account for interactions across classes.
In Section 5, we will see several failures are due to incor-
rect interactions across classes. Third, event handlers in-
teract either directly or indirectly by using shared variables
(e.g., currentShape, created, currentColor) or
via method calls (e.g., setFillColor()). Detecting
such interactions at the code level, especially across classes,
is non-trivial. Fourth, while many statements are covered by
all types of test cases (e.g., Lines 2-4 in theImagePanel
class are executed by 2-, 3-, 4-, and 5-way test cases), a
few statements that are guarded by a series of conditional
statements are executed by very few test cases (e.g., Lines
16 and 17 in theImagePanel class are executed by the
sole 4-way and 5-way test case but was missed by the other
46 test cases.) Finally, although not evident by statement
coverage, the 4- and 5-way test cases are able to exercise
several combinations of control-flow that are only partially
covered by the 2- and 3-way tests.

The above discussion of code coverage is in no way
meant to be a formal analysis of the code-covering ability
of the ALT test cases. However, it helps to highlight some
important aspects of GUI testing that will be investigated in
future research.

4 The ALT Algorithm

Having presented an overview of ALT, we now formalize
its steps by presenting an algorithm. Intuitively, the algo-
rithm takes an i-way covering test suite as input, in which
each test case is fully executable, splits each of its i-way
covering test cases< e1; e2; . . . ; ei > into two parts: (1)
a macro eventEX = < e1; e2; . . . ; ei−1 > and (2) the last
eventei. If EX andei are related via an ESI relationship,
then for each eventex thatei is ESI related to, a new (i+1)-
way covering test case< e1; e2; . . . ; ei; ex > is added to the
suite. An extra step handles previously unexecuted events.
This approach preserves the property of our earlier ESIG-
based test cases that each pair of adjacent events are related
via an ESI relation. It imposes a stronger condition that each
preceeding sequence starting from the first event is also
ESI-related to its subsequent event. Moreover, the alternat-
ing approach allows us to detect new ESI relations between
newly generated sequences and newly enabled events.

We will assume the availability of several helper func-
tions: (1)FindState(S0, Ei) that returns the state of the
GUI after event sequenceEi has been executed on it, start-
ing in stateS0, (2) isRelated(S0, S1, S2, S3) that returns
TRUE if at least one of the ESI predicates evaluates to
TRUE, (3) pairESI(ei) that returns the set of all events
that are ESI-related toei, (4) pairEIG(ei) that returns the
set of all events that have an incoming edge fromei in the
EIG, (5)Last(tc) that returns the last event in test casetc,
(6) SubSequence(tc, first, last) returns a subsequence of
tc starting atfirst and ending atlast, (7) Length(tc) re-
turns the number of events intc, and (8)Union(Ti, tc) adds
tc to Ti. Also, an arraywasNeverExecuted, indexed by
each event, is set toTRUE if the event was disabled in the
GUI’s start stateS0; otherwise it is set toFALSE.

The algorithm is shown in Figure 4. It takes the i-way
test suite (Ti) as input and returns the (i+1)-way test suite.
Each test case is broken into two parts (lines 3–4). If the first
“Length(testcase) − 1” events (EX) of the test case yield
a state that is related via the ESI relationship (determined
by theisRelated predicate), to its last event (ej) (Line 8),
then this test case is a good candidate for extension by a new
event with all events to which it is ESI related (Lines 9–11).
If the last event (ej) has never been executed before but is
made executable byEX , then it is re-executed to compute
new ESI relations (Lines 12–15). The output is the new
i+1-way covering test suite.

The algorithm is invoked forT2, which is obtained from
the EIG. Each subsequent invocation with an i-way cover-
ing test suite (Ti) as input will yield the (i+1)-way covering
suite (Ti+1). Testing can be stopped once the testing goals
have been met (or the testing team runs out of resources) or
ALT returns an empty test suite. This can be if BOTH of
the following happen:

PROCEDURE::ALT(Ti){
//Ti is thei-way covering test suite.
//Ti+1 is the output(i + 1)-way covering test suite.

S0= GUI’s Initial state;Ti+1 = φ; 1
foreachtest casetc ∈ Ti do 2

EX = SubSequence(tc, 1, Length(tc)-1); 3
ej = Last(tc); 4
S1 = FindState(S0, EX); 5
S2 = FindState(S0, < ej >); 6
S3 = FindState(S0, tc); 7
if isRelated(S0, S1, S2, S3) 8

foreachex ∈ pairESI(ej) do 9
newtc = < EX ; ej ; ex >; 10
Ti+1 = Union(Ti+1, newtc); 11

if wasNeverExecuted[ej] 12
foreachex ∈ pairEIG(ej) do 13

newtc = < EX ; ej ; ex >; 14
Ti+1 = Union(Ti+1, newtc); 15

wasNeverExecuted[ej] = FALSE 16
returnTi+1; 17

}

Figure 4. The ALT Algorithm

1. no new ESI relations are found (i.e., isRelated(S0, S1,
S2, S3) returnsFALSE on Line 8) orej is not ESI-
related to any other event (i.e., pairESI(ej) returns
an empty set in Line 9).

2. ej has already been executed in an earlier batch or was
enabled inS0.

We observe that this algorithm is fairly conservative in
the number of test cases that it generates. Lines 8-9 provide
a strict condition to test-case extension,i.e., not only must
EX by ESI-related toej, eventej must also be ESI-related
to at least one or more events,i.e., pairESI(ej) returns a
non-empty set. Moreover, we have observed in our exper-
iments that most events have been executed by the second
iteration of the algorithm; hence, Lines 12–15 are rarely ex-
ecuted beyondT3. Because ALT is intended to be one of
many algorithms that a tester should have in the “testing
tool-box,” we feel that having fewer test cases from ALT
would help a test designer to conserve resources that may
be redirected to other testing techniques, thereby yielding a
“healthy” mix of test cases from several techniques.

One final point to note is our use of the function
FindState(S0, Ei). This function maintains a lookup-
table to return its output; the table is populated during test-
case execution; it is important that all entries exist. Entries
corresponding to the three invocations of this function on
Lines 5–7 are guaranteed to exist – for the invocation on
Line 5, EX was executed in a previous batch, for Line 6,
ej is a single event, whose resulting state was stored dur-
ing the execution of the 2-way test cases, for Line 7,tc was

executed in the current batch.

5 Empirical Study

The test cases obtained from theALT algorithm can be
generated and executed automatically on the GUI. The only
unavailable part is thetest oracle, a mechanism that deter-
mines whether an application under test executed correctly
for a test case. In this research, an application is considered
to havepasseda test case if it did not “crash” (terminate un-
expectedly or throw an uncaught exception) during the test
case’s execution; otherwise itfailed. Such crashes may be
detected automatically by the script used to execute the test
cases. The EIG, ESI, and test cases may also be obtained
automatically. Hence, the entire end-to-end feedback-based
GUI testing process for “crash testing” could be executed
without human intervention.

Implementation of the crash testing process included set-
ting up a database for text-field values. Since the overall
process needed to be fully automatic, a database containing
one instance for each of the text types in the set{negative
number, real number, long file name, empty string, special
characters, zero, existing file name, non-existent file name}
was used. Note that if a text field is encountered in the GUI,
one instance for each text type is tried in succession.

This process provided a starting point for a feasibility
study to evaluate the ALT test cases and compare them to
the ESIG-generated test cases. The following questions
needed to be answered to determine the usefulness of the
overall feedback-based process:
Q1: How many test cases does ALT generate? How
does this number compare to the EIG- and ESIG-based ap-
proaches?
Q2: How many faults are detected by ALT? Of the faults
detected in this study, which are detected by ALT and which
by the ESIG-based approach? Why does one approach de-
tect a particular fault whereas the other one misses it?

This study was conducted using four popular GUI-based
open-source software (OSS) applications downloaded from
SourceForge. The fully-automatic crash testing process was
executed on them and the cause (i.e., thefault) of each crash
in the source code was determined. More specifically, the
following process was used for this study:

1. Choose software subjects with GUI front-ends.
2. Generate and execute the 2-way covering test suite.

Obtain the ESI relationships.
3. Generate new test suite using the algorithm of Figure 4.
4. If the newly proposed test suite is empty then stop; else

execute it and report crashes.
5. Repeat the last two steps until ALT returns an empty

test suite.

To allow comparison, the ESIGs and corresponding test
cases were also obtained for all applications.

Subject i-way Suites
Application 2 3 4 5 6
FreeMind 614 204 86 3 -

GanttProject 710 617 109 63 1
jEdit 591 419 54 38 -

OmegaT 469 310 11 - -

Table 1. ESI relationships

STEP 1: Selection of subject applications. Four popular
GUI-based OSS (FreeMind 0.8.0, GanttProject 2.0.1, jEdit
4.2, OmegaT 1.7.3) were downloaded from SourceForge.
FreeMind and GanttProject have been used in our previ-
ous experiments [10]; details of why they were chosen have
been presented therein; we added jEdit and OmegaT to re-
duce threats to external validity. In summary, all the appli-
cations have an active community of developers and a high
all-time-activity percentile on SourceForge. Due to their
popularity, these applications have undergone quality assur-
ance before release. To further eliminate “obvious” bugs, a
static analysis tool calledFindBugs[7] was executed on all
the applications; after the study, we verified that none of our
reported bugs were detected by FindBugs.

STEP 2: Generation of EIGs & seed test suites; exe-
cution of seed suite; computation of ESI relations: The
EIGs of all subject applications were obtained using reverse
engineering. The seed suite was generated and executed
without any human intervention. The GUI’s run-time state
was recorded during test execution. All faults were fixed in
the applications. The feedback was used to obtain the ESIs
for each application.

STEP 3: Execution of ALT algorithm: The initial set of
ESI relations was used to obtain the 3-way test cases. The
number of test cases is shown in Table 2. These test cases
were executed and the algorithm was invoked again. This
process continued until ALT returned an empty test suite.
Table 1 shows the number of ESI relations obtainedfrom
each of thei-way suites, fori = 2 . . . 6. For example,
only one ESI relation was obtained from the 6-way suite of
GanttProject. A “-” indicates that we did not have an entry.
As the numbers show, the ESI relations decrease with each
iteration, thereby helping to terminate the ALT algorithm.
This differed across applications: we went as high as 7-way
covering test cases for GanttProject and 4-way covering test
cases for OmegaT. From these results, we see that the total
number of EIG-generated test cases is simply too large (so
large that we had to represent them using the “exponent”
notation to fit in the table). The 3-way ESIG-generated test
suites are manageable; 4-way and beyond becomes quite
large. The parenthesized ESIG entries are shown for com-
parison only – we could not execute such large numbers of
test cases; the others were generated and executed. On the

i-way Suites
3 4 5 6 7

FreeMind
EIG 1.72e8 9.56e10 5.31e13 2.95e16 1.64e19

ESIG 10208 (122426) (1690861) (21857767) (353090927)
ALT 10208 2821 11 2 -

GanttProject
EIG 4.94e6 7.17e9 2.09e12 6.07e14 1.77e17

ESIG 3070 14742 27933 (63994) (125362)
ALT 3070 2229 226 34 4

jEdit
EIG 9.17e7 4.14e10 1.87e13 8.42e15 3.80e18

ESIG 7572 84488 (1024424) (10225602) (105931205)
ALT 7572 1258 738 171 -

OmegaT
EIG 7.65e6 1.51e9 2.97e11 5.85e13 1.15e16

ESIG 2335 8935 42859 (219415) (1135743)
ALT 2335 1440 - - -

Table 2. Test Cases Generation

Subject
Technique

i-way test suite
Application 3 4 5

FreeMind
ESIG 2�2� - -
ALT 2�2� - -

GanttProject
ESIG 2�2�2�2 - 2

ALT 2�2�2�2� - 2�

jEdit
ESIG 2�2� 2 -
ALT 2�2� 2� -

OmegaT
ESIG - - -
ALT - - -

Table 3. Fault Detection

other hand, the ALT approach generates a reasonable num-
ber of test cases that goes down with each test suite iteration.
This helps to answerQ1.

Both ALT and the ESIG-approach were successful at de-
tecting faults in the applications, except OmegaT (only 2
faults were detected by the 2-way covering test cases for
this application). We show these results in Table 3. Each
detected fault is shown as a check-box2�, which is checked
if the fault was detected; otherwise it is unchecked. A “-”
indicates that no fault is detected. To allow easy compari-
son, we show the check-box vector (for the same faults in
the same order) for both ALT and ESIG. For example, faults
1, 2, and 3 in GanntProject were detected by both ESIG and
ALT. Faults 4 and 5 were not detected by ESIG; they were
however detected by ALT, fault 4 by the 3-way test suite and
fault 5 by a 5-way covering suite. We see that ALT detected
all the faults that ESIG detected and some more using much
fewer test cases. This helps to partly answerQ2.

We now provide more details of faults 4 and 5 of

GanttProject, and Fault 3 of jEdit. These faults were not
detected by ESIG because several events required a com-
plex chain of enabling events, which could only be detected
by alternating between test execution and generation.

Fault 4 in GanttProject results in a NumberForma-
tException. It is detected by a 3-way test case<e1:
Create new task; e2: Set general task property; e3:
Set non-integer value in task duration>. Event e3

causes GanttProject to crash because it expects an in-
teger to be entered for the duration text-field in the
task property window. However, if a non-integer
value is set, GanttProject redraws the task shown in its
schedule panel; the method getLength() invokes Inte-
ger.parseInt(durationField1.getText().trim()) which throws
a NumberFormatException.

In the GUI, evente1 enablese2, and the sequence<
e1; e2 > enablese3. During ALT test-case generation, none
of the 2-way test cases that started withe2 ande3 executed;
however, the test case< e1; e2 > executed, indicating that
e1 enablese2. Lines 12–14 of the algorithm used this in-
formation to extend all 2-way covering test cases that con-
tainede2 by prefixinge1 to them; one important test case
was< e1; e2; e3 >.

In the first iteration of ALT, all 2-way covering test
cases that started withe3 remained unexecuted. Moreover,
< e2; e3 > was also unexecuted. Hence, by this iteration,
ALT did not know how to executee3. In the second iter-
ation, once the above-generated 3-way covering test case
< e1; e2; e3 > was executed, it was used to determine that
< e1; e2 > enablese3. Lines 12–14 used this information
to obtain new test cases for the third iteration.

The above 3-way test case was the shortest and only se-
quence needed to reveal this fault starting in stateS0; none
of the 2-, and other 3-way test case could have detected it.

Fault 5 in GanttProject results in a NullPointerException.
It is detected by a 5-way covering test case<e1: Create new
task; e4: Custom columns; e5: Add columns (with a name);
e6: Select newly created column in column table; e7: Delete
column>. Once again, the enabling relationship is complex
– e1 enablese5, < e1; e4 > enablede5, < e1; e4; e5 >
enablese6 ande7. We note that it cannot be detected by any
other 5-way or lower test case.

Fault 3 in jEdit results in a NullPointerException. It is
detected by the 4-way covering test case< e1: Download
QuickNotepad plugin; e2: Select QuickNotepad plugin; e3:
Install QuickNotepad plugin; e4: Choose QuickNotePad
file>. After installing the QuickNotepad plugin, jEdit al-
lows the user to open a file by entering its path in a text-
field. The user is free to enter any string in this text-field,
including an incorrect path or the name of a non-existing
file. Hence, when opening a non-existing file in QuickN-
odePad (e4), the NullPointerException is thrown. In this
test case,e1 enablese2, < e1; e2 > enablede3; hence the

< e1; e2; e3 > part of the test case was generated by Lines

12–14 of the ALT algorithm. Finally,< e1, e2, e3 >
8(2)
−→ e4;

Lines 8–11 of the ALT algorithm add the evente4. In this
example, we see that the combination of theenablingand
ESI parts of ALT was important to obtain the test case.
Summary: This study demonstrated that ALT tests are able
to detect all the ESIG-detected faults, as well as some ad-
ditional faults, using fewer test cases. Among the three
faults that we discussed, we note that the test cases that de-
tected them were the shortest sequences needed to reveal the
faults. Moreover, the ESIG-based approach could not de-
tect them because of its inability to handle disabled events.
An alternative algorithm, based on a random walk of the
EIG, would have a very low probability of generating the
fault-revealing test cases. For example,14.94e6 probability
for Fault 4 of GanttProject. (Recall that the total number of
3-way sequences from the EIG is 4.94e6 for GanttProject.)

The event handlers in the fault-revealing test cases
were distributed across multiple classes. For exam-
ple, for GanttProject,e1 was in theNewTaskAction
class;{e2, e3, e4} were inGanttDialogProperties;
{e5, e6, e7} were in GanttTreeTable. Similarly, for
jEdit, e1 was in thePluginManager class,{e2, e3} in
PluginList, ande4 in BeanShell. As mentioned ear-
lier, interactions across classes are difficult to infer stati-
cally; our run-time state based techniques are agnostic to
how the event handlers are distributed.

As always, results of studies should be interpreted with
threats to validity in mind. Several such threats are identi-
fied in this study. First, four Java applications have been
used as subject programs. Although they have different
types of GUIs, this does not reflect the wide spectrum of
possible GUIs that are available today. Moreover, the appli-
cations are extremely GUI-intensive,i.e., most of the code
is written for the GUI. The results will be different for ap-
plications that have complex underlying business logic and
a fairly simple GUI. Second, all the subject applications are
open-source, typically developed by volunteer developers
and might be more bug-prone than software implemented
by paid developers. Third, the run-time state of GUI wid-
gets is obtained using Java Swing API. These widgets may
have additional properties that are not exposed by the API.
Hence the set of ESI relationships may be incomplete.

6 Conclusions and Future Work

This paper presented a new alternating technique to gen-
erate n-way covering test cases. It is based on analysis of
the run-time state of GUI widgets obtained from a previous
test batch to obtain a new batch; the process cycles through
test-case generation, execution, and analysis. Our exist-
ing 2-way covering test cases are used as a starting point
for GUI state collection. Subsequently-generated and- exe-

cuted test cases are used for the analysis, iteratively yield-
ing additional test cases; no extra test cases are needed.
The technique was demonstrated via an empirical study on
four fielded software applications. The results of the study
showed that the test cases generated using the GUI state
were useful at detecting serious faults in the applications;
the alternating nature of the technique helped to detect com-
plex enabling relationships between events.

The results of the empirical study afforded two high-
priority tasks for future research. First, as discussed in Sec-
tion 3, we need to understand the subtle nature of the ESI
relationship that helps to improve the reachability of criti-
cal fault-revealing code. We hypothesize that this improve-
ment is caused by the linking of events that, in some sense,
are functionally related; executing them together causes the
revelation of problems due to shared objects. Second, sev-
eral events are ESI-related because of multiple predicates.
We currently do not “count” the predicates per relation; in
the future, we will explore assigning “strengths” to ESI re-
lations based on how many predicates areTRUE for each
pair of events.

Some of our earlier work based on the ESIs has been
extended to testing Ajax-based web applications [1]. The
Document Object Model (DOM) of the page manipulated
by the Ajax code is abstracted into a state model. Test cases
are derived from the state model based on the notion of se-
mantically interacting events. We expect that our alternating
approach will also be applicable in the Ajax domain.

Most faults that we continue to find in our work on GUI
testing are triggered only when certain interactions between
event handlers occur,e.g., one event handler passes incor-
rect data to another. As observed by Marsiet al. [8], these
interactions may also be modeled by information flows, pro-
gram dependences, and program slices. We will explore the
use of these models in our work. From a GUI develop-
ment point of view, with the increasing flexibility of new
user interfaces, programmers must take steps to ensure that
their software works correctly for a large input space. They
should check the validity of objects whenever possible be-
fore use; text fields in particular should be restricted to the
smallest input domains possible. We will also explore the
application of achecking sequencefor GUI testing; a check-
ing sequence is a test sequence that, under certain condi-
tions, is guaranteed to lead to a failure [6]. Although tradi-
tionally used for finite-state machines, we feel that it may
be extended to our flow-graphs for GUI.

Acknowledgments

This work was partially supported by the US National
Science Foundation under NSF grant CCF-0447864 and the
Office of Naval Research grant N00014-05-1-0421.

References

[1] P. T. Alessandro Marchetto and F. Ricca. State-based testing
of Ajax web applications. InProceedings of the 1st Inter-
national Conference on Software Testing, Verification, and
Valication, pages 121–130, April 9–11, 2008.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on java predicates. InISSTA ’02, pages 123–
133, 2002.

[3] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.
Ernst. An empirical comparison of automated generation
and classification techniques for object-oriented unit testing.
In Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering, 2006.

[4] M. B. Dwyer, V. Carr, and L. Hines. Model checking graph-
ical user interfaces using abstractions. InESEC/FSE ’97,
pages 244–261, 1997.

[5] C. D. Grosso, G. Antoniol, E. Merlo, and P. Galinier. Detect-
ing buffer overflow via automatic test input data generation.
Comput. Oper. Res., 35(10):3125–3143, 2008.

[6] R. M. Hierons and H. Ural. Optimizing the length of
checking sequences.IEEE Transactions on Computers,
55(5):618–629, 2006.

[7] D. Hovemeyer and W. Pugh. Finding bugs is easy.SIGPLAN
Not., 39(12):92–106, 2004.

[8] W. Masri, A. Podgurski, and D. Leon. An empirical study
of test case filtering techniques based on exercising informa-
tion flows. IEEE Trans. on Soft. Eng., 33(7):454–477, 2007.

[9] P. McMinn, M. Harman, D. Binkley, and P. Tonella. The
species per path approach to search-based test data genera-
tion. In ISSTA ’06, pages 13–24, 2006.

[10] A. M. Memon. Automatically repairing event sequence-
based GUI test suites for regression testing.ACM Trans.
on Softw. Eng. and Method., 2008.

[11] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing.
In Proceedings of The 10th Working Conference on Reverse
Engineering, November 2003.

[12] A. M. Memon and Q. Xie. Studying the fault-detection ef-
fectiveness of GUI test cases for rapidly evolving software.
IEEE Trans. Softw. Eng., 31(10):884–896, 2005.

[13] W. Miller and D. L. Spooner. Automatic generation
of floating-point test data. IEEE Trans. Software Eng.,
2(3):223–226, 1976.

[14] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. InICSE ’07, pages 396–
405, May 23–25, 2007.

[15] A. Rountev, S. Kagan, and M. Gibas. Evaluating the impre-
cision of static analysis. InWorkshop on Program analysis
for software tools and eng., pages 14–16, 2004.

[16] T. Xie and D. Notkin. Tool-assisted unit-test generation and
selection based on operational abstractions.Autom. Softw.
Eng., 13(3):345–371, 2006.

[17] X. Yuan and A. M. Memon. Using GUI run-time state as
feedback to generate test cases. InICSE ’07, pages 396–
405, May 23–25, 2007.

